1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_MMU_H
6 #define __ASM_MMU_H
7
8 #include <asm/cputype.h>
9
10 #define MMCF_AARCH32 0x1 /* mm context flag for AArch32 executables */
11 #define USER_ASID_BIT 48
12 #define USER_ASID_FLAG (UL(1) << USER_ASID_BIT)
13 #define TTBR_ASID_MASK (UL(0xffff) << 48)
14
15 #ifndef __ASSEMBLY__
16
17 #include <linux/refcount.h>
18 #include <asm/cpufeature.h>
19
20 typedef struct {
21 atomic64_t id;
22 #ifdef CONFIG_COMPAT
23 void *sigpage;
24 #endif
25 refcount_t pinned;
26 void *vdso;
27 unsigned long flags;
28 u8 pkey_allocation_map;
29 } mm_context_t;
30
31 /*
32 * We use atomic64_read() here because the ASID for an 'mm_struct' can
33 * be reallocated when scheduling one of its threads following a
34 * rollover event (see new_context() and flush_context()). In this case,
35 * a concurrent TLBI (e.g. via try_to_unmap_one() and ptep_clear_flush())
36 * may use a stale ASID. This is fine in principle as the new ASID is
37 * guaranteed to be clean in the TLB, but the TLBI routines have to take
38 * care to handle the following race:
39 *
40 * CPU 0 CPU 1 CPU 2
41 *
42 * // ptep_clear_flush(mm)
43 * xchg_relaxed(pte, 0)
44 * DSB ISHST
45 * old = ASID(mm)
46 * | <rollover>
47 * | new = new_context(mm)
48 * \-----------------> atomic_set(mm->context.id, new)
49 * cpu_switch_mm(mm)
50 * // Hardware walk of pte using new ASID
51 * TLBI(old)
52 *
53 * In this scenario, the barrier on CPU 0 and the dependency on CPU 1
54 * ensure that the page-table walker on CPU 1 *must* see the invalid PTE
55 * written by CPU 0.
56 */
57 #define ASID(mm) (atomic64_read(&(mm)->context.id) & 0xffff)
58
arm64_kernel_unmapped_at_el0(void)59 static inline bool arm64_kernel_unmapped_at_el0(void)
60 {
61 return alternative_has_cap_unlikely(ARM64_UNMAP_KERNEL_AT_EL0);
62 }
63
64 extern void arm64_memblock_init(void);
65 extern void paging_init(void);
66 extern void bootmem_init(void);
67 extern void create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
68 phys_addr_t size, pgprot_t prot);
69 extern void create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
70 unsigned long virt, phys_addr_t size,
71 pgprot_t prot, bool page_mappings_only);
72 extern void *fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot);
73 extern void mark_linear_text_alias_ro(void);
74
75 /*
76 * This check is triggered during the early boot before the cpufeature
77 * is initialised. Checking the status on the local CPU allows the boot
78 * CPU to detect the need for non-global mappings and thus avoiding a
79 * pagetable re-write after all the CPUs are booted. This check will be
80 * anyway run on individual CPUs, allowing us to get the consistent
81 * state once the SMP CPUs are up and thus make the switch to non-global
82 * mappings if required.
83 */
kaslr_requires_kpti(void)84 static inline bool kaslr_requires_kpti(void)
85 {
86 /*
87 * E0PD does a similar job to KPTI so can be used instead
88 * where available.
89 */
90 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
91 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
92 if (cpuid_feature_extract_unsigned_field(mmfr2,
93 ID_AA64MMFR2_EL1_E0PD_SHIFT))
94 return false;
95 }
96
97 /*
98 * Systems affected by Cavium erratum 24756 are incompatible
99 * with KPTI.
100 */
101 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
102 extern const struct midr_range cavium_erratum_27456_cpus[];
103
104 if (is_midr_in_range_list(read_cpuid_id(),
105 cavium_erratum_27456_cpus))
106 return false;
107 }
108
109 return true;
110 }
111
112 #define INIT_MM_CONTEXT(name) \
113 .pgd = swapper_pg_dir,
114
115 #endif /* !__ASSEMBLY__ */
116 #endif
117