1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * UCSI driver for Cypress CCGx Type-C controller
4  *
5  * Copyright (C) 2017-2018 NVIDIA Corporation. All rights reserved.
6  * Author: Ajay Gupta <ajayg@nvidia.com>
7  *
8  * Some code borrowed from drivers/usb/typec/ucsi/ucsi_acpi.c
9  */
10 #include <linux/acpi.h>
11 #include <linux/delay.h>
12 #include <linux/firmware.h>
13 #include <linux/i2c.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/usb/typec_dp.h>
20 
21 #include <linux/unaligned.h>
22 #include "ucsi.h"
23 
24 enum enum_fw_mode {
25 	BOOT,   /* bootloader */
26 	FW1,    /* FW partition-1 (contains secondary fw) */
27 	FW2,    /* FW partition-2 (contains primary fw) */
28 	FW_INVALID,
29 };
30 
31 #define CCGX_RAB_DEVICE_MODE			0x0000
32 #define CCGX_RAB_INTR_REG			0x0006
33 #define  DEV_INT				BIT(0)
34 #define  PORT0_INT				BIT(1)
35 #define  PORT1_INT				BIT(2)
36 #define  UCSI_READ_INT				BIT(7)
37 #define CCGX_RAB_JUMP_TO_BOOT			0x0007
38 #define  TO_BOOT				'J'
39 #define  TO_ALT_FW				'A'
40 #define CCGX_RAB_RESET_REQ			0x0008
41 #define  RESET_SIG				'R'
42 #define  CMD_RESET_I2C				0x0
43 #define  CMD_RESET_DEV				0x1
44 #define CCGX_RAB_ENTER_FLASHING			0x000A
45 #define  FLASH_ENTER_SIG			'P'
46 #define CCGX_RAB_VALIDATE_FW			0x000B
47 #define CCGX_RAB_FLASH_ROW_RW			0x000C
48 #define  FLASH_SIG				'F'
49 #define  FLASH_RD_CMD				0x0
50 #define  FLASH_WR_CMD				0x1
51 #define  FLASH_FWCT1_WR_CMD			0x2
52 #define  FLASH_FWCT2_WR_CMD			0x3
53 #define  FLASH_FWCT_SIG_WR_CMD			0x4
54 #define CCGX_RAB_READ_ALL_VER			0x0010
55 #define CCGX_RAB_READ_FW2_VER			0x0020
56 #define CCGX_RAB_UCSI_CONTROL			0x0039
57 #define CCGX_RAB_UCSI_CONTROL_START		BIT(0)
58 #define CCGX_RAB_UCSI_CONTROL_STOP		BIT(1)
59 #define CCGX_RAB_UCSI_DATA_BLOCK(offset)	(0xf000 | ((offset) & 0xff))
60 #define REG_FLASH_RW_MEM        0x0200
61 #define DEV_REG_IDX				CCGX_RAB_DEVICE_MODE
62 #define CCGX_RAB_PDPORT_ENABLE			0x002C
63 #define  PDPORT_1		BIT(0)
64 #define  PDPORT_2		BIT(1)
65 #define CCGX_RAB_RESPONSE			0x007E
66 #define  ASYNC_EVENT				BIT(7)
67 
68 /* CCGx events & async msg codes */
69 #define RESET_COMPLETE		0x80
70 #define EVENT_INDEX		RESET_COMPLETE
71 #define PORT_CONNECT_DET	0x84
72 #define PORT_DISCONNECT_DET	0x85
73 #define ROLE_SWAP_COMPELETE	0x87
74 
75 /* ccg firmware */
76 #define CYACD_LINE_SIZE         527
77 #define CCG4_ROW_SIZE           256
78 #define FW1_METADATA_ROW        0x1FF
79 #define FW2_METADATA_ROW        0x1FE
80 #define FW_CFG_TABLE_SIG_SIZE	256
81 
82 static int secondary_fw_min_ver = 41;
83 
84 enum enum_flash_mode {
85 	SECONDARY_BL,	/* update secondary using bootloader */
86 	PRIMARY,	/* update primary using secondary */
87 	SECONDARY,	/* update secondary using primary */
88 	FLASH_NOT_NEEDED,	/* update not required */
89 	FLASH_INVALID,
90 };
91 
92 static const char * const ccg_fw_names[] = {
93 	"ccg_boot.cyacd",
94 	"ccg_primary.cyacd",
95 	"ccg_secondary.cyacd"
96 };
97 
98 struct ccg_dev_info {
99 #define CCG_DEVINFO_FWMODE_SHIFT (0)
100 #define CCG_DEVINFO_FWMODE_MASK (0x3 << CCG_DEVINFO_FWMODE_SHIFT)
101 #define CCG_DEVINFO_PDPORTS_SHIFT (2)
102 #define CCG_DEVINFO_PDPORTS_MASK (0x3 << CCG_DEVINFO_PDPORTS_SHIFT)
103 	u8 mode;
104 	u8 bl_mode;
105 	__le16 silicon_id;
106 	__le16 bl_last_row;
107 } __packed;
108 
109 struct version_format {
110 	__le16 build;
111 	u8 patch;
112 	u8 ver;
113 #define CCG_VERSION_PATCH(x) ((x) << 16)
114 #define CCG_VERSION(x)	((x) << 24)
115 #define CCG_VERSION_MIN_SHIFT (0)
116 #define CCG_VERSION_MIN_MASK (0xf << CCG_VERSION_MIN_SHIFT)
117 #define CCG_VERSION_MAJ_SHIFT (4)
118 #define CCG_VERSION_MAJ_MASK (0xf << CCG_VERSION_MAJ_SHIFT)
119 } __packed;
120 
121 /*
122  * Firmware version 3.1.10 or earlier, built for NVIDIA has known issue
123  * of missing interrupt when a device is connected for runtime resume
124  */
125 #define CCG_FW_BUILD_NVIDIA	(('n' << 8) | 'v')
126 #define CCG_OLD_FW_VERSION	(CCG_VERSION(0x31) | CCG_VERSION_PATCH(10))
127 
128 /* Firmware for Tegra doesn't support UCSI ALT command, built
129  * for NVIDIA has known issue of reporting wrong capability info
130  */
131 #define CCG_FW_BUILD_NVIDIA_TEGRA	(('g' << 8) | 'n')
132 
133 /* Altmode offset for NVIDIA Function Test Board (FTB) */
134 #define NVIDIA_FTB_DP_OFFSET	(2)
135 #define NVIDIA_FTB_DBG_OFFSET	(3)
136 
137 struct version_info {
138 	struct version_format base;
139 	struct version_format app;
140 };
141 
142 struct fw_config_table {
143 	u32 identity;
144 	u16 table_size;
145 	u8 fwct_version;
146 	u8 is_key_change;
147 	u8 guid[16];
148 	struct version_format base;
149 	struct version_format app;
150 	u8 primary_fw_digest[32];
151 	u32 key_exp_length;
152 	u8 key_modulus[256];
153 	u8 key_exp[4];
154 };
155 
156 /* CCGx response codes */
157 enum ccg_resp_code {
158 	CMD_NO_RESP             = 0x00,
159 	CMD_SUCCESS             = 0x02,
160 	FLASH_DATA_AVAILABLE    = 0x03,
161 	CMD_INVALID             = 0x05,
162 	FLASH_UPDATE_FAIL       = 0x07,
163 	INVALID_FW              = 0x08,
164 	INVALID_ARG             = 0x09,
165 	CMD_NOT_SUPPORT         = 0x0A,
166 	TRANSACTION_FAIL        = 0x0C,
167 	PD_CMD_FAIL             = 0x0D,
168 	UNDEF_ERROR             = 0x0F,
169 	INVALID_RESP		= 0x10,
170 };
171 
172 #define CCG_EVENT_MAX	(EVENT_INDEX + 43)
173 
174 struct ccg_cmd {
175 	u16 reg;
176 	u32 data;
177 	int len;
178 	u32 delay; /* ms delay for cmd timeout  */
179 };
180 
181 struct ccg_resp {
182 	u8 code;
183 	u8 length;
184 };
185 
186 struct ucsi_ccg_altmode {
187 	u16 svid;
188 	u32 mid;
189 	u8 linked_idx;
190 	u8 active_idx;
191 #define UCSI_MULTI_DP_INDEX	(0xff)
192 	bool checked;
193 } __packed;
194 
195 #define CCGX_MESSAGE_IN_MAX 4
196 struct op_region {
197 	__le32 cci;
198 	__le32 message_in[CCGX_MESSAGE_IN_MAX];
199 };
200 
201 struct ucsi_ccg {
202 	struct device *dev;
203 	struct ucsi *ucsi;
204 	struct i2c_client *client;
205 
206 	struct ccg_dev_info info;
207 	/* version info for boot, primary and secondary */
208 	struct version_info version[FW2 + 1];
209 	u32 fw_version;
210 	/* CCG HPI communication flags */
211 	unsigned long flags;
212 #define RESET_PENDING	0
213 #define DEV_CMD_PENDING	1
214 	struct ccg_resp dev_resp;
215 	u8 cmd_resp;
216 	int port_num;
217 	int irq;
218 	struct work_struct work;
219 	struct mutex lock; /* to sync between user and driver thread */
220 
221 	/* fw build with vendor information */
222 	u16 fw_build;
223 	struct work_struct pm_work;
224 
225 	u64 last_cmd_sent;
226 	bool has_multiple_dp;
227 	struct ucsi_ccg_altmode orig[UCSI_MAX_ALTMODES];
228 	struct ucsi_ccg_altmode updated[UCSI_MAX_ALTMODES];
229 
230 	/*
231 	 * This spinlock protects op_data which includes CCI and MESSAGE_IN that
232 	 * will be updated in ISR
233 	 */
234 	spinlock_t op_lock;
235 	struct op_region op_data;
236 };
237 
ccg_read(struct ucsi_ccg * uc,u16 rab,u8 * data,u32 len)238 static int ccg_read(struct ucsi_ccg *uc, u16 rab, u8 *data, u32 len)
239 {
240 	struct i2c_client *client = uc->client;
241 	const struct i2c_adapter_quirks *quirks = client->adapter->quirks;
242 	unsigned char buf[2];
243 	struct i2c_msg msgs[] = {
244 		{
245 			.addr	= client->addr,
246 			.flags  = 0x0,
247 			.len	= sizeof(buf),
248 			.buf	= buf,
249 		},
250 		{
251 			.addr	= client->addr,
252 			.flags  = I2C_M_RD,
253 			.buf	= data,
254 		},
255 	};
256 	u32 rlen, rem_len = len, max_read_len = len;
257 	int status;
258 
259 	/* check any max_read_len limitation on i2c adapter */
260 	if (quirks && quirks->max_read_len)
261 		max_read_len = quirks->max_read_len;
262 
263 	pm_runtime_get_sync(uc->dev);
264 	while (rem_len > 0) {
265 		msgs[1].buf = &data[len - rem_len];
266 		rlen = min_t(u16, rem_len, max_read_len);
267 		msgs[1].len = rlen;
268 		put_unaligned_le16(rab, buf);
269 		status = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
270 		if (status < 0) {
271 			dev_err(uc->dev, "i2c_transfer failed %d\n", status);
272 			pm_runtime_put_sync(uc->dev);
273 			return status;
274 		}
275 		rab += rlen;
276 		rem_len -= rlen;
277 	}
278 
279 	pm_runtime_put_sync(uc->dev);
280 	return 0;
281 }
282 
ccg_write(struct ucsi_ccg * uc,u16 rab,const u8 * data,u32 len)283 static int ccg_write(struct ucsi_ccg *uc, u16 rab, const u8 *data, u32 len)
284 {
285 	struct i2c_client *client = uc->client;
286 	unsigned char *buf;
287 	struct i2c_msg msgs[] = {
288 		{
289 			.addr	= client->addr,
290 			.flags  = 0x0,
291 		}
292 	};
293 	int status;
294 
295 	buf = kzalloc(len + sizeof(rab), GFP_KERNEL);
296 	if (!buf)
297 		return -ENOMEM;
298 
299 	put_unaligned_le16(rab, buf);
300 	memcpy(buf + sizeof(rab), data, len);
301 
302 	msgs[0].len = len + sizeof(rab);
303 	msgs[0].buf = buf;
304 
305 	pm_runtime_get_sync(uc->dev);
306 	status = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
307 	if (status < 0) {
308 		dev_err(uc->dev, "i2c_transfer failed %d\n", status);
309 		pm_runtime_put_sync(uc->dev);
310 		kfree(buf);
311 		return status;
312 	}
313 
314 	pm_runtime_put_sync(uc->dev);
315 	kfree(buf);
316 	return 0;
317 }
318 
ccg_op_region_update(struct ucsi_ccg * uc,u32 cci)319 static int ccg_op_region_update(struct ucsi_ccg *uc, u32 cci)
320 {
321 	u16 reg = CCGX_RAB_UCSI_DATA_BLOCK(UCSI_MESSAGE_IN);
322 	struct op_region *data = &uc->op_data;
323 	unsigned char *buf;
324 	size_t size = sizeof(data->message_in);
325 
326 	buf = kzalloc(size, GFP_ATOMIC);
327 	if (!buf)
328 		return -ENOMEM;
329 	if (UCSI_CCI_LENGTH(cci)) {
330 		int ret = ccg_read(uc, reg, (void *)buf, size);
331 
332 		if (ret) {
333 			kfree(buf);
334 			return ret;
335 		}
336 	}
337 
338 	spin_lock(&uc->op_lock);
339 	data->cci = cpu_to_le32(cci);
340 	if (UCSI_CCI_LENGTH(cci))
341 		memcpy(&data->message_in, buf, size);
342 	spin_unlock(&uc->op_lock);
343 	kfree(buf);
344 	return 0;
345 }
346 
ucsi_ccg_init(struct ucsi_ccg * uc)347 static int ucsi_ccg_init(struct ucsi_ccg *uc)
348 {
349 	unsigned int count = 10;
350 	u8 data;
351 	int status;
352 
353 	spin_lock_init(&uc->op_lock);
354 
355 	data = CCGX_RAB_UCSI_CONTROL_STOP;
356 	status = ccg_write(uc, CCGX_RAB_UCSI_CONTROL, &data, sizeof(data));
357 	if (status < 0)
358 		return status;
359 
360 	data = CCGX_RAB_UCSI_CONTROL_START;
361 	status = ccg_write(uc, CCGX_RAB_UCSI_CONTROL, &data, sizeof(data));
362 	if (status < 0)
363 		return status;
364 
365 	/*
366 	 * Flush CCGx RESPONSE queue by acking interrupts. Above ucsi control
367 	 * register write will push response which must be cleared.
368 	 */
369 	do {
370 		status = ccg_read(uc, CCGX_RAB_INTR_REG, &data, sizeof(data));
371 		if (status < 0)
372 			return status;
373 
374 		if (!(data & DEV_INT))
375 			return 0;
376 
377 		status = ccg_write(uc, CCGX_RAB_INTR_REG, &data, sizeof(data));
378 		if (status < 0)
379 			return status;
380 
381 		usleep_range(10000, 11000);
382 	} while (--count);
383 
384 	return -ETIMEDOUT;
385 }
386 
ucsi_ccg_update_get_current_cam_cmd(struct ucsi_ccg * uc,u8 * data)387 static void ucsi_ccg_update_get_current_cam_cmd(struct ucsi_ccg *uc, u8 *data)
388 {
389 	u8 cam, new_cam;
390 
391 	cam = data[0];
392 	new_cam = uc->orig[cam].linked_idx;
393 	uc->updated[new_cam].active_idx = cam;
394 	data[0] = new_cam;
395 }
396 
ucsi_ccg_update_altmodes(struct ucsi * ucsi,struct ucsi_altmode * orig,struct ucsi_altmode * updated)397 static bool ucsi_ccg_update_altmodes(struct ucsi *ucsi,
398 				     struct ucsi_altmode *orig,
399 				     struct ucsi_altmode *updated)
400 {
401 	struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
402 	struct ucsi_ccg_altmode *alt, *new_alt;
403 	int i, j, k = 0;
404 	bool found = false;
405 
406 	alt = uc->orig;
407 	new_alt = uc->updated;
408 	memset(uc->updated, 0, sizeof(uc->updated));
409 
410 	/*
411 	 * Copy original connector altmodes to new structure.
412 	 * We need this before second loop since second loop
413 	 * checks for duplicate altmodes.
414 	 */
415 	for (i = 0; i < UCSI_MAX_ALTMODES; i++) {
416 		alt[i].svid = orig[i].svid;
417 		alt[i].mid = orig[i].mid;
418 		if (!alt[i].svid)
419 			break;
420 	}
421 
422 	for (i = 0; i < UCSI_MAX_ALTMODES; i++) {
423 		if (!alt[i].svid)
424 			break;
425 
426 		/* already checked and considered */
427 		if (alt[i].checked)
428 			continue;
429 
430 		if (!DP_CONF_GET_PIN_ASSIGN(alt[i].mid)) {
431 			/* Found Non DP altmode */
432 			new_alt[k].svid = alt[i].svid;
433 			new_alt[k].mid |= alt[i].mid;
434 			new_alt[k].linked_idx = i;
435 			alt[i].linked_idx = k;
436 			updated[k].svid = new_alt[k].svid;
437 			updated[k].mid = new_alt[k].mid;
438 			k++;
439 			continue;
440 		}
441 
442 		for (j = i + 1; j < UCSI_MAX_ALTMODES; j++) {
443 			if (alt[i].svid != alt[j].svid ||
444 			    !DP_CONF_GET_PIN_ASSIGN(alt[j].mid)) {
445 				continue;
446 			} else {
447 				/* Found duplicate DP mode */
448 				new_alt[k].svid = alt[i].svid;
449 				new_alt[k].mid |= alt[i].mid | alt[j].mid;
450 				new_alt[k].linked_idx = UCSI_MULTI_DP_INDEX;
451 				alt[i].linked_idx = k;
452 				alt[j].linked_idx = k;
453 				alt[j].checked = true;
454 				found = true;
455 			}
456 		}
457 		if (found) {
458 			uc->has_multiple_dp = true;
459 		} else {
460 			/* Didn't find any duplicate DP altmode */
461 			new_alt[k].svid = alt[i].svid;
462 			new_alt[k].mid |= alt[i].mid;
463 			new_alt[k].linked_idx = i;
464 			alt[i].linked_idx = k;
465 		}
466 		updated[k].svid = new_alt[k].svid;
467 		updated[k].mid = new_alt[k].mid;
468 		k++;
469 	}
470 	return found;
471 }
472 
ucsi_ccg_update_set_new_cam_cmd(struct ucsi_ccg * uc,struct ucsi_connector * con,u64 * cmd)473 static void ucsi_ccg_update_set_new_cam_cmd(struct ucsi_ccg *uc,
474 					    struct ucsi_connector *con,
475 					    u64 *cmd)
476 {
477 	struct ucsi_ccg_altmode *new_port, *port;
478 	struct typec_altmode *alt = NULL;
479 	u8 new_cam, cam, pin;
480 	bool enter_new_mode;
481 	int i, j, k = 0xff;
482 
483 	port = uc->orig;
484 	new_cam = UCSI_SET_NEW_CAM_GET_AM(*cmd);
485 	if (new_cam >= ARRAY_SIZE(uc->updated))
486 		return;
487 	new_port = &uc->updated[new_cam];
488 	cam = new_port->linked_idx;
489 	enter_new_mode = UCSI_SET_NEW_CAM_ENTER(*cmd);
490 
491 	/*
492 	 * If CAM is UCSI_MULTI_DP_INDEX then this is DP altmode
493 	 * with multiple DP mode. Find out CAM for best pin assignment
494 	 * among all DP mode. Priorite pin E->D->C after making sure
495 	 * the partner supports that pin.
496 	 */
497 	if (cam == UCSI_MULTI_DP_INDEX) {
498 		if (enter_new_mode) {
499 			for (i = 0; con->partner_altmode[i]; i++) {
500 				alt = con->partner_altmode[i];
501 				if (alt->svid == new_port->svid)
502 					break;
503 			}
504 			/*
505 			 * alt will always be non NULL since this is
506 			 * UCSI_SET_NEW_CAM command and so there will be
507 			 * at least one con->partner_altmode[i] with svid
508 			 * matching with new_port->svid.
509 			 */
510 			for (j = 0; port[j].svid; j++) {
511 				pin = DP_CONF_GET_PIN_ASSIGN(port[j].mid);
512 				if (alt && port[j].svid == alt->svid &&
513 				    (pin & DP_CONF_GET_PIN_ASSIGN(alt->vdo))) {
514 					/* prioritize pin E->D->C */
515 					if (k == 0xff || (k != 0xff && pin >
516 					    DP_CONF_GET_PIN_ASSIGN(port[k].mid))
517 					    ) {
518 						k = j;
519 					}
520 				}
521 			}
522 			cam = k;
523 			new_port->active_idx = cam;
524 		} else {
525 			cam = new_port->active_idx;
526 		}
527 	}
528 	*cmd &= ~UCSI_SET_NEW_CAM_AM_MASK;
529 	*cmd |= UCSI_SET_NEW_CAM_SET_AM(cam);
530 }
531 
532 /*
533  * Change the order of vdo values of NVIDIA test device FTB
534  * (Function Test Board) which reports altmode list with vdo=0x3
535  * first and then vdo=0x. Current logic to assign mode value is
536  * based on order in altmode list and it causes a mismatch of CON
537  * and SOP altmodes since NVIDIA GPU connector has order of vdo=0x1
538  * first and then vdo=0x3
539  */
ucsi_ccg_nvidia_altmode(struct ucsi_ccg * uc,struct ucsi_altmode * alt)540 static void ucsi_ccg_nvidia_altmode(struct ucsi_ccg *uc,
541 				    struct ucsi_altmode *alt)
542 {
543 	switch (UCSI_ALTMODE_OFFSET(uc->last_cmd_sent)) {
544 	case NVIDIA_FTB_DP_OFFSET:
545 		if (alt[0].mid == USB_TYPEC_NVIDIA_VLINK_DBG_VDO)
546 			alt[0].mid = USB_TYPEC_NVIDIA_VLINK_DP_VDO |
547 				     DP_CAP_DP_SIGNALLING(0) | DP_CAP_USB |
548 				     DP_CONF_SET_PIN_ASSIGN(BIT(DP_PIN_ASSIGN_E));
549 		break;
550 	case NVIDIA_FTB_DBG_OFFSET:
551 		if (alt[0].mid == USB_TYPEC_NVIDIA_VLINK_DP_VDO)
552 			alt[0].mid = USB_TYPEC_NVIDIA_VLINK_DBG_VDO;
553 		break;
554 	default:
555 		break;
556 	}
557 }
558 
ucsi_ccg_read_version(struct ucsi * ucsi,u16 * version)559 static int ucsi_ccg_read_version(struct ucsi *ucsi, u16 *version)
560 {
561 	struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
562 	u16 reg = CCGX_RAB_UCSI_DATA_BLOCK(UCSI_VERSION);
563 
564 	return ccg_read(uc, reg, (u8 *)version, sizeof(*version));
565 }
566 
ucsi_ccg_read_cci(struct ucsi * ucsi,u32 * cci)567 static int ucsi_ccg_read_cci(struct ucsi *ucsi, u32 *cci)
568 {
569 	struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
570 
571 	spin_lock(&uc->op_lock);
572 	*cci = uc->op_data.cci;
573 	spin_unlock(&uc->op_lock);
574 
575 	return 0;
576 }
577 
ucsi_ccg_read_message_in(struct ucsi * ucsi,void * val,size_t val_len)578 static int ucsi_ccg_read_message_in(struct ucsi *ucsi, void *val, size_t val_len)
579 {
580 	struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
581 	struct ucsi_capability *cap;
582 	struct ucsi_altmode *alt;
583 
584 	spin_lock(&uc->op_lock);
585 	memcpy(val, uc->op_data.message_in, val_len);
586 	spin_unlock(&uc->op_lock);
587 
588 	switch (UCSI_COMMAND(uc->last_cmd_sent)) {
589 	case UCSI_GET_CURRENT_CAM:
590 		if (uc->has_multiple_dp)
591 			ucsi_ccg_update_get_current_cam_cmd(uc, (u8 *)val);
592 		break;
593 	case UCSI_GET_ALTERNATE_MODES:
594 		if (UCSI_ALTMODE_RECIPIENT(uc->last_cmd_sent) ==
595 		    UCSI_RECIPIENT_SOP) {
596 			alt = val;
597 			if (alt[0].svid == USB_TYPEC_NVIDIA_VLINK_SID)
598 				ucsi_ccg_nvidia_altmode(uc, alt);
599 		}
600 		break;
601 	case UCSI_GET_CAPABILITY:
602 		if (uc->fw_build == CCG_FW_BUILD_NVIDIA_TEGRA) {
603 			cap = val;
604 			cap->features &= ~UCSI_CAP_ALT_MODE_DETAILS;
605 		}
606 		break;
607 	default:
608 		break;
609 	}
610 	uc->last_cmd_sent = 0;
611 
612 	return 0;
613 }
614 
ucsi_ccg_async_control(struct ucsi * ucsi,u64 command)615 static int ucsi_ccg_async_control(struct ucsi *ucsi, u64 command)
616 {
617 	struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
618 	u16 reg = CCGX_RAB_UCSI_DATA_BLOCK(UCSI_CONTROL);
619 
620 	/*
621 	 * UCSI may read CCI instantly after async_control,
622 	 * clear CCI to avoid caller getting wrong data before we get CCI from ISR
623 	 */
624 	spin_lock(&uc->op_lock);
625 	uc->op_data.cci = 0;
626 	spin_unlock(&uc->op_lock);
627 
628 	return ccg_write(uc, reg, (u8 *)&command, sizeof(command));
629 }
630 
ucsi_ccg_sync_control(struct ucsi * ucsi,u64 command)631 static int ucsi_ccg_sync_control(struct ucsi *ucsi, u64 command)
632 {
633 	struct ucsi_ccg *uc = ucsi_get_drvdata(ucsi);
634 	struct ucsi_connector *con;
635 	int con_index;
636 	int ret;
637 
638 	mutex_lock(&uc->lock);
639 	pm_runtime_get_sync(uc->dev);
640 
641 	uc->last_cmd_sent = command;
642 
643 	if (UCSI_COMMAND(uc->last_cmd_sent) == UCSI_SET_NEW_CAM &&
644 	    uc->has_multiple_dp) {
645 		con_index = (uc->last_cmd_sent >> 16) &
646 			UCSI_CMD_CONNECTOR_MASK;
647 		con = &uc->ucsi->connector[con_index - 1];
648 		ucsi_ccg_update_set_new_cam_cmd(uc, con, &command);
649 	}
650 
651 	ret = ucsi_sync_control_common(ucsi, command);
652 
653 	pm_runtime_put_sync(uc->dev);
654 	mutex_unlock(&uc->lock);
655 
656 	return ret;
657 }
658 
659 static const struct ucsi_operations ucsi_ccg_ops = {
660 	.read_version = ucsi_ccg_read_version,
661 	.read_cci = ucsi_ccg_read_cci,
662 	.read_message_in = ucsi_ccg_read_message_in,
663 	.sync_control = ucsi_ccg_sync_control,
664 	.async_control = ucsi_ccg_async_control,
665 	.update_altmodes = ucsi_ccg_update_altmodes
666 };
667 
ccg_irq_handler(int irq,void * data)668 static irqreturn_t ccg_irq_handler(int irq, void *data)
669 {
670 	u16 reg = CCGX_RAB_UCSI_DATA_BLOCK(UCSI_CCI);
671 	struct ucsi_ccg *uc = data;
672 	u8 intr_reg;
673 	u32 cci = 0;
674 	int ret = 0;
675 
676 	ret = ccg_read(uc, CCGX_RAB_INTR_REG, &intr_reg, sizeof(intr_reg));
677 	if (ret)
678 		return ret;
679 
680 	if (!intr_reg)
681 		return IRQ_HANDLED;
682 	else if (!(intr_reg & UCSI_READ_INT))
683 		goto err_clear_irq;
684 
685 	ret = ccg_read(uc, reg, (void *)&cci, sizeof(cci));
686 	if (ret)
687 		goto err_clear_irq;
688 
689 	/*
690 	 * As per CCGx UCSI interface guide, copy CCI and MESSAGE_IN
691 	 * to the OpRegion before clear the UCSI interrupt
692 	 */
693 	ret = ccg_op_region_update(uc, cci);
694 	if (ret)
695 		goto err_clear_irq;
696 
697 err_clear_irq:
698 	ccg_write(uc, CCGX_RAB_INTR_REG, &intr_reg, sizeof(intr_reg));
699 
700 	if (!ret)
701 		ucsi_notify_common(uc->ucsi, cci);
702 
703 	return IRQ_HANDLED;
704 }
705 
ccg_request_irq(struct ucsi_ccg * uc)706 static int ccg_request_irq(struct ucsi_ccg *uc)
707 {
708 	unsigned long flags = IRQF_ONESHOT;
709 
710 	if (!dev_fwnode(uc->dev))
711 		flags |= IRQF_TRIGGER_HIGH;
712 
713 	return request_threaded_irq(uc->irq, NULL, ccg_irq_handler, flags, dev_name(uc->dev), uc);
714 }
715 
ccg_pm_workaround_work(struct work_struct * pm_work)716 static void ccg_pm_workaround_work(struct work_struct *pm_work)
717 {
718 	ccg_irq_handler(0, container_of(pm_work, struct ucsi_ccg, pm_work));
719 }
720 
get_fw_info(struct ucsi_ccg * uc)721 static int get_fw_info(struct ucsi_ccg *uc)
722 {
723 	int err;
724 
725 	err = ccg_read(uc, CCGX_RAB_READ_ALL_VER, (u8 *)(&uc->version),
726 		       sizeof(uc->version));
727 	if (err < 0)
728 		return err;
729 
730 	uc->fw_version = CCG_VERSION(uc->version[FW2].app.ver) |
731 			CCG_VERSION_PATCH(uc->version[FW2].app.patch);
732 
733 	err = ccg_read(uc, CCGX_RAB_DEVICE_MODE, (u8 *)(&uc->info),
734 		       sizeof(uc->info));
735 	if (err < 0)
736 		return err;
737 
738 	return 0;
739 }
740 
invalid_async_evt(int code)741 static inline bool invalid_async_evt(int code)
742 {
743 	return (code >= CCG_EVENT_MAX) || (code < EVENT_INDEX);
744 }
745 
ccg_process_response(struct ucsi_ccg * uc)746 static void ccg_process_response(struct ucsi_ccg *uc)
747 {
748 	struct device *dev = uc->dev;
749 
750 	if (uc->dev_resp.code & ASYNC_EVENT) {
751 		if (uc->dev_resp.code == RESET_COMPLETE) {
752 			if (test_bit(RESET_PENDING, &uc->flags))
753 				uc->cmd_resp = uc->dev_resp.code;
754 			get_fw_info(uc);
755 		}
756 		if (invalid_async_evt(uc->dev_resp.code))
757 			dev_err(dev, "invalid async evt %d\n",
758 				uc->dev_resp.code);
759 	} else {
760 		if (test_bit(DEV_CMD_PENDING, &uc->flags)) {
761 			uc->cmd_resp = uc->dev_resp.code;
762 			clear_bit(DEV_CMD_PENDING, &uc->flags);
763 		} else {
764 			dev_err(dev, "dev resp 0x%04x but no cmd pending\n",
765 				uc->dev_resp.code);
766 		}
767 	}
768 }
769 
ccg_read_response(struct ucsi_ccg * uc)770 static int ccg_read_response(struct ucsi_ccg *uc)
771 {
772 	unsigned long target = jiffies + msecs_to_jiffies(1000);
773 	struct device *dev = uc->dev;
774 	u8 intval;
775 	int status;
776 
777 	/* wait for interrupt status to get updated */
778 	do {
779 		status = ccg_read(uc, CCGX_RAB_INTR_REG, &intval,
780 				  sizeof(intval));
781 		if (status < 0)
782 			return status;
783 
784 		if (intval & DEV_INT)
785 			break;
786 		usleep_range(500, 600);
787 	} while (time_is_after_jiffies(target));
788 
789 	if (time_is_before_jiffies(target)) {
790 		dev_err(dev, "response timeout error\n");
791 		return -ETIME;
792 	}
793 
794 	status = ccg_read(uc, CCGX_RAB_RESPONSE, (u8 *)&uc->dev_resp,
795 			  sizeof(uc->dev_resp));
796 	if (status < 0)
797 		return status;
798 
799 	status = ccg_write(uc, CCGX_RAB_INTR_REG, &intval, sizeof(intval));
800 	if (status < 0)
801 		return status;
802 
803 	return 0;
804 }
805 
806 /* Caller must hold uc->lock */
ccg_send_command(struct ucsi_ccg * uc,struct ccg_cmd * cmd)807 static int ccg_send_command(struct ucsi_ccg *uc, struct ccg_cmd *cmd)
808 {
809 	struct device *dev = uc->dev;
810 	int ret;
811 
812 	switch (cmd->reg & 0xF000) {
813 	case DEV_REG_IDX:
814 		set_bit(DEV_CMD_PENDING, &uc->flags);
815 		break;
816 	default:
817 		dev_err(dev, "invalid cmd register\n");
818 		break;
819 	}
820 
821 	ret = ccg_write(uc, cmd->reg, (u8 *)&cmd->data, cmd->len);
822 	if (ret < 0)
823 		return ret;
824 
825 	msleep(cmd->delay);
826 
827 	ret = ccg_read_response(uc);
828 	if (ret < 0) {
829 		dev_err(dev, "response read error\n");
830 		switch (cmd->reg & 0xF000) {
831 		case DEV_REG_IDX:
832 			clear_bit(DEV_CMD_PENDING, &uc->flags);
833 			break;
834 		default:
835 			dev_err(dev, "invalid cmd register\n");
836 			break;
837 		}
838 		return -EIO;
839 	}
840 	ccg_process_response(uc);
841 
842 	return uc->cmd_resp;
843 }
844 
ccg_cmd_enter_flashing(struct ucsi_ccg * uc)845 static int ccg_cmd_enter_flashing(struct ucsi_ccg *uc)
846 {
847 	struct ccg_cmd cmd;
848 	int ret;
849 
850 	cmd.reg = CCGX_RAB_ENTER_FLASHING;
851 	cmd.data = FLASH_ENTER_SIG;
852 	cmd.len = 1;
853 	cmd.delay = 50;
854 
855 	mutex_lock(&uc->lock);
856 
857 	ret = ccg_send_command(uc, &cmd);
858 
859 	mutex_unlock(&uc->lock);
860 
861 	if (ret != CMD_SUCCESS) {
862 		dev_err(uc->dev, "enter flashing failed ret=%d\n", ret);
863 		return ret;
864 	}
865 
866 	return 0;
867 }
868 
ccg_cmd_reset(struct ucsi_ccg * uc)869 static int ccg_cmd_reset(struct ucsi_ccg *uc)
870 {
871 	struct ccg_cmd cmd;
872 	u8 *p;
873 	int ret;
874 
875 	p = (u8 *)&cmd.data;
876 	cmd.reg = CCGX_RAB_RESET_REQ;
877 	p[0] = RESET_SIG;
878 	p[1] = CMD_RESET_DEV;
879 	cmd.len = 2;
880 	cmd.delay = 5000;
881 
882 	mutex_lock(&uc->lock);
883 
884 	set_bit(RESET_PENDING, &uc->flags);
885 
886 	ret = ccg_send_command(uc, &cmd);
887 	if (ret != RESET_COMPLETE)
888 		goto err_clear_flag;
889 
890 	ret = 0;
891 
892 err_clear_flag:
893 	clear_bit(RESET_PENDING, &uc->flags);
894 
895 	mutex_unlock(&uc->lock);
896 
897 	return ret;
898 }
899 
ccg_cmd_port_control(struct ucsi_ccg * uc,bool enable)900 static int ccg_cmd_port_control(struct ucsi_ccg *uc, bool enable)
901 {
902 	struct ccg_cmd cmd;
903 	int ret;
904 
905 	cmd.reg = CCGX_RAB_PDPORT_ENABLE;
906 	if (enable)
907 		cmd.data = (uc->port_num == 1) ?
908 			    PDPORT_1 : (PDPORT_1 | PDPORT_2);
909 	else
910 		cmd.data = 0x0;
911 	cmd.len = 1;
912 	cmd.delay = 10;
913 
914 	mutex_lock(&uc->lock);
915 
916 	ret = ccg_send_command(uc, &cmd);
917 
918 	mutex_unlock(&uc->lock);
919 
920 	if (ret != CMD_SUCCESS) {
921 		dev_err(uc->dev, "port control failed ret=%d\n", ret);
922 		return ret;
923 	}
924 	return 0;
925 }
926 
ccg_cmd_jump_boot_mode(struct ucsi_ccg * uc,int bl_mode)927 static int ccg_cmd_jump_boot_mode(struct ucsi_ccg *uc, int bl_mode)
928 {
929 	struct ccg_cmd cmd;
930 	int ret;
931 
932 	cmd.reg = CCGX_RAB_JUMP_TO_BOOT;
933 
934 	if (bl_mode)
935 		cmd.data = TO_BOOT;
936 	else
937 		cmd.data = TO_ALT_FW;
938 
939 	cmd.len = 1;
940 	cmd.delay = 100;
941 
942 	mutex_lock(&uc->lock);
943 
944 	set_bit(RESET_PENDING, &uc->flags);
945 
946 	ret = ccg_send_command(uc, &cmd);
947 	if (ret != RESET_COMPLETE)
948 		goto err_clear_flag;
949 
950 	ret = 0;
951 
952 err_clear_flag:
953 	clear_bit(RESET_PENDING, &uc->flags);
954 
955 	mutex_unlock(&uc->lock);
956 
957 	return ret;
958 }
959 
960 static int
ccg_cmd_write_flash_row(struct ucsi_ccg * uc,u16 row,const void * data,u8 fcmd)961 ccg_cmd_write_flash_row(struct ucsi_ccg *uc, u16 row,
962 			const void *data, u8 fcmd)
963 {
964 	struct i2c_client *client = uc->client;
965 	struct ccg_cmd cmd;
966 	u8 buf[CCG4_ROW_SIZE + 2];
967 	u8 *p;
968 	int ret;
969 
970 	/* Copy the data into the flash read/write memory. */
971 	put_unaligned_le16(REG_FLASH_RW_MEM, buf);
972 
973 	memcpy(buf + 2, data, CCG4_ROW_SIZE);
974 
975 	mutex_lock(&uc->lock);
976 
977 	ret = i2c_master_send(client, buf, CCG4_ROW_SIZE + 2);
978 	if (ret != CCG4_ROW_SIZE + 2) {
979 		dev_err(uc->dev, "REG_FLASH_RW_MEM write fail %d\n", ret);
980 		mutex_unlock(&uc->lock);
981 		return ret < 0 ? ret : -EIO;
982 	}
983 
984 	/* Use the FLASH_ROW_READ_WRITE register to trigger */
985 	/* writing of data to the desired flash row */
986 	p = (u8 *)&cmd.data;
987 	cmd.reg = CCGX_RAB_FLASH_ROW_RW;
988 	p[0] = FLASH_SIG;
989 	p[1] = fcmd;
990 	put_unaligned_le16(row, &p[2]);
991 	cmd.len = 4;
992 	cmd.delay = 50;
993 	if (fcmd == FLASH_FWCT_SIG_WR_CMD)
994 		cmd.delay += 400;
995 	if (row == 510)
996 		cmd.delay += 220;
997 	ret = ccg_send_command(uc, &cmd);
998 
999 	mutex_unlock(&uc->lock);
1000 
1001 	if (ret != CMD_SUCCESS) {
1002 		dev_err(uc->dev, "write flash row failed ret=%d\n", ret);
1003 		return ret;
1004 	}
1005 
1006 	return 0;
1007 }
1008 
ccg_cmd_validate_fw(struct ucsi_ccg * uc,unsigned int fwid)1009 static int ccg_cmd_validate_fw(struct ucsi_ccg *uc, unsigned int fwid)
1010 {
1011 	struct ccg_cmd cmd;
1012 	int ret;
1013 
1014 	cmd.reg = CCGX_RAB_VALIDATE_FW;
1015 	cmd.data = fwid;
1016 	cmd.len = 1;
1017 	cmd.delay = 500;
1018 
1019 	mutex_lock(&uc->lock);
1020 
1021 	ret = ccg_send_command(uc, &cmd);
1022 
1023 	mutex_unlock(&uc->lock);
1024 
1025 	if (ret != CMD_SUCCESS)
1026 		return ret;
1027 
1028 	return 0;
1029 }
1030 
ccg_check_vendor_version(struct ucsi_ccg * uc,struct version_format * app,struct fw_config_table * fw_cfg)1031 static bool ccg_check_vendor_version(struct ucsi_ccg *uc,
1032 				     struct version_format *app,
1033 				     struct fw_config_table *fw_cfg)
1034 {
1035 	struct device *dev = uc->dev;
1036 
1037 	/* Check if the fw build is for supported vendors */
1038 	if (le16_to_cpu(app->build) != uc->fw_build) {
1039 		dev_info(dev, "current fw is not from supported vendor\n");
1040 		return false;
1041 	}
1042 
1043 	/* Check if the new fw build is for supported vendors */
1044 	if (le16_to_cpu(fw_cfg->app.build) != uc->fw_build) {
1045 		dev_info(dev, "new fw is not from supported vendor\n");
1046 		return false;
1047 	}
1048 	return true;
1049 }
1050 
ccg_check_fw_version(struct ucsi_ccg * uc,const char * fw_name,struct version_format * app)1051 static bool ccg_check_fw_version(struct ucsi_ccg *uc, const char *fw_name,
1052 				 struct version_format *app)
1053 {
1054 	const struct firmware *fw = NULL;
1055 	struct device *dev = uc->dev;
1056 	struct fw_config_table fw_cfg;
1057 	u32 cur_version, new_version;
1058 	bool is_later = false;
1059 
1060 	if (request_firmware(&fw, fw_name, dev) != 0) {
1061 		dev_err(dev, "error: Failed to open cyacd file %s\n", fw_name);
1062 		return false;
1063 	}
1064 
1065 	/*
1066 	 * check if signed fw
1067 	 * last part of fw image is fw cfg table and signature
1068 	 */
1069 	if (fw->size < sizeof(fw_cfg) + FW_CFG_TABLE_SIG_SIZE)
1070 		goto out_release_firmware;
1071 
1072 	memcpy((uint8_t *)&fw_cfg, fw->data + fw->size -
1073 	       sizeof(fw_cfg) - FW_CFG_TABLE_SIG_SIZE, sizeof(fw_cfg));
1074 
1075 	if (fw_cfg.identity != ('F' | 'W' << 8 | 'C' << 16 | 'T' << 24)) {
1076 		dev_info(dev, "not a signed image\n");
1077 		goto out_release_firmware;
1078 	}
1079 
1080 	/* compare input version with FWCT version */
1081 	cur_version = le16_to_cpu(app->build) | CCG_VERSION_PATCH(app->patch) |
1082 			CCG_VERSION(app->ver);
1083 
1084 	new_version = le16_to_cpu(fw_cfg.app.build) |
1085 			CCG_VERSION_PATCH(fw_cfg.app.patch) |
1086 			CCG_VERSION(fw_cfg.app.ver);
1087 
1088 	if (!ccg_check_vendor_version(uc, app, &fw_cfg))
1089 		goto out_release_firmware;
1090 
1091 	if (new_version > cur_version)
1092 		is_later = true;
1093 
1094 out_release_firmware:
1095 	release_firmware(fw);
1096 	return is_later;
1097 }
1098 
ccg_fw_update_needed(struct ucsi_ccg * uc,enum enum_flash_mode * mode)1099 static int ccg_fw_update_needed(struct ucsi_ccg *uc,
1100 				enum enum_flash_mode *mode)
1101 {
1102 	struct device *dev = uc->dev;
1103 	int err;
1104 	struct version_info version[3];
1105 
1106 	err = ccg_read(uc, CCGX_RAB_DEVICE_MODE, (u8 *)(&uc->info),
1107 		       sizeof(uc->info));
1108 	if (err) {
1109 		dev_err(dev, "read device mode failed\n");
1110 		return err;
1111 	}
1112 
1113 	err = ccg_read(uc, CCGX_RAB_READ_ALL_VER, (u8 *)version,
1114 		       sizeof(version));
1115 	if (err) {
1116 		dev_err(dev, "read device mode failed\n");
1117 		return err;
1118 	}
1119 
1120 	if (memcmp(&version[FW1], "\0\0\0\0\0\0\0\0",
1121 		   sizeof(struct version_info)) == 0) {
1122 		dev_info(dev, "secondary fw is not flashed\n");
1123 		*mode = SECONDARY_BL;
1124 	} else if (le16_to_cpu(version[FW1].base.build) <
1125 		secondary_fw_min_ver) {
1126 		dev_info(dev, "secondary fw version is too low (< %d)\n",
1127 			 secondary_fw_min_ver);
1128 		*mode = SECONDARY;
1129 	} else if (memcmp(&version[FW2], "\0\0\0\0\0\0\0\0",
1130 		   sizeof(struct version_info)) == 0) {
1131 		dev_info(dev, "primary fw is not flashed\n");
1132 		*mode = PRIMARY;
1133 	} else if (ccg_check_fw_version(uc, ccg_fw_names[PRIMARY],
1134 		   &version[FW2].app)) {
1135 		dev_info(dev, "found primary fw with later version\n");
1136 		*mode = PRIMARY;
1137 	} else {
1138 		dev_info(dev, "secondary and primary fw are the latest\n");
1139 		*mode = FLASH_NOT_NEEDED;
1140 	}
1141 	return 0;
1142 }
1143 
do_flash(struct ucsi_ccg * uc,enum enum_flash_mode mode)1144 static int do_flash(struct ucsi_ccg *uc, enum enum_flash_mode mode)
1145 {
1146 	struct device *dev = uc->dev;
1147 	const struct firmware *fw = NULL;
1148 	const char *p, *s;
1149 	const char *eof;
1150 	int err, row, len, line_sz, line_cnt = 0;
1151 	unsigned long start_time = jiffies;
1152 	struct fw_config_table  fw_cfg;
1153 	u8 fw_cfg_sig[FW_CFG_TABLE_SIG_SIZE];
1154 	u8 *wr_buf;
1155 
1156 	err = request_firmware(&fw, ccg_fw_names[mode], dev);
1157 	if (err) {
1158 		dev_err(dev, "request %s failed err=%d\n",
1159 			ccg_fw_names[mode], err);
1160 		return err;
1161 	}
1162 
1163 	if (((uc->info.mode & CCG_DEVINFO_FWMODE_MASK) >>
1164 			CCG_DEVINFO_FWMODE_SHIFT) == FW2) {
1165 		err = ccg_cmd_port_control(uc, false);
1166 		if (err < 0)
1167 			goto release_fw;
1168 		err = ccg_cmd_jump_boot_mode(uc, 0);
1169 		if (err < 0)
1170 			goto release_fw;
1171 	}
1172 
1173 	eof = fw->data + fw->size;
1174 
1175 	/*
1176 	 * check if signed fw
1177 	 * last part of fw image is fw cfg table and signature
1178 	 */
1179 	if (fw->size < sizeof(fw_cfg) + sizeof(fw_cfg_sig))
1180 		goto not_signed_fw;
1181 
1182 	memcpy((uint8_t *)&fw_cfg, fw->data + fw->size -
1183 	       sizeof(fw_cfg) - sizeof(fw_cfg_sig), sizeof(fw_cfg));
1184 
1185 	if (fw_cfg.identity != ('F' | ('W' << 8) | ('C' << 16) | ('T' << 24))) {
1186 		dev_info(dev, "not a signed image\n");
1187 		goto not_signed_fw;
1188 	}
1189 	eof = fw->data + fw->size - sizeof(fw_cfg) - sizeof(fw_cfg_sig);
1190 
1191 	memcpy((uint8_t *)&fw_cfg_sig,
1192 	       fw->data + fw->size - sizeof(fw_cfg_sig), sizeof(fw_cfg_sig));
1193 
1194 	/* flash fw config table and signature first */
1195 	err = ccg_cmd_write_flash_row(uc, 0, (u8 *)&fw_cfg,
1196 				      FLASH_FWCT1_WR_CMD);
1197 	if (err)
1198 		goto release_fw;
1199 
1200 	err = ccg_cmd_write_flash_row(uc, 0, (u8 *)&fw_cfg + CCG4_ROW_SIZE,
1201 				      FLASH_FWCT2_WR_CMD);
1202 	if (err)
1203 		goto release_fw;
1204 
1205 	err = ccg_cmd_write_flash_row(uc, 0, &fw_cfg_sig,
1206 				      FLASH_FWCT_SIG_WR_CMD);
1207 	if (err)
1208 		goto release_fw;
1209 
1210 not_signed_fw:
1211 	wr_buf = kzalloc(CCG4_ROW_SIZE + 4, GFP_KERNEL);
1212 	if (!wr_buf) {
1213 		err = -ENOMEM;
1214 		goto release_fw;
1215 	}
1216 
1217 	err = ccg_cmd_enter_flashing(uc);
1218 	if (err)
1219 		goto release_mem;
1220 
1221 	/*****************************************************************
1222 	 * CCG firmware image (.cyacd) file line format
1223 	 *
1224 	 * :00rrrrllll[dd....]cc/r/n
1225 	 *
1226 	 * :00   header
1227 	 * rrrr is row number to flash				(4 char)
1228 	 * llll is data len to flash				(4 char)
1229 	 * dd   is a data field represents one byte of data	(512 char)
1230 	 * cc   is checksum					(2 char)
1231 	 * \r\n newline
1232 	 *
1233 	 * Total length: 3 + 4 + 4 + 512 + 2 + 2 = 527
1234 	 *
1235 	 *****************************************************************/
1236 
1237 	p = strnchr(fw->data, fw->size, ':');
1238 	while (p < eof) {
1239 		s = strnchr(p + 1, eof - p - 1, ':');
1240 
1241 		if (!s)
1242 			s = eof;
1243 
1244 		line_sz = s - p;
1245 
1246 		if (line_sz != CYACD_LINE_SIZE) {
1247 			dev_err(dev, "Bad FW format line_sz=%d\n", line_sz);
1248 			err =  -EINVAL;
1249 			goto release_mem;
1250 		}
1251 
1252 		if (hex2bin(wr_buf, p + 3, CCG4_ROW_SIZE + 4)) {
1253 			err =  -EINVAL;
1254 			goto release_mem;
1255 		}
1256 
1257 		row = get_unaligned_be16(wr_buf);
1258 		len = get_unaligned_be16(&wr_buf[2]);
1259 
1260 		if (len != CCG4_ROW_SIZE) {
1261 			err =  -EINVAL;
1262 			goto release_mem;
1263 		}
1264 
1265 		err = ccg_cmd_write_flash_row(uc, row, wr_buf + 4,
1266 					      FLASH_WR_CMD);
1267 		if (err)
1268 			goto release_mem;
1269 
1270 		line_cnt++;
1271 		p = s;
1272 	}
1273 
1274 	dev_info(dev, "total %d row flashed. time: %dms\n",
1275 		 line_cnt, jiffies_to_msecs(jiffies - start_time));
1276 
1277 	err = ccg_cmd_validate_fw(uc, (mode == PRIMARY) ? FW2 :  FW1);
1278 	if (err)
1279 		dev_err(dev, "%s validation failed err=%d\n",
1280 			(mode == PRIMARY) ? "FW2" :  "FW1", err);
1281 	else
1282 		dev_info(dev, "%s validated\n",
1283 			 (mode == PRIMARY) ? "FW2" :  "FW1");
1284 
1285 	err = ccg_cmd_port_control(uc, false);
1286 	if (err < 0)
1287 		goto release_mem;
1288 
1289 	err = ccg_cmd_reset(uc);
1290 	if (err < 0)
1291 		goto release_mem;
1292 
1293 	err = ccg_cmd_port_control(uc, true);
1294 	if (err < 0)
1295 		goto release_mem;
1296 
1297 release_mem:
1298 	kfree(wr_buf);
1299 
1300 release_fw:
1301 	release_firmware(fw);
1302 	return err;
1303 }
1304 
1305 /*******************************************************************************
1306  * CCG4 has two copies of the firmware in addition to the bootloader.
1307  * If the device is running FW1, FW2 can be updated with the new version.
1308  * Dual firmware mode allows the CCG device to stay in a PD contract and support
1309  * USB PD and Type-C functionality while a firmware update is in progress.
1310  ******************************************************************************/
ccg_fw_update(struct ucsi_ccg * uc,enum enum_flash_mode flash_mode)1311 static int ccg_fw_update(struct ucsi_ccg *uc, enum enum_flash_mode flash_mode)
1312 {
1313 	int err = 0;
1314 
1315 	while (flash_mode != FLASH_NOT_NEEDED) {
1316 		err = do_flash(uc, flash_mode);
1317 		if (err < 0)
1318 			return err;
1319 		err = ccg_fw_update_needed(uc, &flash_mode);
1320 		if (err < 0)
1321 			return err;
1322 	}
1323 	dev_info(uc->dev, "CCG FW update successful\n");
1324 
1325 	return err;
1326 }
1327 
ccg_restart(struct ucsi_ccg * uc)1328 static int ccg_restart(struct ucsi_ccg *uc)
1329 {
1330 	struct device *dev = uc->dev;
1331 	int status;
1332 
1333 	status = ucsi_ccg_init(uc);
1334 	if (status < 0) {
1335 		dev_err(dev, "ucsi_ccg_start fail, err=%d\n", status);
1336 		return status;
1337 	}
1338 
1339 	status = ccg_request_irq(uc);
1340 	if (status < 0) {
1341 		dev_err(dev, "request_threaded_irq failed - %d\n", status);
1342 		return status;
1343 	}
1344 
1345 	status = ucsi_register(uc->ucsi);
1346 	if (status) {
1347 		dev_err(uc->dev, "failed to register the interface\n");
1348 		return status;
1349 	}
1350 
1351 	pm_runtime_enable(uc->dev);
1352 	return 0;
1353 }
1354 
ccg_update_firmware(struct work_struct * work)1355 static void ccg_update_firmware(struct work_struct *work)
1356 {
1357 	struct ucsi_ccg *uc = container_of(work, struct ucsi_ccg, work);
1358 	enum enum_flash_mode flash_mode;
1359 	int status;
1360 
1361 	status = ccg_fw_update_needed(uc, &flash_mode);
1362 	if (status < 0)
1363 		return;
1364 
1365 	if (flash_mode != FLASH_NOT_NEEDED) {
1366 		ucsi_unregister(uc->ucsi);
1367 		pm_runtime_disable(uc->dev);
1368 		free_irq(uc->irq, uc);
1369 
1370 		ccg_fw_update(uc, flash_mode);
1371 		ccg_restart(uc);
1372 	}
1373 }
1374 
do_flash_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1375 static ssize_t do_flash_store(struct device *dev,
1376 			      struct device_attribute *attr,
1377 			      const char *buf, size_t n)
1378 {
1379 	struct ucsi_ccg *uc = i2c_get_clientdata(to_i2c_client(dev));
1380 	bool flash;
1381 
1382 	if (kstrtobool(buf, &flash))
1383 		return -EINVAL;
1384 
1385 	if (!flash)
1386 		return n;
1387 
1388 	if (uc->fw_build == 0x0) {
1389 		dev_err(dev, "fail to flash FW due to missing FW build info\n");
1390 		return -EINVAL;
1391 	}
1392 
1393 	schedule_work(&uc->work);
1394 	return n;
1395 }
1396 
1397 static DEVICE_ATTR_WO(do_flash);
1398 
1399 static struct attribute *ucsi_ccg_attrs[] = {
1400 	&dev_attr_do_flash.attr,
1401 	NULL,
1402 };
1403 ATTRIBUTE_GROUPS(ucsi_ccg);
1404 
ucsi_ccg_probe(struct i2c_client * client)1405 static int ucsi_ccg_probe(struct i2c_client *client)
1406 {
1407 	struct device *dev = &client->dev;
1408 	struct ucsi_ccg *uc;
1409 	const char *fw_name;
1410 	int status;
1411 
1412 	uc = devm_kzalloc(dev, sizeof(*uc), GFP_KERNEL);
1413 	if (!uc)
1414 		return -ENOMEM;
1415 
1416 	uc->dev = dev;
1417 	uc->client = client;
1418 	uc->irq = client->irq;
1419 	mutex_init(&uc->lock);
1420 	INIT_WORK(&uc->work, ccg_update_firmware);
1421 	INIT_WORK(&uc->pm_work, ccg_pm_workaround_work);
1422 
1423 	/* Only fail FW flashing when FW build information is not provided */
1424 	status = device_property_read_string(dev, "firmware-name", &fw_name);
1425 	if (!status) {
1426 		if (!strcmp(fw_name, "nvidia,jetson-agx-xavier"))
1427 			uc->fw_build = CCG_FW_BUILD_NVIDIA_TEGRA;
1428 		else if (!strcmp(fw_name, "nvidia,gpu"))
1429 			uc->fw_build = CCG_FW_BUILD_NVIDIA;
1430 	}
1431 
1432 	if (!uc->fw_build)
1433 		dev_err(uc->dev, "failed to get FW build information\n");
1434 
1435 	/* reset ccg device and initialize ucsi */
1436 	status = ucsi_ccg_init(uc);
1437 	if (status < 0) {
1438 		dev_err(uc->dev, "ucsi_ccg_init failed - %d\n", status);
1439 		return status;
1440 	}
1441 
1442 	status = get_fw_info(uc);
1443 	if (status < 0) {
1444 		dev_err(uc->dev, "get_fw_info failed - %d\n", status);
1445 		return status;
1446 	}
1447 
1448 	uc->port_num = 1;
1449 
1450 	if (uc->info.mode & CCG_DEVINFO_PDPORTS_MASK)
1451 		uc->port_num++;
1452 
1453 	uc->ucsi = ucsi_create(dev, &ucsi_ccg_ops);
1454 	if (IS_ERR(uc->ucsi))
1455 		return PTR_ERR(uc->ucsi);
1456 
1457 	ucsi_set_drvdata(uc->ucsi, uc);
1458 
1459 	status = ccg_request_irq(uc);
1460 	if (status < 0) {
1461 		dev_err(uc->dev, "request_threaded_irq failed - %d\n", status);
1462 		goto out_ucsi_destroy;
1463 	}
1464 
1465 	status = ucsi_register(uc->ucsi);
1466 	if (status)
1467 		goto out_free_irq;
1468 
1469 	i2c_set_clientdata(client, uc);
1470 
1471 	pm_runtime_set_active(uc->dev);
1472 	pm_runtime_enable(uc->dev);
1473 	pm_runtime_use_autosuspend(uc->dev);
1474 	pm_runtime_set_autosuspend_delay(uc->dev, 5000);
1475 	pm_runtime_idle(uc->dev);
1476 
1477 	return 0;
1478 
1479 out_free_irq:
1480 	free_irq(uc->irq, uc);
1481 out_ucsi_destroy:
1482 	ucsi_destroy(uc->ucsi);
1483 
1484 	return status;
1485 }
1486 
ucsi_ccg_remove(struct i2c_client * client)1487 static void ucsi_ccg_remove(struct i2c_client *client)
1488 {
1489 	struct ucsi_ccg *uc = i2c_get_clientdata(client);
1490 
1491 	cancel_work_sync(&uc->pm_work);
1492 	cancel_work_sync(&uc->work);
1493 	pm_runtime_disable(uc->dev);
1494 	ucsi_unregister(uc->ucsi);
1495 	ucsi_destroy(uc->ucsi);
1496 	free_irq(uc->irq, uc);
1497 }
1498 
1499 static const struct of_device_id ucsi_ccg_of_match_table[] = {
1500 		{ .compatible = "cypress,cypd4226", },
1501 		{ /* sentinel */ }
1502 };
1503 MODULE_DEVICE_TABLE(of, ucsi_ccg_of_match_table);
1504 
1505 static const struct i2c_device_id ucsi_ccg_device_id[] = {
1506 	{ "ccgx-ucsi" },
1507 	{}
1508 };
1509 MODULE_DEVICE_TABLE(i2c, ucsi_ccg_device_id);
1510 
1511 static const struct acpi_device_id amd_i2c_ucsi_match[] = {
1512 	{"AMDI0042"},
1513 	{}
1514 };
1515 MODULE_DEVICE_TABLE(acpi, amd_i2c_ucsi_match);
1516 
ucsi_ccg_resume(struct device * dev)1517 static int ucsi_ccg_resume(struct device *dev)
1518 {
1519 	struct i2c_client *client = to_i2c_client(dev);
1520 	struct ucsi_ccg *uc = i2c_get_clientdata(client);
1521 
1522 	return ucsi_resume(uc->ucsi);
1523 }
1524 
ucsi_ccg_runtime_suspend(struct device * dev)1525 static int ucsi_ccg_runtime_suspend(struct device *dev)
1526 {
1527 	return 0;
1528 }
1529 
ucsi_ccg_runtime_resume(struct device * dev)1530 static int ucsi_ccg_runtime_resume(struct device *dev)
1531 {
1532 	struct i2c_client *client = to_i2c_client(dev);
1533 	struct ucsi_ccg *uc = i2c_get_clientdata(client);
1534 
1535 	/*
1536 	 * Firmware version 3.1.10 or earlier, built for NVIDIA has known issue
1537 	 * of missing interrupt when a device is connected for runtime resume.
1538 	 * Schedule a work to call ISR as a workaround.
1539 	 */
1540 	if (uc->fw_build == CCG_FW_BUILD_NVIDIA &&
1541 	    uc->fw_version <= CCG_OLD_FW_VERSION)
1542 		schedule_work(&uc->pm_work);
1543 
1544 	return 0;
1545 }
1546 
1547 static const struct dev_pm_ops ucsi_ccg_pm = {
1548 	.resume = ucsi_ccg_resume,
1549 	.runtime_suspend = ucsi_ccg_runtime_suspend,
1550 	.runtime_resume = ucsi_ccg_runtime_resume,
1551 };
1552 
1553 static struct i2c_driver ucsi_ccg_driver = {
1554 	.driver = {
1555 		.name = "ucsi_ccg",
1556 		.pm = &ucsi_ccg_pm,
1557 		.dev_groups = ucsi_ccg_groups,
1558 		.acpi_match_table = amd_i2c_ucsi_match,
1559 		.of_match_table = ucsi_ccg_of_match_table,
1560 	},
1561 	.probe = ucsi_ccg_probe,
1562 	.remove = ucsi_ccg_remove,
1563 	.id_table = ucsi_ccg_device_id,
1564 };
1565 
1566 module_i2c_driver(ucsi_ccg_driver);
1567 
1568 MODULE_AUTHOR("Ajay Gupta <ajayg@nvidia.com>");
1569 MODULE_DESCRIPTION("UCSI driver for Cypress CCGx Type-C controller");
1570 MODULE_LICENSE("GPL v2");
1571