1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 #include <linux/rw_hint.h>
12 
13 struct blk_mq_tags;
14 struct blk_flush_queue;
15 
16 #define BLKDEV_MIN_RQ	4
17 #define BLKDEV_DEFAULT_RQ	128
18 
19 enum rq_end_io_ret {
20 	RQ_END_IO_NONE,
21 	RQ_END_IO_FREE,
22 };
23 
24 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
25 
26 /*
27  * request flags */
28 typedef __u32 __bitwise req_flags_t;
29 
30 /* Keep rqf_name[] in sync with the definitions below */
31 enum {
32 	/* drive already may have started this one */
33 	__RQF_STARTED,
34 	/* request for flush sequence */
35 	__RQF_FLUSH_SEQ,
36 	/* merge of different types, fail separately */
37 	__RQF_MIXED_MERGE,
38 	/* don't call prep for this one */
39 	__RQF_DONTPREP,
40 	/* use hctx->sched_tags */
41 	__RQF_SCHED_TAGS,
42 	/* use an I/O scheduler for this request */
43 	__RQF_USE_SCHED,
44 	/* vaguely specified driver internal error.  Ignored by block layer */
45 	__RQF_FAILED,
46 	/* don't warn about errors */
47 	__RQF_QUIET,
48 	/* account into disk and partition IO statistics */
49 	__RQF_IO_STAT,
50 	/* runtime pm request */
51 	__RQF_PM,
52 	/* on IO scheduler merge hash */
53 	__RQF_HASHED,
54 	/* track IO completion time */
55 	__RQF_STATS,
56 	/* Look at ->special_vec for the actual data payload instead of the
57 	   bio chain. */
58 	__RQF_SPECIAL_PAYLOAD,
59 	/* request completion needs to be signaled to zone write plugging. */
60 	__RQF_ZONE_WRITE_PLUGGING,
61 	/* ->timeout has been called, don't expire again */
62 	__RQF_TIMED_OUT,
63 	__RQF_RESV,
64 	__RQF_BITS
65 };
66 
67 #define RQF_STARTED		((__force req_flags_t)(1 << __RQF_STARTED))
68 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << __RQF_FLUSH_SEQ))
69 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << __RQF_MIXED_MERGE))
70 #define RQF_DONTPREP		((__force req_flags_t)(1 << __RQF_DONTPREP))
71 #define RQF_SCHED_TAGS		((__force req_flags_t)(1 << __RQF_SCHED_TAGS))
72 #define RQF_USE_SCHED		((__force req_flags_t)(1 << __RQF_USE_SCHED))
73 #define RQF_FAILED		((__force req_flags_t)(1 << __RQF_FAILED))
74 #define RQF_QUIET		((__force req_flags_t)(1 << __RQF_QUIET))
75 #define RQF_IO_STAT		((__force req_flags_t)(1 << __RQF_IO_STAT))
76 #define RQF_PM			((__force req_flags_t)(1 << __RQF_PM))
77 #define RQF_HASHED		((__force req_flags_t)(1 << __RQF_HASHED))
78 #define RQF_STATS		((__force req_flags_t)(1 << __RQF_STATS))
79 #define RQF_SPECIAL_PAYLOAD	\
80 			((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD))
81 #define RQF_ZONE_WRITE_PLUGGING	\
82 			((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING))
83 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << __RQF_TIMED_OUT))
84 #define RQF_RESV		((__force req_flags_t)(1 << __RQF_RESV))
85 
86 /* flags that prevent us from merging requests: */
87 #define RQF_NOMERGE_FLAGS \
88 	(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
89 
90 enum mq_rq_state {
91 	MQ_RQ_IDLE		= 0,
92 	MQ_RQ_IN_FLIGHT		= 1,
93 	MQ_RQ_COMPLETE		= 2,
94 };
95 
96 /*
97  * Try to put the fields that are referenced together in the same cacheline.
98  *
99  * If you modify this structure, make sure to update blk_rq_init() and
100  * especially blk_mq_rq_ctx_init() to take care of the added fields.
101  */
102 struct request {
103 	struct request_queue *q;
104 	struct blk_mq_ctx *mq_ctx;
105 	struct blk_mq_hw_ctx *mq_hctx;
106 
107 	blk_opf_t cmd_flags;		/* op and common flags */
108 	req_flags_t rq_flags;
109 
110 	int tag;
111 	int internal_tag;
112 
113 	unsigned int timeout;
114 
115 	/* the following two fields are internal, NEVER access directly */
116 	unsigned int __data_len;	/* total data len */
117 	sector_t __sector;		/* sector cursor */
118 
119 	struct bio *bio;
120 	struct bio *biotail;
121 
122 	union {
123 		struct list_head queuelist;
124 		struct request *rq_next;
125 	};
126 
127 	struct block_device *part;
128 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
129 	/* Time that the first bio started allocating this request. */
130 	u64 alloc_time_ns;
131 #endif
132 	/* Time that this request was allocated for this IO. */
133 	u64 start_time_ns;
134 	/* Time that I/O was submitted to the device. */
135 	u64 io_start_time_ns;
136 
137 #ifdef CONFIG_BLK_WBT
138 	unsigned short wbt_flags;
139 #endif
140 	/*
141 	 * rq sectors used for blk stats. It has the same value
142 	 * with blk_rq_sectors(rq), except that it never be zeroed
143 	 * by completion.
144 	 */
145 	unsigned short stats_sectors;
146 
147 	/*
148 	 * Number of scatter-gather DMA addr+len pairs after
149 	 * physical address coalescing is performed.
150 	 */
151 	unsigned short nr_phys_segments;
152 	unsigned short nr_integrity_segments;
153 
154 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
155 	struct bio_crypt_ctx *crypt_ctx;
156 	struct blk_crypto_keyslot *crypt_keyslot;
157 #endif
158 
159 	enum rw_hint write_hint;
160 	unsigned short ioprio;
161 
162 	enum mq_rq_state state;
163 	atomic_t ref;
164 
165 	unsigned long deadline;
166 
167 	/*
168 	 * The hash is used inside the scheduler, and killed once the
169 	 * request reaches the dispatch list. The ipi_list is only used
170 	 * to queue the request for softirq completion, which is long
171 	 * after the request has been unhashed (and even removed from
172 	 * the dispatch list).
173 	 */
174 	union {
175 		struct hlist_node hash;	/* merge hash */
176 		struct llist_node ipi_list;
177 	};
178 
179 	/*
180 	 * The rb_node is only used inside the io scheduler, requests
181 	 * are pruned when moved to the dispatch queue. special_vec must
182 	 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
183 	 * insert into an IO scheduler.
184 	 */
185 	union {
186 		struct rb_node rb_node;	/* sort/lookup */
187 		struct bio_vec special_vec;
188 	};
189 
190 	/*
191 	 * Three pointers are available for the IO schedulers, if they need
192 	 * more they have to dynamically allocate it.
193 	 */
194 	struct {
195 		struct io_cq		*icq;
196 		void			*priv[2];
197 	} elv;
198 
199 	struct {
200 		unsigned int		seq;
201 		rq_end_io_fn		*saved_end_io;
202 	} flush;
203 
204 	u64 fifo_time;
205 
206 	/*
207 	 * completion callback.
208 	 */
209 	rq_end_io_fn *end_io;
210 	void *end_io_data;
211 };
212 
req_op(const struct request * req)213 static inline enum req_op req_op(const struct request *req)
214 {
215 	return req->cmd_flags & REQ_OP_MASK;
216 }
217 
blk_rq_is_passthrough(struct request * rq)218 static inline bool blk_rq_is_passthrough(struct request *rq)
219 {
220 	return blk_op_is_passthrough(rq->cmd_flags);
221 }
222 
req_get_ioprio(struct request * req)223 static inline unsigned short req_get_ioprio(struct request *req)
224 {
225 	return req->ioprio;
226 }
227 
228 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
229 
230 #define rq_dma_dir(rq) \
231 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
232 
233 #define rq_list_add(listptr, rq)	do {		\
234 	(rq)->rq_next = *(listptr);			\
235 	*(listptr) = rq;				\
236 } while (0)
237 
238 #define rq_list_add_tail(lastpptr, rq)	do {		\
239 	(rq)->rq_next = NULL;				\
240 	**(lastpptr) = rq;				\
241 	*(lastpptr) = &rq->rq_next;			\
242 } while (0)
243 
244 #define rq_list_pop(listptr)				\
245 ({							\
246 	struct request *__req = NULL;			\
247 	if ((listptr) && *(listptr))	{		\
248 		__req = *(listptr);			\
249 		*(listptr) = __req->rq_next;		\
250 	}						\
251 	__req;						\
252 })
253 
254 #define rq_list_peek(listptr)				\
255 ({							\
256 	struct request *__req = NULL;			\
257 	if ((listptr) && *(listptr))			\
258 		__req = *(listptr);			\
259 	__req;						\
260 })
261 
262 #define rq_list_for_each(listptr, pos)			\
263 	for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
264 
265 #define rq_list_for_each_safe(listptr, pos, nxt)			\
266 	for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);	\
267 		pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
268 
269 #define rq_list_next(rq)	(rq)->rq_next
270 #define rq_list_empty(list)	((list) == (struct request *) NULL)
271 
272 /**
273  * rq_list_move() - move a struct request from one list to another
274  * @src: The source list @rq is currently in
275  * @dst: The destination list that @rq will be appended to
276  * @rq: The request to move
277  * @prev: The request preceding @rq in @src (NULL if @rq is the head)
278  */
rq_list_move(struct request ** src,struct request ** dst,struct request * rq,struct request * prev)279 static inline void rq_list_move(struct request **src, struct request **dst,
280 				struct request *rq, struct request *prev)
281 {
282 	if (prev)
283 		prev->rq_next = rq->rq_next;
284 	else
285 		*src = rq->rq_next;
286 	rq_list_add(dst, rq);
287 }
288 
289 /**
290  * enum blk_eh_timer_return - How the timeout handler should proceed
291  * @BLK_EH_DONE: The block driver completed the command or will complete it at
292  *	a later time.
293  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
294  *	request to complete.
295  */
296 enum blk_eh_timer_return {
297 	BLK_EH_DONE,
298 	BLK_EH_RESET_TIMER,
299 };
300 
301 /* Keep alloc_policy_name[] in sync with the definitions below */
302 enum {
303 	BLK_TAG_ALLOC_FIFO,	/* allocate starting from 0 */
304 	BLK_TAG_ALLOC_RR,	/* allocate starting from last allocated tag */
305 	BLK_TAG_ALLOC_MAX
306 };
307 
308 /**
309  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
310  * block device
311  */
312 struct blk_mq_hw_ctx {
313 	struct {
314 		/** @lock: Protects the dispatch list. */
315 		spinlock_t		lock;
316 		/**
317 		 * @dispatch: Used for requests that are ready to be
318 		 * dispatched to the hardware but for some reason (e.g. lack of
319 		 * resources) could not be sent to the hardware. As soon as the
320 		 * driver can send new requests, requests at this list will
321 		 * be sent first for a fairer dispatch.
322 		 */
323 		struct list_head	dispatch;
324 		 /**
325 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
326 		  * queue (active, scheduled to restart, stopped).
327 		  */
328 		unsigned long		state;
329 	} ____cacheline_aligned_in_smp;
330 
331 	/**
332 	 * @run_work: Used for scheduling a hardware queue run at a later time.
333 	 */
334 	struct delayed_work	run_work;
335 	/** @cpumask: Map of available CPUs where this hctx can run. */
336 	cpumask_var_t		cpumask;
337 	/**
338 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
339 	 * selection from @cpumask.
340 	 */
341 	int			next_cpu;
342 	/**
343 	 * @next_cpu_batch: Counter of how many works left in the batch before
344 	 * changing to the next CPU.
345 	 */
346 	int			next_cpu_batch;
347 
348 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
349 	unsigned long		flags;
350 
351 	/**
352 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
353 	 * queue. It's up to the IO scheduler how to use this pointer.
354 	 */
355 	void			*sched_data;
356 	/**
357 	 * @queue: Pointer to the request queue that owns this hardware context.
358 	 */
359 	struct request_queue	*queue;
360 	/** @fq: Queue of requests that need to perform a flush operation. */
361 	struct blk_flush_queue	*fq;
362 
363 	/**
364 	 * @driver_data: Pointer to data owned by the block driver that created
365 	 * this hctx
366 	 */
367 	void			*driver_data;
368 
369 	/**
370 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
371 	 * pending request in that software queue.
372 	 */
373 	struct sbitmap		ctx_map;
374 
375 	/**
376 	 * @dispatch_from: Software queue to be used when no scheduler was
377 	 * selected.
378 	 */
379 	struct blk_mq_ctx	*dispatch_from;
380 	/**
381 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
382 	 * decide if the hw_queue is busy using Exponential Weighted Moving
383 	 * Average algorithm.
384 	 */
385 	unsigned int		dispatch_busy;
386 
387 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
388 	unsigned short		type;
389 	/** @nr_ctx: Number of software queues. */
390 	unsigned short		nr_ctx;
391 	/** @ctxs: Array of software queues. */
392 	struct blk_mq_ctx	**ctxs;
393 
394 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
395 	spinlock_t		dispatch_wait_lock;
396 	/**
397 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
398 	 * available at the moment, to wait for another try in the future.
399 	 */
400 	wait_queue_entry_t	dispatch_wait;
401 
402 	/**
403 	 * @wait_index: Index of next available dispatch_wait queue to insert
404 	 * requests.
405 	 */
406 	atomic_t		wait_index;
407 
408 	/**
409 	 * @tags: Tags owned by the block driver. A tag at this set is only
410 	 * assigned when a request is dispatched from a hardware queue.
411 	 */
412 	struct blk_mq_tags	*tags;
413 	/**
414 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
415 	 * scheduler associated with a request queue, a tag is assigned when
416 	 * that request is allocated. Else, this member is not used.
417 	 */
418 	struct blk_mq_tags	*sched_tags;
419 
420 	/** @numa_node: NUMA node the storage adapter has been connected to. */
421 	unsigned int		numa_node;
422 	/** @queue_num: Index of this hardware queue. */
423 	unsigned int		queue_num;
424 
425 	/**
426 	 * @nr_active: Number of active requests. Only used when a tag set is
427 	 * shared across request queues.
428 	 */
429 	atomic_t		nr_active;
430 
431 	/** @cpuhp_online: List to store request if CPU is going to die */
432 	struct hlist_node	cpuhp_online;
433 	/** @cpuhp_dead: List to store request if some CPU die. */
434 	struct hlist_node	cpuhp_dead;
435 	/** @kobj: Kernel object for sysfs. */
436 	struct kobject		kobj;
437 
438 #ifdef CONFIG_BLK_DEBUG_FS
439 	/**
440 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
441 	 * as cpu<cpu_number>.
442 	 */
443 	struct dentry		*debugfs_dir;
444 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
445 	struct dentry		*sched_debugfs_dir;
446 #endif
447 
448 	/**
449 	 * @hctx_list: if this hctx is not in use, this is an entry in
450 	 * q->unused_hctx_list.
451 	 */
452 	struct list_head	hctx_list;
453 };
454 
455 /**
456  * struct blk_mq_queue_map - Map software queues to hardware queues
457  * @mq_map:       CPU ID to hardware queue index map. This is an array
458  *	with nr_cpu_ids elements. Each element has a value in the range
459  *	[@queue_offset, @queue_offset + @nr_queues).
460  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
461  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
462  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
463  *	set of hardware queues.
464  */
465 struct blk_mq_queue_map {
466 	unsigned int *mq_map;
467 	unsigned int nr_queues;
468 	unsigned int queue_offset;
469 };
470 
471 /**
472  * enum hctx_type - Type of hardware queue
473  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
474  * @HCTX_TYPE_READ:	Just for READ I/O.
475  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
476  * @HCTX_MAX_TYPES:	Number of types of hctx.
477  */
478 enum hctx_type {
479 	HCTX_TYPE_DEFAULT,
480 	HCTX_TYPE_READ,
481 	HCTX_TYPE_POLL,
482 
483 	HCTX_MAX_TYPES,
484 };
485 
486 /**
487  * struct blk_mq_tag_set - tag set that can be shared between request queues
488  * @ops:	   Pointers to functions that implement block driver behavior.
489  * @map:	   One or more ctx -> hctx mappings. One map exists for each
490  *		   hardware queue type (enum hctx_type) that the driver wishes
491  *		   to support. There are no restrictions on maps being of the
492  *		   same size, and it's perfectly legal to share maps between
493  *		   types.
494  * @nr_maps:	   Number of elements in the @map array. A number in the range
495  *		   [1, HCTX_MAX_TYPES].
496  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
497  *		   owns this data structure.
498  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
499  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
500  *		   allocations.
501  * @cmd_size:	   Number of additional bytes to allocate per request. The block
502  *		   driver owns these additional bytes.
503  * @numa_node:	   NUMA node the storage adapter has been connected to.
504  * @timeout:	   Request processing timeout in jiffies.
505  * @flags:	   Zero or more BLK_MQ_F_* flags.
506  * @driver_data:   Pointer to data owned by the block driver that created this
507  *		   tag set.
508  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
509  *		   elements.
510  * @shared_tags:
511  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
512  *		   shared by all @tags.
513  * @tag_list_lock: Serializes tag_list accesses.
514  * @tag_list:	   List of the request queues that use this tag set. See also
515  *		   request_queue.tag_set_list.
516  * @srcu:	   Use as lock when type of the request queue is blocking
517  *		   (BLK_MQ_F_BLOCKING).
518  */
519 struct blk_mq_tag_set {
520 	const struct blk_mq_ops	*ops;
521 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
522 	unsigned int		nr_maps;
523 	unsigned int		nr_hw_queues;
524 	unsigned int		queue_depth;
525 	unsigned int		reserved_tags;
526 	unsigned int		cmd_size;
527 	int			numa_node;
528 	unsigned int		timeout;
529 	unsigned int		flags;
530 	void			*driver_data;
531 
532 	struct blk_mq_tags	**tags;
533 
534 	struct blk_mq_tags	*shared_tags;
535 
536 	struct mutex		tag_list_lock;
537 	struct list_head	tag_list;
538 	struct srcu_struct	*srcu;
539 };
540 
541 /**
542  * struct blk_mq_queue_data - Data about a request inserted in a queue
543  *
544  * @rq:   Request pointer.
545  * @last: If it is the last request in the queue.
546  */
547 struct blk_mq_queue_data {
548 	struct request *rq;
549 	bool last;
550 };
551 
552 typedef bool (busy_tag_iter_fn)(struct request *, void *);
553 
554 /**
555  * struct blk_mq_ops - Callback functions that implements block driver
556  * behaviour.
557  */
558 struct blk_mq_ops {
559 	/**
560 	 * @queue_rq: Queue a new request from block IO.
561 	 */
562 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
563 				 const struct blk_mq_queue_data *);
564 
565 	/**
566 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
567 	 * requests to hardware, it must define this function. In case of errors
568 	 * that make us stop issuing further requests, this hook serves the
569 	 * purpose of kicking the hardware (which the last request otherwise
570 	 * would have done).
571 	 */
572 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
573 
574 	/**
575 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
576 	 * that each request belongs to the same queue. If the driver doesn't
577 	 * empty the @rqlist completely, then the rest will be queued
578 	 * individually by the block layer upon return.
579 	 */
580 	void (*queue_rqs)(struct request **rqlist);
581 
582 	/**
583 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
584 	 * run, it is driver's responsibility to release the
585 	 * reserved budget. Also we have to handle failure case
586 	 * of .get_budget for avoiding I/O deadlock.
587 	 */
588 	int (*get_budget)(struct request_queue *);
589 
590 	/**
591 	 * @put_budget: Release the reserved budget.
592 	 */
593 	void (*put_budget)(struct request_queue *, int);
594 
595 	/**
596 	 * @set_rq_budget_token: store rq's budget token
597 	 */
598 	void (*set_rq_budget_token)(struct request *, int);
599 	/**
600 	 * @get_rq_budget_token: retrieve rq's budget token
601 	 */
602 	int (*get_rq_budget_token)(struct request *);
603 
604 	/**
605 	 * @timeout: Called on request timeout.
606 	 */
607 	enum blk_eh_timer_return (*timeout)(struct request *);
608 
609 	/**
610 	 * @poll: Called to poll for completion of a specific tag.
611 	 */
612 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
613 
614 	/**
615 	 * @complete: Mark the request as complete.
616 	 */
617 	void (*complete)(struct request *);
618 
619 	/**
620 	 * @init_hctx: Called when the block layer side of a hardware queue has
621 	 * been set up, allowing the driver to allocate/init matching
622 	 * structures.
623 	 */
624 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
625 	/**
626 	 * @exit_hctx: Ditto for exit/teardown.
627 	 */
628 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
629 
630 	/**
631 	 * @init_request: Called for every command allocated by the block layer
632 	 * to allow the driver to set up driver specific data.
633 	 *
634 	 * Tag greater than or equal to queue_depth is for setting up
635 	 * flush request.
636 	 */
637 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
638 			    unsigned int, unsigned int);
639 	/**
640 	 * @exit_request: Ditto for exit/teardown.
641 	 */
642 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
643 			     unsigned int);
644 
645 	/**
646 	 * @cleanup_rq: Called before freeing one request which isn't completed
647 	 * yet, and usually for freeing the driver private data.
648 	 */
649 	void (*cleanup_rq)(struct request *);
650 
651 	/**
652 	 * @busy: If set, returns whether or not this queue currently is busy.
653 	 */
654 	bool (*busy)(struct request_queue *);
655 
656 	/**
657 	 * @map_queues: This allows drivers specify their own queue mapping by
658 	 * overriding the setup-time function that builds the mq_map.
659 	 */
660 	void (*map_queues)(struct blk_mq_tag_set *set);
661 
662 #ifdef CONFIG_BLK_DEBUG_FS
663 	/**
664 	 * @show_rq: Used by the debugfs implementation to show driver-specific
665 	 * information about a request.
666 	 */
667 	void (*show_rq)(struct seq_file *m, struct request *rq);
668 #endif
669 };
670 
671 /* Keep hctx_flag_name[] in sync with the definitions below */
672 enum {
673 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
674 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
675 	/*
676 	 * Set when this device requires underlying blk-mq device for
677 	 * completing IO:
678 	 */
679 	BLK_MQ_F_STACKING	= 1 << 2,
680 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
681 	BLK_MQ_F_BLOCKING	= 1 << 4,
682 	/* Do not allow an I/O scheduler to be configured. */
683 	BLK_MQ_F_NO_SCHED	= 1 << 5,
684 
685 	/*
686 	 * Select 'none' during queue registration in case of a single hwq
687 	 * or shared hwqs instead of 'mq-deadline'.
688 	 */
689 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 6,
690 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 7,
691 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
692 };
693 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
694 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
695 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
696 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
697 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
698 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
699 
700 #define BLK_MQ_MAX_DEPTH	(10240)
701 #define BLK_MQ_NO_HCTX_IDX	(-1U)
702 
703 enum {
704 	/* Keep hctx_state_name[] in sync with the definitions below */
705 	BLK_MQ_S_STOPPED,
706 	BLK_MQ_S_TAG_ACTIVE,
707 	BLK_MQ_S_SCHED_RESTART,
708 	/* hw queue is inactive after all its CPUs become offline */
709 	BLK_MQ_S_INACTIVE,
710 	BLK_MQ_S_MAX
711 };
712 
713 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
714 		struct queue_limits *lim, void *queuedata,
715 		struct lock_class_key *lkclass);
716 #define blk_mq_alloc_disk(set, lim, queuedata)				\
717 ({									\
718 	static struct lock_class_key __key;				\
719 									\
720 	__blk_mq_alloc_disk(set, lim, queuedata, &__key);		\
721 })
722 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
723 		struct lock_class_key *lkclass);
724 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
725 		struct queue_limits *lim, void *queuedata);
726 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
727 		struct request_queue *q);
728 void blk_mq_destroy_queue(struct request_queue *);
729 
730 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
731 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
732 		const struct blk_mq_ops *ops, unsigned int queue_depth,
733 		unsigned int set_flags);
734 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
735 
736 void blk_mq_free_request(struct request *rq);
737 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
738 		unsigned int poll_flags);
739 
740 bool blk_mq_queue_inflight(struct request_queue *q);
741 
742 enum {
743 	/* return when out of requests */
744 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
745 	/* allocate from reserved pool */
746 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
747 	/* set RQF_PM */
748 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
749 };
750 
751 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
752 		blk_mq_req_flags_t flags);
753 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
754 		blk_opf_t opf, blk_mq_req_flags_t flags,
755 		unsigned int hctx_idx);
756 
757 /*
758  * Tag address space map.
759  */
760 struct blk_mq_tags {
761 	unsigned int nr_tags;
762 	unsigned int nr_reserved_tags;
763 	unsigned int active_queues;
764 
765 	struct sbitmap_queue bitmap_tags;
766 	struct sbitmap_queue breserved_tags;
767 
768 	struct request **rqs;
769 	struct request **static_rqs;
770 	struct list_head page_list;
771 
772 	/*
773 	 * used to clear request reference in rqs[] before freeing one
774 	 * request pool
775 	 */
776 	spinlock_t lock;
777 };
778 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)779 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
780 					       unsigned int tag)
781 {
782 	if (tag < tags->nr_tags) {
783 		prefetch(tags->rqs[tag]);
784 		return tags->rqs[tag];
785 	}
786 
787 	return NULL;
788 }
789 
790 enum {
791 	BLK_MQ_UNIQUE_TAG_BITS = 16,
792 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
793 };
794 
795 u32 blk_mq_unique_tag(struct request *rq);
796 
blk_mq_unique_tag_to_hwq(u32 unique_tag)797 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
798 {
799 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
800 }
801 
blk_mq_unique_tag_to_tag(u32 unique_tag)802 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
803 {
804 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
805 }
806 
807 /**
808  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
809  * @rq: target request.
810  */
blk_mq_rq_state(struct request * rq)811 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
812 {
813 	return READ_ONCE(rq->state);
814 }
815 
blk_mq_request_started(struct request * rq)816 static inline int blk_mq_request_started(struct request *rq)
817 {
818 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
819 }
820 
blk_mq_request_completed(struct request * rq)821 static inline int blk_mq_request_completed(struct request *rq)
822 {
823 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
824 }
825 
826 /*
827  *
828  * Set the state to complete when completing a request from inside ->queue_rq.
829  * This is used by drivers that want to ensure special complete actions that
830  * need access to the request are called on failure, e.g. by nvme for
831  * multipathing.
832  */
blk_mq_set_request_complete(struct request * rq)833 static inline void blk_mq_set_request_complete(struct request *rq)
834 {
835 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
836 }
837 
838 /*
839  * Complete the request directly instead of deferring it to softirq or
840  * completing it another CPU. Useful in preemptible instead of an interrupt.
841  */
blk_mq_complete_request_direct(struct request * rq,void (* complete)(struct request * rq))842 static inline void blk_mq_complete_request_direct(struct request *rq,
843 		   void (*complete)(struct request *rq))
844 {
845 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
846 	complete(rq);
847 }
848 
849 void blk_mq_start_request(struct request *rq);
850 void blk_mq_end_request(struct request *rq, blk_status_t error);
851 void __blk_mq_end_request(struct request *rq, blk_status_t error);
852 void blk_mq_end_request_batch(struct io_comp_batch *ib);
853 
854 /*
855  * Only need start/end time stamping if we have iostat or
856  * blk stats enabled, or using an IO scheduler.
857  */
blk_mq_need_time_stamp(struct request * rq)858 static inline bool blk_mq_need_time_stamp(struct request *rq)
859 {
860 	/*
861 	 * passthrough io doesn't use iostat accounting, cgroup stats
862 	 * and io scheduler functionalities.
863 	 */
864 	if (blk_rq_is_passthrough(rq))
865 		return false;
866 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
867 }
868 
blk_mq_is_reserved_rq(struct request * rq)869 static inline bool blk_mq_is_reserved_rq(struct request *rq)
870 {
871 	return rq->rq_flags & RQF_RESV;
872 }
873 
874 /*
875  * Batched completions only work when there is no I/O error and no special
876  * ->end_io handler.
877  */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,int ioerror,void (* complete)(struct io_comp_batch *))878 static inline bool blk_mq_add_to_batch(struct request *req,
879 				       struct io_comp_batch *iob, int ioerror,
880 				       void (*complete)(struct io_comp_batch *))
881 {
882 	/*
883 	 * blk_mq_end_request_batch() can't end request allocated from
884 	 * sched tags
885 	 */
886 	if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
887 			(req->end_io && !blk_rq_is_passthrough(req)))
888 		return false;
889 
890 	if (!iob->complete)
891 		iob->complete = complete;
892 	else if (iob->complete != complete)
893 		return false;
894 	iob->need_ts |= blk_mq_need_time_stamp(req);
895 	rq_list_add(&iob->req_list, req);
896 	return true;
897 }
898 
899 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
900 void blk_mq_kick_requeue_list(struct request_queue *q);
901 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
902 void blk_mq_complete_request(struct request *rq);
903 bool blk_mq_complete_request_remote(struct request *rq);
904 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
905 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
906 void blk_mq_stop_hw_queues(struct request_queue *q);
907 void blk_mq_start_hw_queues(struct request_queue *q);
908 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
909 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
910 void blk_mq_quiesce_queue(struct request_queue *q);
911 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
912 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
913 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
914 void blk_mq_unquiesce_queue(struct request_queue *q);
915 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
916 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
917 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
918 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
919 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
920 		busy_tag_iter_fn *fn, void *priv);
921 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
922 void blk_mq_freeze_queue(struct request_queue *q);
923 void blk_mq_unfreeze_queue(struct request_queue *q);
924 void blk_freeze_queue_start(struct request_queue *q);
925 void blk_mq_freeze_queue_wait(struct request_queue *q);
926 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
927 				     unsigned long timeout);
928 
929 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
930 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
931 
932 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
933 
934 unsigned int blk_mq_rq_cpu(struct request *rq);
935 
936 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)937 static inline bool blk_should_fake_timeout(struct request_queue *q)
938 {
939 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
940 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
941 		return __blk_should_fake_timeout(q);
942 	return false;
943 }
944 
945 /**
946  * blk_mq_rq_from_pdu - cast a PDU to a request
947  * @pdu: the PDU (Protocol Data Unit) to be casted
948  *
949  * Return: request
950  *
951  * Driver command data is immediately after the request. So subtract request
952  * size to get back to the original request.
953  */
blk_mq_rq_from_pdu(void * pdu)954 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
955 {
956 	return pdu - sizeof(struct request);
957 }
958 
959 /**
960  * blk_mq_rq_to_pdu - cast a request to a PDU
961  * @rq: the request to be casted
962  *
963  * Return: pointer to the PDU
964  *
965  * Driver command data is immediately after the request. So add request to get
966  * the PDU.
967  */
blk_mq_rq_to_pdu(struct request * rq)968 static inline void *blk_mq_rq_to_pdu(struct request *rq)
969 {
970 	return rq + 1;
971 }
972 
973 #define queue_for_each_hw_ctx(q, hctx, i)				\
974 	xa_for_each(&(q)->hctx_table, (i), (hctx))
975 
976 #define hctx_for_each_ctx(hctx, ctx, i)					\
977 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
978 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
979 
blk_mq_cleanup_rq(struct request * rq)980 static inline void blk_mq_cleanup_rq(struct request *rq)
981 {
982 	if (rq->q->mq_ops->cleanup_rq)
983 		rq->q->mq_ops->cleanup_rq(rq);
984 }
985 
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)986 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
987 		unsigned int nr_segs)
988 {
989 	rq->nr_phys_segments = nr_segs;
990 	rq->__data_len = bio->bi_iter.bi_size;
991 	rq->bio = rq->biotail = bio;
992 	rq->ioprio = bio_prio(bio);
993 }
994 
995 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
996 		struct lock_class_key *key);
997 
rq_is_sync(struct request * rq)998 static inline bool rq_is_sync(struct request *rq)
999 {
1000 	return op_is_sync(rq->cmd_flags);
1001 }
1002 
1003 void blk_rq_init(struct request_queue *q, struct request *rq);
1004 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1005 		struct bio_set *bs, gfp_t gfp_mask,
1006 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
1007 void blk_rq_unprep_clone(struct request *rq);
1008 blk_status_t blk_insert_cloned_request(struct request *rq);
1009 
1010 struct rq_map_data {
1011 	struct page **pages;
1012 	unsigned long offset;
1013 	unsigned short page_order;
1014 	unsigned short nr_entries;
1015 	bool null_mapped;
1016 	bool from_user;
1017 };
1018 
1019 int blk_rq_map_user(struct request_queue *, struct request *,
1020 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
1021 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
1022 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
1023 int blk_rq_map_user_iov(struct request_queue *, struct request *,
1024 		struct rq_map_data *, const struct iov_iter *, gfp_t);
1025 int blk_rq_unmap_user(struct bio *);
1026 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1027 		unsigned int, gfp_t);
1028 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1029 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1030 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1031 bool blk_rq_is_poll(struct request *rq);
1032 
1033 struct req_iterator {
1034 	struct bvec_iter iter;
1035 	struct bio *bio;
1036 };
1037 
1038 #define __rq_for_each_bio(_bio, rq)	\
1039 	if ((rq->bio))			\
1040 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1041 
1042 #define rq_for_each_segment(bvl, _rq, _iter)			\
1043 	__rq_for_each_bio(_iter.bio, _rq)			\
1044 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1045 
1046 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1047 	__rq_for_each_bio(_iter.bio, _rq)			\
1048 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1049 
1050 #define rq_iter_last(bvec, _iter)				\
1051 		(_iter.bio->bi_next == NULL &&			\
1052 		 bio_iter_last(bvec, _iter.iter))
1053 
1054 /*
1055  * blk_rq_pos()			: the current sector
1056  * blk_rq_bytes()		: bytes left in the entire request
1057  * blk_rq_cur_bytes()		: bytes left in the current segment
1058  * blk_rq_sectors()		: sectors left in the entire request
1059  * blk_rq_cur_sectors()		: sectors left in the current segment
1060  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1061  */
blk_rq_pos(const struct request * rq)1062 static inline sector_t blk_rq_pos(const struct request *rq)
1063 {
1064 	return rq->__sector;
1065 }
1066 
blk_rq_bytes(const struct request * rq)1067 static inline unsigned int blk_rq_bytes(const struct request *rq)
1068 {
1069 	return rq->__data_len;
1070 }
1071 
blk_rq_cur_bytes(const struct request * rq)1072 static inline int blk_rq_cur_bytes(const struct request *rq)
1073 {
1074 	if (!rq->bio)
1075 		return 0;
1076 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1077 		return rq->bio->bi_iter.bi_size;
1078 	return bio_iovec(rq->bio).bv_len;
1079 }
1080 
blk_rq_sectors(const struct request * rq)1081 static inline unsigned int blk_rq_sectors(const struct request *rq)
1082 {
1083 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1084 }
1085 
blk_rq_cur_sectors(const struct request * rq)1086 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1087 {
1088 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1089 }
1090 
blk_rq_stats_sectors(const struct request * rq)1091 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1092 {
1093 	return rq->stats_sectors;
1094 }
1095 
1096 /*
1097  * Some commands like WRITE SAME have a payload or data transfer size which
1098  * is different from the size of the request.  Any driver that supports such
1099  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1100  * calculate the data transfer size.
1101  */
blk_rq_payload_bytes(struct request * rq)1102 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1103 {
1104 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1105 		return rq->special_vec.bv_len;
1106 	return blk_rq_bytes(rq);
1107 }
1108 
1109 /*
1110  * Return the first full biovec in the request.  The caller needs to check that
1111  * there are any bvecs before calling this helper.
1112  */
req_bvec(struct request * rq)1113 static inline struct bio_vec req_bvec(struct request *rq)
1114 {
1115 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1116 		return rq->special_vec;
1117 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1118 }
1119 
blk_rq_count_bios(struct request * rq)1120 static inline unsigned int blk_rq_count_bios(struct request *rq)
1121 {
1122 	unsigned int nr_bios = 0;
1123 	struct bio *bio;
1124 
1125 	__rq_for_each_bio(bio, rq)
1126 		nr_bios++;
1127 
1128 	return nr_bios;
1129 }
1130 
1131 void blk_steal_bios(struct bio_list *list, struct request *rq);
1132 
1133 /*
1134  * Request completion related functions.
1135  *
1136  * blk_update_request() completes given number of bytes and updates
1137  * the request without completing it.
1138  */
1139 bool blk_update_request(struct request *rq, blk_status_t error,
1140 			       unsigned int nr_bytes);
1141 void blk_abort_request(struct request *);
1142 
1143 /*
1144  * Number of physical segments as sent to the device.
1145  *
1146  * Normally this is the number of discontiguous data segments sent by the
1147  * submitter.  But for data-less command like discard we might have no
1148  * actual data segments submitted, but the driver might have to add it's
1149  * own special payload.  In that case we still return 1 here so that this
1150  * special payload will be mapped.
1151  */
blk_rq_nr_phys_segments(struct request * rq)1152 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1153 {
1154 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1155 		return 1;
1156 	return rq->nr_phys_segments;
1157 }
1158 
1159 /*
1160  * Number of discard segments (or ranges) the driver needs to fill in.
1161  * Each discard bio merged into a request is counted as one segment.
1162  */
blk_rq_nr_discard_segments(struct request * rq)1163 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1164 {
1165 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1166 }
1167 
1168 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1169 		struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1170 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1171 		struct scatterlist *sglist)
1172 {
1173 	struct scatterlist *last_sg = NULL;
1174 
1175 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1176 }
1177 void blk_dump_rq_flags(struct request *, char *);
1178 
1179 #endif /* BLK_MQ_H */
1180