1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_VERIFIER_H 5 #define _LINUX_BPF_VERIFIER_H 1 6 7 #include <linux/bpf.h> /* for enum bpf_reg_type */ 8 #include <linux/btf.h> /* for struct btf and btf_id() */ 9 #include <linux/filter.h> /* for MAX_BPF_STACK */ 10 #include <linux/tnum.h> 11 12 /* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16 #define BPF_MAX_VAR_OFF (1 << 29) 17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20 #define BPF_MAX_VAR_SIZ (1 << 29) 21 /* size of tmp_str_buf in bpf_verifier. 22 * we need at least 306 bytes to fit full stack mask representation 23 * (in the "-8,-16,...,-512" form) 24 */ 25 #define TMP_STR_BUF_LEN 320 26 /* Patch buffer size */ 27 #define INSN_BUF_SIZE 32 28 29 /* Liveness marks, used for registers and spilled-regs (in stack slots). 30 * Read marks propagate upwards until they find a write mark; they record that 31 * "one of this state's descendants read this reg" (and therefore the reg is 32 * relevant for states_equal() checks). 33 * Write marks collect downwards and do not propagate; they record that "the 34 * straight-line code that reached this state (from its parent) wrote this reg" 35 * (and therefore that reads propagated from this state or its descendants 36 * should not propagate to its parent). 37 * A state with a write mark can receive read marks; it just won't propagate 38 * them to its parent, since the write mark is a property, not of the state, 39 * but of the link between it and its parent. See mark_reg_read() and 40 * mark_stack_slot_read() in kernel/bpf/verifier.c. 41 */ 42 enum bpf_reg_liveness { 43 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 44 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 45 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 46 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 47 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 48 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 49 }; 50 51 /* For every reg representing a map value or allocated object pointer, 52 * we consider the tuple of (ptr, id) for them to be unique in verifier 53 * context and conside them to not alias each other for the purposes of 54 * tracking lock state. 55 */ 56 struct bpf_active_lock { 57 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL, 58 * there's no active lock held, and other fields have no 59 * meaning. If non-NULL, it indicates that a lock is held and 60 * id member has the reg->id of the register which can be >= 0. 61 */ 62 void *ptr; 63 /* This will be reg->id */ 64 u32 id; 65 }; 66 67 #define ITER_PREFIX "bpf_iter_" 68 69 enum bpf_iter_state { 70 BPF_ITER_STATE_INVALID, /* for non-first slot */ 71 BPF_ITER_STATE_ACTIVE, 72 BPF_ITER_STATE_DRAINED, 73 }; 74 75 struct bpf_reg_state { 76 /* Ordering of fields matters. See states_equal() */ 77 enum bpf_reg_type type; 78 /* 79 * Fixed part of pointer offset, pointer types only. 80 * Or constant delta between "linked" scalars with the same ID. 81 */ 82 s32 off; 83 union { 84 /* valid when type == PTR_TO_PACKET */ 85 int range; 86 87 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 88 * PTR_TO_MAP_VALUE_OR_NULL 89 */ 90 struct { 91 struct bpf_map *map_ptr; 92 /* To distinguish map lookups from outer map 93 * the map_uid is non-zero for registers 94 * pointing to inner maps. 95 */ 96 u32 map_uid; 97 }; 98 99 /* for PTR_TO_BTF_ID */ 100 struct { 101 struct btf *btf; 102 u32 btf_id; 103 }; 104 105 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 106 u32 mem_size; 107 u32 dynptr_id; /* for dynptr slices */ 108 }; 109 110 /* For dynptr stack slots */ 111 struct { 112 enum bpf_dynptr_type type; 113 /* A dynptr is 16 bytes so it takes up 2 stack slots. 114 * We need to track which slot is the first slot 115 * to protect against cases where the user may try to 116 * pass in an address starting at the second slot of the 117 * dynptr. 118 */ 119 bool first_slot; 120 } dynptr; 121 122 /* For bpf_iter stack slots */ 123 struct { 124 /* BTF container and BTF type ID describing 125 * struct bpf_iter_<type> of an iterator state 126 */ 127 struct btf *btf; 128 u32 btf_id; 129 /* packing following two fields to fit iter state into 16 bytes */ 130 enum bpf_iter_state state:2; 131 int depth:30; 132 } iter; 133 134 /* Max size from any of the above. */ 135 struct { 136 unsigned long raw1; 137 unsigned long raw2; 138 } raw; 139 140 u32 subprogno; /* for PTR_TO_FUNC */ 141 }; 142 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 143 * the actual value. 144 * For pointer types, this represents the variable part of the offset 145 * from the pointed-to object, and is shared with all bpf_reg_states 146 * with the same id as us. 147 */ 148 struct tnum var_off; 149 /* Used to determine if any memory access using this register will 150 * result in a bad access. 151 * These refer to the same value as var_off, not necessarily the actual 152 * contents of the register. 153 */ 154 s64 smin_value; /* minimum possible (s64)value */ 155 s64 smax_value; /* maximum possible (s64)value */ 156 u64 umin_value; /* minimum possible (u64)value */ 157 u64 umax_value; /* maximum possible (u64)value */ 158 s32 s32_min_value; /* minimum possible (s32)value */ 159 s32 s32_max_value; /* maximum possible (s32)value */ 160 u32 u32_min_value; /* minimum possible (u32)value */ 161 u32 u32_max_value; /* maximum possible (u32)value */ 162 /* For PTR_TO_PACKET, used to find other pointers with the same variable 163 * offset, so they can share range knowledge. 164 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 165 * came from, when one is tested for != NULL. 166 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 167 * for the purpose of tracking that it's freed. 168 * For PTR_TO_SOCKET this is used to share which pointers retain the 169 * same reference to the socket, to determine proper reference freeing. 170 * For stack slots that are dynptrs, this is used to track references to 171 * the dynptr to determine proper reference freeing. 172 * Similarly to dynptrs, we use ID to track "belonging" of a reference 173 * to a specific instance of bpf_iter. 174 */ 175 /* 176 * Upper bit of ID is used to remember relationship between "linked" 177 * registers. Example: 178 * r1 = r2; both will have r1->id == r2->id == N 179 * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10 180 */ 181 #define BPF_ADD_CONST (1U << 31) 182 u32 id; 183 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 184 * from a pointer-cast helper, bpf_sk_fullsock() and 185 * bpf_tcp_sock(). 186 * 187 * Consider the following where "sk" is a reference counted 188 * pointer returned from "sk = bpf_sk_lookup_tcp();": 189 * 190 * 1: sk = bpf_sk_lookup_tcp(); 191 * 2: if (!sk) { return 0; } 192 * 3: fullsock = bpf_sk_fullsock(sk); 193 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 194 * 5: tp = bpf_tcp_sock(fullsock); 195 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 196 * 7: bpf_sk_release(sk); 197 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 198 * 199 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 200 * "tp" ptr should be invalidated also. In order to do that, 201 * the reg holding "fullsock" and "sk" need to remember 202 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 203 * such that the verifier can reset all regs which have 204 * ref_obj_id matching the sk_reg->id. 205 * 206 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 207 * sk_reg->id will stay as NULL-marking purpose only. 208 * After NULL-marking is done, sk_reg->id can be reset to 0. 209 * 210 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 211 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 212 * 213 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 214 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 215 * which is the same as sk_reg->ref_obj_id. 216 * 217 * From the verifier perspective, if sk, fullsock and tp 218 * are not NULL, they are the same ptr with different 219 * reg->type. In particular, bpf_sk_release(tp) is also 220 * allowed and has the same effect as bpf_sk_release(sk). 221 */ 222 u32 ref_obj_id; 223 /* parentage chain for liveness checking */ 224 struct bpf_reg_state *parent; 225 /* Inside the callee two registers can be both PTR_TO_STACK like 226 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 227 * while another to the caller's stack. To differentiate them 'frameno' 228 * is used which is an index in bpf_verifier_state->frame[] array 229 * pointing to bpf_func_state. 230 */ 231 u32 frameno; 232 /* Tracks subreg definition. The stored value is the insn_idx of the 233 * writing insn. This is safe because subreg_def is used before any insn 234 * patching which only happens after main verification finished. 235 */ 236 s32 subreg_def; 237 enum bpf_reg_liveness live; 238 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 239 bool precise; 240 }; 241 242 enum bpf_stack_slot_type { 243 STACK_INVALID, /* nothing was stored in this stack slot */ 244 STACK_SPILL, /* register spilled into stack */ 245 STACK_MISC, /* BPF program wrote some data into this slot */ 246 STACK_ZERO, /* BPF program wrote constant zero */ 247 /* A dynptr is stored in this stack slot. The type of dynptr 248 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 249 */ 250 STACK_DYNPTR, 251 STACK_ITER, 252 }; 253 254 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 255 256 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ 257 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ 258 (1 << BPF_REG_5)) 259 260 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 261 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 262 263 struct bpf_stack_state { 264 struct bpf_reg_state spilled_ptr; 265 u8 slot_type[BPF_REG_SIZE]; 266 }; 267 268 struct bpf_reference_state { 269 /* Track each reference created with a unique id, even if the same 270 * instruction creates the reference multiple times (eg, via CALL). 271 */ 272 int id; 273 /* Instruction where the allocation of this reference occurred. This 274 * is used purely to inform the user of a reference leak. 275 */ 276 int insn_idx; 277 /* There can be a case like: 278 * main (frame 0) 279 * cb (frame 1) 280 * func (frame 3) 281 * cb (frame 4) 282 * Hence for frame 4, if callback_ref just stored boolean, it would be 283 * impossible to distinguish nested callback refs. Hence store the 284 * frameno and compare that to callback_ref in check_reference_leak when 285 * exiting a callback function. 286 */ 287 int callback_ref; 288 }; 289 290 struct bpf_retval_range { 291 s32 minval; 292 s32 maxval; 293 }; 294 295 /* state of the program: 296 * type of all registers and stack info 297 */ 298 struct bpf_func_state { 299 struct bpf_reg_state regs[MAX_BPF_REG]; 300 /* index of call instruction that called into this func */ 301 int callsite; 302 /* stack frame number of this function state from pov of 303 * enclosing bpf_verifier_state. 304 * 0 = main function, 1 = first callee. 305 */ 306 u32 frameno; 307 /* subprog number == index within subprog_info 308 * zero == main subprog 309 */ 310 u32 subprogno; 311 /* Every bpf_timer_start will increment async_entry_cnt. 312 * It's used to distinguish: 313 * void foo(void) { for(;;); } 314 * void foo(void) { bpf_timer_set_callback(,foo); } 315 */ 316 u32 async_entry_cnt; 317 struct bpf_retval_range callback_ret_range; 318 bool in_callback_fn; 319 bool in_async_callback_fn; 320 bool in_exception_callback_fn; 321 /* For callback calling functions that limit number of possible 322 * callback executions (e.g. bpf_loop) keeps track of current 323 * simulated iteration number. 324 * Value in frame N refers to number of times callback with frame 325 * N+1 was simulated, e.g. for the following call: 326 * 327 * bpf_loop(..., fn, ...); | suppose current frame is N 328 * | fn would be simulated in frame N+1 329 * | number of simulations is tracked in frame N 330 */ 331 u32 callback_depth; 332 333 /* The following fields should be last. See copy_func_state() */ 334 int acquired_refs; 335 struct bpf_reference_state *refs; 336 /* The state of the stack. Each element of the array describes BPF_REG_SIZE 337 * (i.e. 8) bytes worth of stack memory. 338 * stack[0] represents bytes [*(r10-8)..*(r10-1)] 339 * stack[1] represents bytes [*(r10-16)..*(r10-9)] 340 * ... 341 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)] 342 */ 343 struct bpf_stack_state *stack; 344 /* Size of the current stack, in bytes. The stack state is tracked below, in 345 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE. 346 */ 347 int allocated_stack; 348 }; 349 350 #define MAX_CALL_FRAMES 8 351 352 /* instruction history flags, used in bpf_jmp_history_entry.flags field */ 353 enum { 354 /* instruction references stack slot through PTR_TO_STACK register; 355 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8) 356 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512, 357 * 8 bytes per slot, so slot index (spi) is [0, 63]) 358 */ 359 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */ 360 361 INSN_F_SPI_MASK = 0x3f, /* 6 bits */ 362 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */ 363 364 INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */ 365 }; 366 367 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES); 368 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8); 369 370 struct bpf_jmp_history_entry { 371 u32 idx; 372 /* insn idx can't be bigger than 1 million */ 373 u32 prev_idx : 22; 374 /* special flags, e.g., whether insn is doing register stack spill/load */ 375 u32 flags : 10; 376 /* additional registers that need precision tracking when this 377 * jump is backtracked, vector of six 10-bit records 378 */ 379 u64 linked_regs; 380 }; 381 382 /* Maximum number of register states that can exist at once */ 383 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 384 struct bpf_verifier_state { 385 /* call stack tracking */ 386 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 387 struct bpf_verifier_state *parent; 388 /* 389 * 'branches' field is the number of branches left to explore: 390 * 0 - all possible paths from this state reached bpf_exit or 391 * were safely pruned 392 * 1 - at least one path is being explored. 393 * This state hasn't reached bpf_exit 394 * 2 - at least two paths are being explored. 395 * This state is an immediate parent of two children. 396 * One is fallthrough branch with branches==1 and another 397 * state is pushed into stack (to be explored later) also with 398 * branches==1. The parent of this state has branches==1. 399 * The verifier state tree connected via 'parent' pointer looks like: 400 * 1 401 * 1 402 * 2 -> 1 (first 'if' pushed into stack) 403 * 1 404 * 2 -> 1 (second 'if' pushed into stack) 405 * 1 406 * 1 407 * 1 bpf_exit. 408 * 409 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 410 * and the verifier state tree will look: 411 * 1 412 * 1 413 * 2 -> 1 (first 'if' pushed into stack) 414 * 1 415 * 1 -> 1 (second 'if' pushed into stack) 416 * 0 417 * 0 418 * 0 bpf_exit. 419 * After pop_stack() the do_check() will resume at second 'if'. 420 * 421 * If is_state_visited() sees a state with branches > 0 it means 422 * there is a loop. If such state is exactly equal to the current state 423 * it's an infinite loop. Note states_equal() checks for states 424 * equivalency, so two states being 'states_equal' does not mean 425 * infinite loop. The exact comparison is provided by 426 * states_maybe_looping() function. It's a stronger pre-check and 427 * much faster than states_equal(). 428 * 429 * This algorithm may not find all possible infinite loops or 430 * loop iteration count may be too high. 431 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 432 */ 433 u32 branches; 434 u32 insn_idx; 435 u32 curframe; 436 437 struct bpf_active_lock active_lock; 438 bool speculative; 439 bool active_rcu_lock; 440 u32 active_preempt_lock; 441 /* If this state was ever pointed-to by other state's loop_entry field 442 * this flag would be set to true. Used to avoid freeing such states 443 * while they are still in use. 444 */ 445 bool used_as_loop_entry; 446 bool in_sleepable; 447 448 /* first and last insn idx of this verifier state */ 449 u32 first_insn_idx; 450 u32 last_insn_idx; 451 /* If this state is a part of states loop this field points to some 452 * parent of this state such that: 453 * - it is also a member of the same states loop; 454 * - DFS states traversal starting from initial state visits loop_entry 455 * state before this state. 456 * Used to compute topmost loop entry for state loops. 457 * State loops might appear because of open coded iterators logic. 458 * See get_loop_entry() for more information. 459 */ 460 struct bpf_verifier_state *loop_entry; 461 /* jmp history recorded from first to last. 462 * backtracking is using it to go from last to first. 463 * For most states jmp_history_cnt is [0-3]. 464 * For loops can go up to ~40. 465 */ 466 struct bpf_jmp_history_entry *jmp_history; 467 u32 jmp_history_cnt; 468 u32 dfs_depth; 469 u32 callback_unroll_depth; 470 u32 may_goto_depth; 471 }; 472 473 #define bpf_get_spilled_reg(slot, frame, mask) \ 474 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 475 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \ 476 ? &frame->stack[slot].spilled_ptr : NULL) 477 478 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 479 #define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ 480 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ 481 iter < frame->allocated_stack / BPF_REG_SIZE; \ 482 iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) 483 484 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ 485 ({ \ 486 struct bpf_verifier_state *___vstate = __vst; \ 487 int ___i, ___j; \ 488 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 489 struct bpf_reg_state *___regs; \ 490 __state = ___vstate->frame[___i]; \ 491 ___regs = __state->regs; \ 492 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 493 __reg = &___regs[___j]; \ 494 (void)(__expr); \ 495 } \ 496 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ 497 if (!__reg) \ 498 continue; \ 499 (void)(__expr); \ 500 } \ 501 } \ 502 }) 503 504 /* Invoke __expr over regsiters in __vst, setting __state and __reg */ 505 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 506 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) 507 508 /* linked list of verifier states used to prune search */ 509 struct bpf_verifier_state_list { 510 struct bpf_verifier_state state; 511 struct bpf_verifier_state_list *next; 512 int miss_cnt, hit_cnt; 513 }; 514 515 struct bpf_loop_inline_state { 516 unsigned int initialized:1; /* set to true upon first entry */ 517 unsigned int fit_for_inline:1; /* true if callback function is the same 518 * at each call and flags are always zero 519 */ 520 u32 callback_subprogno; /* valid when fit_for_inline is true */ 521 }; 522 523 /* pointer and state for maps */ 524 struct bpf_map_ptr_state { 525 struct bpf_map *map_ptr; 526 bool poison; 527 bool unpriv; 528 }; 529 530 /* Possible states for alu_state member. */ 531 #define BPF_ALU_SANITIZE_SRC (1U << 0) 532 #define BPF_ALU_SANITIZE_DST (1U << 1) 533 #define BPF_ALU_NEG_VALUE (1U << 2) 534 #define BPF_ALU_NON_POINTER (1U << 3) 535 #define BPF_ALU_IMMEDIATE (1U << 4) 536 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 537 BPF_ALU_SANITIZE_DST) 538 539 struct bpf_insn_aux_data { 540 union { 541 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 542 struct bpf_map_ptr_state map_ptr_state; 543 s32 call_imm; /* saved imm field of call insn */ 544 u32 alu_limit; /* limit for add/sub register with pointer */ 545 struct { 546 u32 map_index; /* index into used_maps[] */ 547 u32 map_off; /* offset from value base address */ 548 }; 549 struct { 550 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 551 union { 552 struct { 553 struct btf *btf; 554 u32 btf_id; /* btf_id for struct typed var */ 555 }; 556 u32 mem_size; /* mem_size for non-struct typed var */ 557 }; 558 } btf_var; 559 /* if instruction is a call to bpf_loop this field tracks 560 * the state of the relevant registers to make decision about inlining 561 */ 562 struct bpf_loop_inline_state loop_inline_state; 563 }; 564 union { 565 /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 566 u64 obj_new_size; 567 /* remember the offset of node field within type to rewrite */ 568 u64 insert_off; 569 }; 570 struct btf_struct_meta *kptr_struct_meta; 571 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 572 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 573 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 574 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 575 bool zext_dst; /* this insn zero extends dst reg */ 576 bool needs_zext; /* alu op needs to clear upper bits */ 577 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ 578 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ 579 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ 580 u8 alu_state; /* used in combination with alu_limit */ 581 /* true if STX or LDX instruction is a part of a spill/fill 582 * pattern for a bpf_fastcall call. 583 */ 584 u8 fastcall_pattern:1; 585 /* for CALL instructions, a number of spill/fill pairs in the 586 * bpf_fastcall pattern. 587 */ 588 u8 fastcall_spills_num:3; 589 590 /* below fields are initialized once */ 591 unsigned int orig_idx; /* original instruction index */ 592 bool jmp_point; 593 bool prune_point; 594 /* ensure we check state equivalence and save state checkpoint and 595 * this instruction, regardless of any heuristics 596 */ 597 bool force_checkpoint; 598 /* true if instruction is a call to a helper function that 599 * accepts callback function as a parameter. 600 */ 601 bool calls_callback; 602 }; 603 604 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 605 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 606 607 #define BPF_VERIFIER_TMP_LOG_SIZE 1024 608 609 struct bpf_verifier_log { 610 /* Logical start and end positions of a "log window" of the verifier log. 611 * start_pos == 0 means we haven't truncated anything. 612 * Once truncation starts to happen, start_pos + len_total == end_pos, 613 * except during log reset situations, in which (end_pos - start_pos) 614 * might get smaller than len_total (see bpf_vlog_reset()). 615 * Generally, (end_pos - start_pos) gives number of useful data in 616 * user log buffer. 617 */ 618 u64 start_pos; 619 u64 end_pos; 620 char __user *ubuf; 621 u32 level; 622 u32 len_total; 623 u32 len_max; 624 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 625 }; 626 627 #define BPF_LOG_LEVEL1 1 628 #define BPF_LOG_LEVEL2 2 629 #define BPF_LOG_STATS 4 630 #define BPF_LOG_FIXED 8 631 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 632 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) 633 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 634 #define BPF_LOG_MIN_ALIGNMENT 8U 635 #define BPF_LOG_ALIGNMENT 40U 636 bpf_verifier_log_needed(const struct bpf_verifier_log * log)637 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 638 { 639 return log && log->level; 640 } 641 642 #define BPF_MAX_SUBPROGS 256 643 644 struct bpf_subprog_arg_info { 645 enum bpf_arg_type arg_type; 646 union { 647 u32 mem_size; 648 u32 btf_id; 649 }; 650 }; 651 652 struct bpf_subprog_info { 653 /* 'start' has to be the first field otherwise find_subprog() won't work */ 654 u32 start; /* insn idx of function entry point */ 655 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 656 u16 stack_depth; /* max. stack depth used by this function */ 657 u16 stack_extra; 658 /* offsets in range [stack_depth .. fastcall_stack_off) 659 * are used for bpf_fastcall spills and fills. 660 */ 661 s16 fastcall_stack_off; 662 bool has_tail_call: 1; 663 bool tail_call_reachable: 1; 664 bool has_ld_abs: 1; 665 bool is_cb: 1; 666 bool is_async_cb: 1; 667 bool is_exception_cb: 1; 668 bool args_cached: 1; 669 /* true if bpf_fastcall stack region is used by functions that can't be inlined */ 670 bool keep_fastcall_stack: 1; 671 672 u8 arg_cnt; 673 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS]; 674 }; 675 676 struct bpf_verifier_env; 677 678 struct backtrack_state { 679 struct bpf_verifier_env *env; 680 u32 frame; 681 u32 reg_masks[MAX_CALL_FRAMES]; 682 u64 stack_masks[MAX_CALL_FRAMES]; 683 }; 684 685 struct bpf_id_pair { 686 u32 old; 687 u32 cur; 688 }; 689 690 struct bpf_idmap { 691 u32 tmp_id_gen; 692 struct bpf_id_pair map[BPF_ID_MAP_SIZE]; 693 }; 694 695 struct bpf_idset { 696 u32 count; 697 u32 ids[BPF_ID_MAP_SIZE]; 698 }; 699 700 /* single container for all structs 701 * one verifier_env per bpf_check() call 702 */ 703 struct bpf_verifier_env { 704 u32 insn_idx; 705 u32 prev_insn_idx; 706 struct bpf_prog *prog; /* eBPF program being verified */ 707 const struct bpf_verifier_ops *ops; 708 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */ 709 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 710 int stack_size; /* number of states to be processed */ 711 bool strict_alignment; /* perform strict pointer alignment checks */ 712 bool test_state_freq; /* test verifier with different pruning frequency */ 713 bool test_reg_invariants; /* fail verification on register invariants violations */ 714 struct bpf_verifier_state *cur_state; /* current verifier state */ 715 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 716 struct bpf_verifier_state_list *free_list; 717 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 718 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 719 u32 used_map_cnt; /* number of used maps */ 720 u32 used_btf_cnt; /* number of used BTF objects */ 721 u32 id_gen; /* used to generate unique reg IDs */ 722 u32 hidden_subprog_cnt; /* number of hidden subprogs */ 723 int exception_callback_subprog; 724 bool explore_alu_limits; 725 bool allow_ptr_leaks; 726 /* Allow access to uninitialized stack memory. Writes with fixed offset are 727 * always allowed, so this refers to reads (with fixed or variable offset), 728 * to writes with variable offset and to indirect (helper) accesses. 729 */ 730 bool allow_uninit_stack; 731 bool bpf_capable; 732 bool bypass_spec_v1; 733 bool bypass_spec_v4; 734 bool seen_direct_write; 735 bool seen_exception; 736 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 737 const struct bpf_line_info *prev_linfo; 738 struct bpf_verifier_log log; 739 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ 740 union { 741 struct bpf_idmap idmap_scratch; 742 struct bpf_idset idset_scratch; 743 }; 744 struct { 745 int *insn_state; 746 int *insn_stack; 747 int cur_stack; 748 } cfg; 749 struct backtrack_state bt; 750 struct bpf_jmp_history_entry *cur_hist_ent; 751 u32 pass_cnt; /* number of times do_check() was called */ 752 u32 subprog_cnt; 753 /* number of instructions analyzed by the verifier */ 754 u32 prev_insn_processed, insn_processed; 755 /* number of jmps, calls, exits analyzed so far */ 756 u32 prev_jmps_processed, jmps_processed; 757 /* total verification time */ 758 u64 verification_time; 759 /* maximum number of verifier states kept in 'branching' instructions */ 760 u32 max_states_per_insn; 761 /* total number of allocated verifier states */ 762 u32 total_states; 763 /* some states are freed during program analysis. 764 * this is peak number of states. this number dominates kernel 765 * memory consumption during verification 766 */ 767 u32 peak_states; 768 /* longest register parentage chain walked for liveness marking */ 769 u32 longest_mark_read_walk; 770 bpfptr_t fd_array; 771 772 /* bit mask to keep track of whether a register has been accessed 773 * since the last time the function state was printed 774 */ 775 u32 scratched_regs; 776 /* Same as scratched_regs but for stack slots */ 777 u64 scratched_stack_slots; 778 u64 prev_log_pos, prev_insn_print_pos; 779 /* buffer used to temporary hold constants as scalar registers */ 780 struct bpf_reg_state fake_reg[2]; 781 /* buffer used to generate temporary string representations, 782 * e.g., in reg_type_str() to generate reg_type string 783 */ 784 char tmp_str_buf[TMP_STR_BUF_LEN]; 785 struct bpf_insn insn_buf[INSN_BUF_SIZE]; 786 struct bpf_insn epilogue_buf[INSN_BUF_SIZE]; 787 }; 788 subprog_aux(struct bpf_verifier_env * env,int subprog)789 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog) 790 { 791 return &env->prog->aux->func_info_aux[subprog]; 792 } 793 subprog_info(struct bpf_verifier_env * env,int subprog)794 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog) 795 { 796 return &env->subprog_info[subprog]; 797 } 798 799 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 800 const char *fmt, va_list args); 801 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 802 const char *fmt, ...); 803 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 804 const char *fmt, ...); 805 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, 806 char __user *log_buf, u32 log_size); 807 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); 808 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); 809 810 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, 811 u32 insn_off, 812 const char *prefix_fmt, ...); 813 cur_func(struct bpf_verifier_env * env)814 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 815 { 816 struct bpf_verifier_state *cur = env->cur_state; 817 818 return cur->frame[cur->curframe]; 819 } 820 cur_regs(struct bpf_verifier_env * env)821 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 822 { 823 return cur_func(env)->regs; 824 } 825 826 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 827 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 828 int insn_idx, int prev_insn_idx); 829 int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 830 void 831 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 832 struct bpf_insn *insn); 833 void 834 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 835 836 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,struct btf * btf,u32 btf_id)837 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 838 struct btf *btf, u32 btf_id) 839 { 840 if (tgt_prog) 841 return ((u64)tgt_prog->aux->id << 32) | btf_id; 842 else 843 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 844 } 845 846 /* unpack the IDs from the key as constructed above */ bpf_trampoline_unpack_key(u64 key,u32 * obj_id,u32 * btf_id)847 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 848 { 849 if (obj_id) 850 *obj_id = key >> 32; 851 if (btf_id) 852 *btf_id = key & 0x7FFFFFFF; 853 } 854 855 int bpf_check_attach_target(struct bpf_verifier_log *log, 856 const struct bpf_prog *prog, 857 const struct bpf_prog *tgt_prog, 858 u32 btf_id, 859 struct bpf_attach_target_info *tgt_info); 860 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 861 862 int mark_chain_precision(struct bpf_verifier_env *env, int regno); 863 864 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 865 866 /* extract base type from bpf_{arg, return, reg}_type. */ base_type(u32 type)867 static inline u32 base_type(u32 type) 868 { 869 return type & BPF_BASE_TYPE_MASK; 870 } 871 872 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */ type_flag(u32 type)873 static inline u32 type_flag(u32 type) 874 { 875 return type & ~BPF_BASE_TYPE_MASK; 876 } 877 878 /* only use after check_attach_btf_id() */ resolve_prog_type(const struct bpf_prog * prog)879 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 880 { 881 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ? 882 prog->aux->saved_dst_prog_type : prog->type; 883 } 884 bpf_prog_check_recur(const struct bpf_prog * prog)885 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 886 { 887 switch (resolve_prog_type(prog)) { 888 case BPF_PROG_TYPE_TRACING: 889 return prog->expected_attach_type != BPF_TRACE_ITER; 890 case BPF_PROG_TYPE_STRUCT_OPS: 891 case BPF_PROG_TYPE_LSM: 892 return false; 893 default: 894 return true; 895 } 896 } 897 898 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) 899 bpf_type_has_unsafe_modifiers(u32 type)900 static inline bool bpf_type_has_unsafe_modifiers(u32 type) 901 { 902 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 903 } 904 type_is_ptr_alloc_obj(u32 type)905 static inline bool type_is_ptr_alloc_obj(u32 type) 906 { 907 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 908 } 909 type_is_non_owning_ref(u32 type)910 static inline bool type_is_non_owning_ref(u32 type) 911 { 912 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 913 } 914 type_is_pkt_pointer(enum bpf_reg_type type)915 static inline bool type_is_pkt_pointer(enum bpf_reg_type type) 916 { 917 type = base_type(type); 918 return type == PTR_TO_PACKET || 919 type == PTR_TO_PACKET_META; 920 } 921 type_is_sk_pointer(enum bpf_reg_type type)922 static inline bool type_is_sk_pointer(enum bpf_reg_type type) 923 { 924 return type == PTR_TO_SOCKET || 925 type == PTR_TO_SOCK_COMMON || 926 type == PTR_TO_TCP_SOCK || 927 type == PTR_TO_XDP_SOCK; 928 } 929 type_may_be_null(u32 type)930 static inline bool type_may_be_null(u32 type) 931 { 932 return type & PTR_MAYBE_NULL; 933 } 934 mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)935 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 936 { 937 env->scratched_regs |= 1U << regno; 938 } 939 mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)940 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 941 { 942 env->scratched_stack_slots |= 1ULL << spi; 943 } 944 reg_scratched(const struct bpf_verifier_env * env,u32 regno)945 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 946 { 947 return (env->scratched_regs >> regno) & 1; 948 } 949 stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)950 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 951 { 952 return (env->scratched_stack_slots >> regno) & 1; 953 } 954 verifier_state_scratched(const struct bpf_verifier_env * env)955 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) 956 { 957 return env->scratched_regs || env->scratched_stack_slots; 958 } 959 mark_verifier_state_clean(struct bpf_verifier_env * env)960 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) 961 { 962 env->scratched_regs = 0U; 963 env->scratched_stack_slots = 0ULL; 964 } 965 966 /* Used for printing the entire verifier state. */ mark_verifier_state_scratched(struct bpf_verifier_env * env)967 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) 968 { 969 env->scratched_regs = ~0U; 970 env->scratched_stack_slots = ~0ULL; 971 } 972 bpf_stack_narrow_access_ok(int off,int fill_size,int spill_size)973 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size) 974 { 975 #ifdef __BIG_ENDIAN 976 off -= spill_size - fill_size; 977 #endif 978 979 return !(off % BPF_REG_SIZE); 980 } 981 982 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); 983 const char *dynptr_type_str(enum bpf_dynptr_type type); 984 const char *iter_type_str(const struct btf *btf, u32 btf_id); 985 const char *iter_state_str(enum bpf_iter_state state); 986 987 void print_verifier_state(struct bpf_verifier_env *env, 988 const struct bpf_func_state *state, bool print_all); 989 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state); 990 991 #endif /* _LINUX_BPF_VERIFIER_H */ 992