1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 
8 #ifndef _PTP_CLOCK_KERNEL_H_
9 #define _PTP_CLOCK_KERNEL_H_
10 
11 #include <linux/device.h>
12 #include <linux/pps_kernel.h>
13 #include <linux/ptp_clock.h>
14 #include <linux/timecounter.h>
15 #include <linux/skbuff.h>
16 
17 #define PTP_CLOCK_NAME_LEN	32
18 /**
19  * struct ptp_clock_request - request PTP clock event
20  *
21  * @type:   The type of the request.
22  *	    EXTTS:  Configure external trigger timestamping
23  *	    PEROUT: Configure periodic output signal (e.g. PPS)
24  *	    PPS:    trigger internal PPS event for input
25  *	            into kernel PPS subsystem
26  * @extts:  describes configuration for external trigger timestamping.
27  *          This is only valid when event == PTP_CLK_REQ_EXTTS.
28  * @perout: describes configuration for periodic output.
29  *	    This is only valid when event == PTP_CLK_REQ_PEROUT.
30  */
31 
32 struct ptp_clock_request {
33 	enum {
34 		PTP_CLK_REQ_EXTTS,
35 		PTP_CLK_REQ_PEROUT,
36 		PTP_CLK_REQ_PPS,
37 	} type;
38 	union {
39 		struct ptp_extts_request extts;
40 		struct ptp_perout_request perout;
41 	};
42 };
43 
44 struct system_device_crosststamp;
45 
46 /**
47  * struct ptp_system_timestamp - system time corresponding to a PHC timestamp
48  * @pre_ts: system timestamp before capturing PHC
49  * @post_ts: system timestamp after capturing PHC
50  * @clockid: clock-base used for capturing the system timestamps
51  */
52 struct ptp_system_timestamp {
53 	struct timespec64 pre_ts;
54 	struct timespec64 post_ts;
55 	clockid_t clockid;
56 };
57 
58 /**
59  * struct ptp_clock_info - describes a PTP hardware clock
60  *
61  * @owner:     The clock driver should set to THIS_MODULE.
62  * @name:      A short "friendly name" to identify the clock and to
63  *             help distinguish PHY based devices from MAC based ones.
64  *             The string is not meant to be a unique id.
65  * @max_adj:   The maximum possible frequency adjustment, in parts per billon.
66  * @n_alarm:   The number of programmable alarms.
67  * @n_ext_ts:  The number of external time stamp channels.
68  * @n_per_out: The number of programmable periodic signals.
69  * @n_pins:    The number of programmable pins.
70  * @pps:       Indicates whether the clock supports a PPS callback.
71  * @pin_config: Array of length 'n_pins'. If the number of
72  *              programmable pins is nonzero, then drivers must
73  *              allocate and initialize this array.
74  *
75  * clock operations
76  *
77  * @adjfine:  Adjusts the frequency of the hardware clock.
78  *            parameter scaled_ppm: Desired frequency offset from
79  *            nominal frequency in parts per million, but with a
80  *            16 bit binary fractional field.
81  *
82  * @adjphase:  Indicates that the PHC should use an internal servo
83  *             algorithm to correct the provided phase offset.
84  *             parameter delta: PHC servo phase adjustment target
85  *                              in nanoseconds.
86  *
87  * @getmaxphase:  Advertises maximum offset that can be provided
88  *                to the hardware clock's phase control functionality
89  *                through adjphase.
90  *
91  * @adjtime:  Shifts the time of the hardware clock.
92  *            parameter delta: Desired change in nanoseconds.
93  *
94  * @gettime64:  Reads the current time from the hardware clock.
95  *              This method is deprecated.  New drivers should implement
96  *              the @gettimex64 method instead.
97  *              parameter ts: Holds the result.
98  *
99  * @gettimex64:  Reads the current time from the hardware clock and optionally
100  *               also the system clock.
101  *               parameter ts: Holds the PHC timestamp.
102  *               parameter sts: If not NULL, it holds a pair of timestamps from
103  *               the system clock. The first reading is made right before
104  *               reading the lowest bits of the PHC timestamp and the second
105  *               reading immediately follows that.
106  *
107  * @getcrosststamp:  Reads the current time from the hardware clock and
108  *                   system clock simultaneously.
109  *                   parameter cts: Contains timestamp (device,system) pair,
110  *                   where system time is realtime and monotonic.
111  *
112  * @settime64:  Set the current time on the hardware clock.
113  *              parameter ts: Time value to set.
114  *
115  * @getcycles64:  Reads the current free running cycle counter from the hardware
116  *                clock.
117  *                If @getcycles64 and @getcyclesx64 are not supported, then
118  *                @gettime64 or @gettimex64 will be used as default
119  *                implementation.
120  *                parameter ts: Holds the result.
121  *
122  * @getcyclesx64:  Reads the current free running cycle counter from the
123  *                 hardware clock and optionally also the system clock.
124  *                 If @getcycles64 and @getcyclesx64 are not supported, then
125  *                 @gettimex64 will be used as default implementation if
126  *                 available.
127  *                 parameter ts: Holds the PHC timestamp.
128  *                 parameter sts: If not NULL, it holds a pair of timestamps
129  *                 from the system clock. The first reading is made right before
130  *                 reading the lowest bits of the PHC timestamp and the second
131  *                 reading immediately follows that.
132  *
133  * @getcrosscycles:  Reads the current free running cycle counter from the
134  *                   hardware clock and system clock simultaneously.
135  *                   If @getcycles64 and @getcyclesx64 are not supported, then
136  *                   @getcrosststamp will be used as default implementation if
137  *                   available.
138  *                   parameter cts: Contains timestamp (device,system) pair,
139  *                   where system time is realtime and monotonic.
140  *
141  * @enable:   Request driver to enable or disable an ancillary feature.
142  *            parameter request: Desired resource to enable or disable.
143  *            parameter on: Caller passes one to enable or zero to disable.
144  *
145  * @verify:   Confirm that a pin can perform a given function. The PTP
146  *            Hardware Clock subsystem maintains the 'pin_config'
147  *            array on behalf of the drivers, but the PHC subsystem
148  *            assumes that every pin can perform every function. This
149  *            hook gives drivers a way of telling the core about
150  *            limitations on specific pins. This function must return
151  *            zero if the function can be assigned to this pin, and
152  *            nonzero otherwise.
153  *            parameter pin: index of the pin in question.
154  *            parameter func: the desired function to use.
155  *            parameter chan: the function channel index to use.
156  *
157  * @do_aux_work:  Request driver to perform auxiliary (periodic) operations
158  *                Driver should return delay of the next auxiliary work
159  *                scheduling time (>=0) or negative value in case further
160  *                scheduling is not required.
161  *
162  * Drivers should embed their ptp_clock_info within a private
163  * structure, obtaining a reference to it using container_of().
164  *
165  * The callbacks must all return zero on success, non-zero otherwise.
166  */
167 
168 struct ptp_clock_info {
169 	struct module *owner;
170 	char name[PTP_CLOCK_NAME_LEN];
171 	s32 max_adj;
172 	int n_alarm;
173 	int n_ext_ts;
174 	int n_per_out;
175 	int n_pins;
176 	int pps;
177 	struct ptp_pin_desc *pin_config;
178 	int (*adjfine)(struct ptp_clock_info *ptp, long scaled_ppm);
179 	int (*adjphase)(struct ptp_clock_info *ptp, s32 phase);
180 	s32 (*getmaxphase)(struct ptp_clock_info *ptp);
181 	int (*adjtime)(struct ptp_clock_info *ptp, s64 delta);
182 	int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
183 	int (*gettimex64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
184 			  struct ptp_system_timestamp *sts);
185 	int (*getcrosststamp)(struct ptp_clock_info *ptp,
186 			      struct system_device_crosststamp *cts);
187 	int (*settime64)(struct ptp_clock_info *p, const struct timespec64 *ts);
188 	int (*getcycles64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
189 	int (*getcyclesx64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
190 			    struct ptp_system_timestamp *sts);
191 	int (*getcrosscycles)(struct ptp_clock_info *ptp,
192 			      struct system_device_crosststamp *cts);
193 	int (*enable)(struct ptp_clock_info *ptp,
194 		      struct ptp_clock_request *request, int on);
195 	int (*verify)(struct ptp_clock_info *ptp, unsigned int pin,
196 		      enum ptp_pin_function func, unsigned int chan);
197 	long (*do_aux_work)(struct ptp_clock_info *ptp);
198 };
199 
200 struct ptp_clock;
201 
202 enum ptp_clock_events {
203 	PTP_CLOCK_ALARM,
204 	PTP_CLOCK_EXTTS,
205 	PTP_CLOCK_EXTOFF,
206 	PTP_CLOCK_PPS,
207 	PTP_CLOCK_PPSUSR,
208 };
209 
210 /**
211  * struct ptp_clock_event - decribes a PTP hardware clock event
212  *
213  * @type:  One of the ptp_clock_events enumeration values.
214  * @index: Identifies the source of the event.
215  * @timestamp: When the event occurred (%PTP_CLOCK_EXTTS only).
216  * @offset:    When the event occurred (%PTP_CLOCK_EXTOFF only).
217  * @pps_times: When the event occurred (%PTP_CLOCK_PPSUSR only).
218  */
219 
220 struct ptp_clock_event {
221 	int type;
222 	int index;
223 	union {
224 		u64 timestamp;
225 		s64 offset;
226 		struct pps_event_time pps_times;
227 	};
228 };
229 
230 /**
231  * scaled_ppm_to_ppb() - convert scaled ppm to ppb
232  *
233  * @ppm:    Parts per million, but with a 16 bit binary fractional field
234  */
scaled_ppm_to_ppb(long ppm)235 static inline long scaled_ppm_to_ppb(long ppm)
236 {
237 	/*
238 	 * The 'freq' field in the 'struct timex' is in parts per
239 	 * million, but with a 16 bit binary fractional field.
240 	 *
241 	 * We want to calculate
242 	 *
243 	 *    ppb = scaled_ppm * 1000 / 2^16
244 	 *
245 	 * which simplifies to
246 	 *
247 	 *    ppb = scaled_ppm * 125 / 2^13
248 	 */
249 	s64 ppb = 1 + ppm;
250 
251 	ppb *= 125;
252 	ppb >>= 13;
253 	return (long)ppb;
254 }
255 
256 /**
257  * diff_by_scaled_ppm - Calculate difference using scaled ppm
258  * @base: the base increment value to adjust
259  * @scaled_ppm: scaled parts per million to adjust by
260  * @diff: on return, the absolute value of calculated diff
261  *
262  * Calculate the difference to adjust the base increment using scaled parts
263  * per million.
264  *
265  * Use mul_u64_u64_div_u64 to perform the difference calculation in avoid
266  * possible overflow.
267  *
268  * Returns: true if scaled_ppm is negative, false otherwise
269  */
diff_by_scaled_ppm(u64 base,long scaled_ppm,u64 * diff)270 static inline bool diff_by_scaled_ppm(u64 base, long scaled_ppm, u64 *diff)
271 {
272 	bool negative = false;
273 
274 	if (scaled_ppm < 0) {
275 		negative = true;
276 		scaled_ppm = -scaled_ppm;
277 	}
278 
279 	*diff = mul_u64_u64_div_u64(base, (u64)scaled_ppm, 1000000ULL << 16);
280 
281 	return negative;
282 }
283 
284 /**
285  * adjust_by_scaled_ppm - Adjust a base increment by scaled parts per million
286  * @base: the base increment value to adjust
287  * @scaled_ppm: scaled parts per million frequency adjustment
288  *
289  * Helper function which calculates a new increment value based on the
290  * requested scaled parts per million adjustment.
291  */
adjust_by_scaled_ppm(u64 base,long scaled_ppm)292 static inline u64 adjust_by_scaled_ppm(u64 base, long scaled_ppm)
293 {
294 	u64 diff;
295 
296 	if (diff_by_scaled_ppm(base, scaled_ppm, &diff))
297 		return base - diff;
298 
299 	return base + diff;
300 }
301 
302 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
303 
304 /**
305  * ptp_clock_register() - register a PTP hardware clock driver
306  *
307  * @info:   Structure describing the new clock.
308  * @parent: Pointer to the parent device of the new clock.
309  *
310  * Returns a valid pointer on success or PTR_ERR on failure.  If PHC
311  * support is missing at the configuration level, this function
312  * returns NULL, and drivers are expected to gracefully handle that
313  * case separately.
314  */
315 
316 extern struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
317 					    struct device *parent);
318 
319 /**
320  * ptp_clock_unregister() - unregister a PTP hardware clock driver
321  *
322  * @ptp:  The clock to remove from service.
323  */
324 
325 extern int ptp_clock_unregister(struct ptp_clock *ptp);
326 
327 /**
328  * ptp_clock_event() - notify the PTP layer about an event
329  *
330  * @ptp:    The clock obtained from ptp_clock_register().
331  * @event:  Message structure describing the event.
332  */
333 
334 extern void ptp_clock_event(struct ptp_clock *ptp,
335 			    struct ptp_clock_event *event);
336 
337 /**
338  * ptp_clock_index() - obtain the device index of a PTP clock
339  *
340  * @ptp:    The clock obtained from ptp_clock_register().
341  */
342 
343 extern int ptp_clock_index(struct ptp_clock *ptp);
344 
345 /**
346  * ptp_find_pin() - obtain the pin index of a given auxiliary function
347  *
348  * The caller must hold ptp_clock::pincfg_mux.  Drivers do not have
349  * access to that mutex as ptp_clock is an opaque type.  However, the
350  * core code acquires the mutex before invoking the driver's
351  * ptp_clock_info::enable() callback, and so drivers may call this
352  * function from that context.
353  *
354  * @ptp:    The clock obtained from ptp_clock_register().
355  * @func:   One of the ptp_pin_function enumerated values.
356  * @chan:   The particular functional channel to find.
357  * Return:  Pin index in the range of zero to ptp_clock_caps.n_pins - 1,
358  *          or -1 if the auxiliary function cannot be found.
359  */
360 
361 int ptp_find_pin(struct ptp_clock *ptp,
362 		 enum ptp_pin_function func, unsigned int chan);
363 
364 /**
365  * ptp_find_pin_unlocked() - wrapper for ptp_find_pin()
366  *
367  * This function acquires the ptp_clock::pincfg_mux mutex before
368  * invoking ptp_find_pin().  Instead of using this function, drivers
369  * should most likely call ptp_find_pin() directly from their
370  * ptp_clock_info::enable() method.
371  *
372 * @ptp:    The clock obtained from ptp_clock_register().
373 * @func:   One of the ptp_pin_function enumerated values.
374 * @chan:   The particular functional channel to find.
375 * Return:  Pin index in the range of zero to ptp_clock_caps.n_pins - 1,
376 *          or -1 if the auxiliary function cannot be found.
377  */
378 
379 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
380 			  enum ptp_pin_function func, unsigned int chan);
381 
382 /**
383  * ptp_schedule_worker() - schedule ptp auxiliary work
384  *
385  * @ptp:    The clock obtained from ptp_clock_register().
386  * @delay:  number of jiffies to wait before queuing
387  *          See kthread_queue_delayed_work() for more info.
388  */
389 
390 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay);
391 
392 /**
393  * ptp_cancel_worker_sync() - cancel ptp auxiliary clock
394  *
395  * @ptp:     The clock obtained from ptp_clock_register().
396  */
397 void ptp_cancel_worker_sync(struct ptp_clock *ptp);
398 
399 #else
ptp_clock_register(struct ptp_clock_info * info,struct device * parent)400 static inline struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
401 						   struct device *parent)
402 { return NULL; }
ptp_clock_unregister(struct ptp_clock * ptp)403 static inline int ptp_clock_unregister(struct ptp_clock *ptp)
404 { return 0; }
ptp_clock_event(struct ptp_clock * ptp,struct ptp_clock_event * event)405 static inline void ptp_clock_event(struct ptp_clock *ptp,
406 				   struct ptp_clock_event *event)
407 { }
ptp_clock_index(struct ptp_clock * ptp)408 static inline int ptp_clock_index(struct ptp_clock *ptp)
409 { return -1; }
ptp_find_pin(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)410 static inline int ptp_find_pin(struct ptp_clock *ptp,
411 			       enum ptp_pin_function func, unsigned int chan)
412 { return -1; }
ptp_find_pin_unlocked(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)413 static inline int ptp_find_pin_unlocked(struct ptp_clock *ptp,
414 					enum ptp_pin_function func,
415 					unsigned int chan)
416 { return -1; }
ptp_schedule_worker(struct ptp_clock * ptp,unsigned long delay)417 static inline int ptp_schedule_worker(struct ptp_clock *ptp,
418 				      unsigned long delay)
419 { return -EOPNOTSUPP; }
ptp_cancel_worker_sync(struct ptp_clock * ptp)420 static inline void ptp_cancel_worker_sync(struct ptp_clock *ptp)
421 { }
422 #endif
423 
424 #if IS_BUILTIN(CONFIG_PTP_1588_CLOCK)
425 /*
426  * These are called by the network core, and don't work if PTP is in
427  * a loadable module.
428  */
429 
430 /**
431  * ptp_get_vclocks_index() - get all vclocks index on pclock, and
432  *                           caller is responsible to free memory
433  *                           of vclock_index
434  *
435  * @pclock_index: phc index of ptp pclock.
436  * @vclock_index: pointer to pointer of vclock index.
437  *
438  * return number of vclocks.
439  */
440 int ptp_get_vclocks_index(int pclock_index, int **vclock_index);
441 
442 /**
443  * ptp_convert_timestamp() - convert timestamp to a ptp vclock time
444  *
445  * @hwtstamp:     timestamp
446  * @vclock_index: phc index of ptp vclock.
447  *
448  * Returns converted timestamp, or 0 on error.
449  */
450 ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp, int vclock_index);
451 #else
ptp_get_vclocks_index(int pclock_index,int ** vclock_index)452 static inline int ptp_get_vclocks_index(int pclock_index, int **vclock_index)
453 { return 0; }
ptp_convert_timestamp(const ktime_t * hwtstamp,int vclock_index)454 static inline ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp,
455 					    int vclock_index)
456 { return 0; }
457 
458 #endif
459 
ptp_read_system_prets(struct ptp_system_timestamp * sts)460 static inline void ptp_read_system_prets(struct ptp_system_timestamp *sts)
461 {
462 	if (sts) {
463 		switch (sts->clockid) {
464 		case CLOCK_REALTIME:
465 			ktime_get_real_ts64(&sts->pre_ts);
466 			break;
467 		case CLOCK_MONOTONIC:
468 			ktime_get_ts64(&sts->pre_ts);
469 			break;
470 		case CLOCK_MONOTONIC_RAW:
471 			ktime_get_raw_ts64(&sts->pre_ts);
472 			break;
473 		default:
474 			break;
475 		}
476 	}
477 }
478 
ptp_read_system_postts(struct ptp_system_timestamp * sts)479 static inline void ptp_read_system_postts(struct ptp_system_timestamp *sts)
480 {
481 	if (sts) {
482 		switch (sts->clockid) {
483 		case CLOCK_REALTIME:
484 			ktime_get_real_ts64(&sts->post_ts);
485 			break;
486 		case CLOCK_MONOTONIC:
487 			ktime_get_ts64(&sts->post_ts);
488 			break;
489 		case CLOCK_MONOTONIC_RAW:
490 			ktime_get_raw_ts64(&sts->post_ts);
491 			break;
492 		default:
493 			break;
494 		}
495 	}
496 }
497 
498 #endif
499