1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3 
4 #ifndef _MLXSW_CMD_H
5 #define _MLXSW_CMD_H
6 
7 #include "item.h"
8 
9 #define MLXSW_CMD_MBOX_SIZE	4096
10 
mlxsw_cmd_mbox_alloc(void)11 static inline char *mlxsw_cmd_mbox_alloc(void)
12 {
13 	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14 }
15 
mlxsw_cmd_mbox_free(char * mbox)16 static inline void mlxsw_cmd_mbox_free(char *mbox)
17 {
18 	kfree(mbox);
19 }
20 
mlxsw_cmd_mbox_zero(char * mbox)21 static inline void mlxsw_cmd_mbox_zero(char *mbox)
22 {
23 	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24 }
25 
26 struct mlxsw_core;
27 
28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29 		   u32 in_mod, bool out_mbox_direct, bool reset_ok,
30 		   char *in_mbox, size_t in_mbox_size,
31 		   char *out_mbox, size_t out_mbox_size);
32 
mlxsw_cmd_exec_in(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod,char * in_mbox,size_t in_mbox_size)33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34 				    u8 opcode_mod, u32 in_mod, char *in_mbox,
35 				    size_t in_mbox_size)
36 {
37 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38 			      false, in_mbox, in_mbox_size, NULL, 0);
39 }
40 
mlxsw_cmd_exec_out(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod,bool out_mbox_direct,char * out_mbox,size_t out_mbox_size)41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42 				     u8 opcode_mod, u32 in_mod,
43 				     bool out_mbox_direct,
44 				     char *out_mbox, size_t out_mbox_size)
45 {
46 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47 			      out_mbox_direct, false, NULL, 0,
48 			      out_mbox, out_mbox_size);
49 }
50 
mlxsw_cmd_exec_none(struct mlxsw_core * mlxsw_core,u16 opcode,u8 opcode_mod,u32 in_mod)51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52 				      u8 opcode_mod, u32 in_mod)
53 {
54 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55 			      false, NULL, 0, NULL, 0);
56 }
57 
58 enum mlxsw_cmd_opcode {
59 	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
60 	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
61 	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
62 	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
63 	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
64 	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
65 	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
66 	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
67 	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
68 	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
69 	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
70 	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
71 	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
72 	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
73 	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
74 	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
75 	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
76 	MLXSW_CMD_OPCODE_QUERY_RESOURCES	= 0x101,
77 };
78 
mlxsw_cmd_opcode_str(u16 opcode)79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80 {
81 	switch (opcode) {
82 	case MLXSW_CMD_OPCODE_QUERY_FW:
83 		return "QUERY_FW";
84 	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85 		return "QUERY_BOARDINFO";
86 	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87 		return "QUERY_AQ_CAP";
88 	case MLXSW_CMD_OPCODE_MAP_FA:
89 		return "MAP_FA";
90 	case MLXSW_CMD_OPCODE_UNMAP_FA:
91 		return "UNMAP_FA";
92 	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93 		return "CONFIG_PROFILE";
94 	case MLXSW_CMD_OPCODE_ACCESS_REG:
95 		return "ACCESS_REG";
96 	case MLXSW_CMD_OPCODE_SW2HW_DQ:
97 		return "SW2HW_DQ";
98 	case MLXSW_CMD_OPCODE_HW2SW_DQ:
99 		return "HW2SW_DQ";
100 	case MLXSW_CMD_OPCODE_2ERR_DQ:
101 		return "2ERR_DQ";
102 	case MLXSW_CMD_OPCODE_QUERY_DQ:
103 		return "QUERY_DQ";
104 	case MLXSW_CMD_OPCODE_SW2HW_CQ:
105 		return "SW2HW_CQ";
106 	case MLXSW_CMD_OPCODE_HW2SW_CQ:
107 		return "HW2SW_CQ";
108 	case MLXSW_CMD_OPCODE_QUERY_CQ:
109 		return "QUERY_CQ";
110 	case MLXSW_CMD_OPCODE_SW2HW_EQ:
111 		return "SW2HW_EQ";
112 	case MLXSW_CMD_OPCODE_HW2SW_EQ:
113 		return "HW2SW_EQ";
114 	case MLXSW_CMD_OPCODE_QUERY_EQ:
115 		return "QUERY_EQ";
116 	case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117 		return "QUERY_RESOURCES";
118 	default:
119 		return "*UNKNOWN*";
120 	}
121 }
122 
123 enum mlxsw_cmd_status {
124 	/* Command execution succeeded. */
125 	MLXSW_CMD_STATUS_OK		= 0x00,
126 	/* Internal error (e.g. bus error) occurred while processing command. */
127 	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
128 	/* Operation/command not supported or opcode modifier not supported. */
129 	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
130 	/* Parameter not supported, parameter out of range. */
131 	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
132 	/* System was not enabled or bad system state. */
133 	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
134 	/* Attempt to access reserved or unallocated resource, or resource in
135 	 * inappropriate ownership.
136 	 */
137 	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
138 	/* Requested resource is currently executing a command. */
139 	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
140 	/* Required capability exceeds device limits. */
141 	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
142 	/* Resource is not in the appropriate state or ownership. */
143 	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
144 	/* Index out of range (might be beyond table size or attempt to
145 	 * access a reserved resource).
146 	 */
147 	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
148 	/* NVMEM checksum/CRC failed. */
149 	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
150 	/* Device is currently running reset */
151 	MLXSW_CMD_STATUS_RUNNING_RESET	= 0x26,
152 	/* Bad management packet (silently discarded). */
153 	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
154 };
155 
mlxsw_cmd_status_str(u8 status)156 static inline const char *mlxsw_cmd_status_str(u8 status)
157 {
158 	switch (status) {
159 	case MLXSW_CMD_STATUS_OK:
160 		return "OK";
161 	case MLXSW_CMD_STATUS_INTERNAL_ERR:
162 		return "INTERNAL_ERR";
163 	case MLXSW_CMD_STATUS_BAD_OP:
164 		return "BAD_OP";
165 	case MLXSW_CMD_STATUS_BAD_PARAM:
166 		return "BAD_PARAM";
167 	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168 		return "BAD_SYS_STATE";
169 	case MLXSW_CMD_STATUS_BAD_RESOURCE:
170 		return "BAD_RESOURCE";
171 	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172 		return "RESOURCE_BUSY";
173 	case MLXSW_CMD_STATUS_EXCEED_LIM:
174 		return "EXCEED_LIM";
175 	case MLXSW_CMD_STATUS_BAD_RES_STATE:
176 		return "BAD_RES_STATE";
177 	case MLXSW_CMD_STATUS_BAD_INDEX:
178 		return "BAD_INDEX";
179 	case MLXSW_CMD_STATUS_BAD_NVMEM:
180 		return "BAD_NVMEM";
181 	case MLXSW_CMD_STATUS_RUNNING_RESET:
182 		return "RUNNING_RESET";
183 	case MLXSW_CMD_STATUS_BAD_PKT:
184 		return "BAD_PKT";
185 	default:
186 		return "*UNKNOWN*";
187 	}
188 }
189 
190 /* QUERY_FW - Query Firmware
191  * -------------------------
192  * OpMod == 0, INMmod == 0
193  * -----------------------
194  * The QUERY_FW command retrieves information related to firmware, command
195  * interface version and the amount of resources that should be allocated to
196  * the firmware.
197  */
198 
mlxsw_cmd_query_fw(struct mlxsw_core * mlxsw_core,char * out_mbox)199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200 				     char *out_mbox)
201 {
202 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204 }
205 
206 /* cmd_mbox_query_fw_fw_pages
207  * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208  */
209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210 
211 /* cmd_mbox_query_fw_fw_rev_major
212  * Firmware Revision - Major
213  */
214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215 
216 /* cmd_mbox_query_fw_fw_rev_subminor
217  * Firmware Sub-minor version (Patch level)
218  */
219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220 
221 /* cmd_mbox_query_fw_fw_rev_minor
222  * Firmware Revision - Minor
223  */
224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225 
226 /* cmd_mbox_query_fw_core_clk
227  * Internal Clock Frequency (in MHz)
228  */
229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230 
231 /* cmd_mbox_query_fw_cmd_interface_rev
232  * Command Interface Interpreter Revision ID. This number is bumped up
233  * every time a non-backward-compatible change is done for the command
234  * interface. The current cmd_interface_rev is 1.
235  */
236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237 
238 /* cmd_mbox_query_fw_dt
239  * If set, Debug Trace is supported
240  */
241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242 
243 /* cmd_mbox_query_fw_api_version
244  * Indicates the version of the API, to enable software querying
245  * for compatibility. The current api_version is 1.
246  */
247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248 
249 /* cmd_mbox_query_fw_fw_hour
250  * Firmware timestamp - hour
251  */
252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253 
254 /* cmd_mbox_query_fw_fw_minutes
255  * Firmware timestamp - minutes
256  */
257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258 
259 /* cmd_mbox_query_fw_fw_seconds
260  * Firmware timestamp - seconds
261  */
262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263 
264 /* cmd_mbox_query_fw_fw_year
265  * Firmware timestamp - year
266  */
267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268 
269 /* cmd_mbox_query_fw_fw_month
270  * Firmware timestamp - month
271  */
272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273 
274 /* cmd_mbox_query_fw_fw_day
275  * Firmware timestamp - day
276  */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278 
279 /* cmd_mbox_query_fw_lag_mode_support
280  * 0: CONFIG_PROFILE.lag_mode is not supported by FW
281  * 1: CONFIG_PROFILE.lag_mode is supported by FW
282  */
283 MLXSW_ITEM32(cmd_mbox, query_fw, lag_mode_support, 0x18, 1, 1);
284 
285 /* cmd_mbox_query_fw_cff_support
286  * 0: CONFIG_PROFILE.flood_mode = 5 (CFF) is not supported by FW
287  * 1: CONFIG_PROFILE.flood_mode = 5 (CFF) is supported by FW
288  */
289 MLXSW_ITEM32(cmd_mbox, query_fw, cff_support, 0x18, 2, 1);
290 
291 /* cmd_mbox_query_fw_clr_int_base_offset
292  * Clear Interrupt register's offset from clr_int_bar register
293  * in PCI address space.
294  */
295 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
296 
297 /* cmd_mbox_query_fw_clr_int_bar
298  * PCI base address register (BAR) where clr_int register is located.
299  * 00 - BAR 0-1 (64 bit BAR)
300  */
301 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
302 
303 /* cmd_mbox_query_fw_error_buf_offset
304  * Read Only buffer for internal error reports of offset
305  * from error_buf_bar register in PCI address space).
306  */
307 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
308 
309 /* cmd_mbox_query_fw_error_buf_size
310  * Internal error buffer size in DWORDs
311  */
312 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
313 
314 /* cmd_mbox_query_fw_error_int_bar
315  * PCI base address register (BAR) where error buffer
316  * register is located.
317  * 00 - BAR 0-1 (64 bit BAR)
318  */
319 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
320 
321 /* cmd_mbox_query_fw_doorbell_page_offset
322  * Offset of the doorbell page
323  */
324 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
325 
326 /* cmd_mbox_query_fw_doorbell_page_bar
327  * PCI base address register (BAR) of the doorbell page
328  * 00 - BAR 0-1 (64 bit BAR)
329  */
330 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
331 
332 /* cmd_mbox_query_fw_free_running_clock_offset
333  * The offset of the free running clock page
334  */
335 MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64);
336 
337 /* cmd_mbox_query_fw_fr_rn_clk_bar
338  * PCI base address register (BAR) of the free running clock page
339  * 0: BAR 0
340  * 1: 64 bit BAR
341  */
342 MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2);
343 
344 /* cmd_mbox_query_fw_utc_sec_offset
345  * The offset of the UTC_Sec page
346  */
347 MLXSW_ITEM64(cmd_mbox, query_fw, utc_sec_offset, 0x70, 0, 64);
348 
349 /* cmd_mbox_query_fw_utc_sec_bar
350  * PCI base address register (BAR) of the UTC_Sec page
351  * 0: BAR 0
352  * 1: 64 bit BAR
353  * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1
354  */
355 MLXSW_ITEM32(cmd_mbox, query_fw, utc_sec_bar, 0x78, 30, 2);
356 
357 /* cmd_mbox_query_fw_utc_nsec_offset
358  * The offset of the UTC_nSec page
359  */
360 MLXSW_ITEM64(cmd_mbox, query_fw, utc_nsec_offset, 0x80, 0, 64);
361 
362 /* cmd_mbox_query_fw_utc_nsec_bar
363  * PCI base address register (BAR) of the UTC_nSec page
364  * 0: BAR 0
365  * 1: 64 bit BAR
366  * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1
367  */
368 MLXSW_ITEM32(cmd_mbox, query_fw, utc_nsec_bar, 0x88, 30, 2);
369 
370 /* QUERY_BOARDINFO - Query Board Information
371  * -----------------------------------------
372  * OpMod == 0 (N/A), INMmod == 0 (N/A)
373  * -----------------------------------
374  * The QUERY_BOARDINFO command retrieves adapter specific parameters.
375  */
376 
mlxsw_cmd_boardinfo(struct mlxsw_core * mlxsw_core,char * out_mbox)377 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
378 				      char *out_mbox)
379 {
380 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
381 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
382 }
383 
384 /* cmd_mbox_boardinfo_intapin
385  * When PCIe interrupt messages are being used, this value is used for clearing
386  * an interrupt. When using MSI-X, this register is not used.
387  */
388 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
389 
390 /* cmd_mbox_boardinfo_vsd_vendor_id
391  * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
392  * specifying/formatting the VSD. The vsd_vendor_id identifies the management
393  * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
394  * format and encoding as long as they use their assigned vsd_vendor_id.
395  */
396 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
397 
398 /* cmd_mbox_boardinfo_vsd
399  * Vendor Specific Data. The VSD string that is burnt to the Flash
400  * with the firmware.
401  */
402 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
403 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
404 
405 /* cmd_mbox_boardinfo_psid
406  * The PSID field is a 16-ascii (byte) character string which acts as
407  * the board ID. The PSID format is used in conjunction with
408  * Mellanox vsd_vendor_id (15B3h).
409  */
410 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
411 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
412 
413 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
414  * -----------------------------------------------------
415  * OpMod == 0 (N/A), INMmod == 0 (N/A)
416  * -----------------------------------
417  * The QUERY_AQ_CAP command returns the device asynchronous queues
418  * capabilities supported.
419  */
420 
mlxsw_cmd_query_aq_cap(struct mlxsw_core * mlxsw_core,char * out_mbox)421 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
422 					 char *out_mbox)
423 {
424 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
425 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
426 }
427 
428 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
429  * Log (base 2) of max WQEs allowed on SDQ.
430  */
431 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
432 
433 /* cmd_mbox_query_aq_cap_max_num_sdqs
434  * Maximum number of SDQs.
435  */
436 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
437 
438 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
439  * Log (base 2) of max WQEs allowed on RDQ.
440  */
441 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
442 
443 /* cmd_mbox_query_aq_cap_max_num_rdqs
444  * Maximum number of RDQs.
445  */
446 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
447 
448 /* cmd_mbox_query_aq_cap_log_max_cq_sz
449  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
450  */
451 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
452 
453 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
454  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
455  */
456 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
457 
458 /* cmd_mbox_query_aq_cap_max_num_cqs
459  * Maximum number of CQs.
460  */
461 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
462 
463 /* cmd_mbox_query_aq_cap_log_max_eq_sz
464  * Log (base 2) of max EQEs allowed on EQ.
465  */
466 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
467 
468 /* cmd_mbox_query_aq_cap_max_num_eqs
469  * Maximum number of EQs.
470  */
471 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
472 
473 /* cmd_mbox_query_aq_cap_max_sg_sq
474  * The maximum S/G list elements in an DSQ. DSQ must not contain
475  * more S/G entries than indicated here.
476  */
477 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
478 
479 /* cmd_mbox_query_aq_cap_
480  * The maximum S/G list elements in an DRQ. DRQ must not contain
481  * more S/G entries than indicated here.
482  */
483 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
484 
485 /* MAP_FA - Map Firmware Area
486  * --------------------------
487  * OpMod == 0 (N/A), INMmod == Number of VPM entries
488  * -------------------------------------------------
489  * The MAP_FA command passes physical pages to the switch. These pages
490  * are used to store the device firmware. MAP_FA can be executed multiple
491  * times until all the firmware area is mapped (the size that should be
492  * mapped is retrieved through the QUERY_FW command). All required pages
493  * must be mapped to finish the initialization phase. Physical memory
494  * passed in this command must be pinned.
495  */
496 
497 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
498 
mlxsw_cmd_map_fa(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 vpm_entries_count)499 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
500 				   char *in_mbox, u32 vpm_entries_count)
501 {
502 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
503 				 0, vpm_entries_count,
504 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
505 }
506 
507 /* cmd_mbox_map_fa_pa
508  * Physical Address.
509  */
510 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
511 
512 /* cmd_mbox_map_fa_log2size
513  * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
514  * that starts at PA_L/H.
515  */
516 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
517 
518 /* UNMAP_FA - Unmap Firmware Area
519  * ------------------------------
520  * OpMod == 0 (N/A), INMmod == 0 (N/A)
521  * -----------------------------------
522  * The UNMAP_FA command unload the firmware and unmaps all the
523  * firmware area. After this command is completed the device will not access
524  * the pages that were mapped to the firmware area. After executing UNMAP_FA
525  * command, software reset must be done prior to execution of MAP_FW command.
526  */
527 
mlxsw_cmd_unmap_fa(struct mlxsw_core * mlxsw_core)528 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
529 {
530 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
531 }
532 
533 /* QUERY_RESOURCES - Query chip resources
534  * --------------------------------------
535  * OpMod == 0 (N/A) , INMmod is index
536  * ----------------------------------
537  * The QUERY_RESOURCES command retrieves information related to chip resources
538  * by resource ID. Every command returns 32 entries. INmod is being use as base.
539  * for example, index 1 will return entries 32-63. When the tables end and there
540  * are no more sources in the table, will return resource id 0xFFF to indicate
541  * it.
542  */
543 
544 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
545 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
546 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
547 
mlxsw_cmd_query_resources(struct mlxsw_core * mlxsw_core,char * out_mbox,int index)548 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
549 					    char *out_mbox, int index)
550 {
551 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
552 				  0, index, false, out_mbox,
553 				  MLXSW_CMD_MBOX_SIZE);
554 }
555 
556 /* cmd_mbox_query_resource_id
557  * The resource id. 0xFFFF indicates table's end.
558  */
559 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
560 
561 /* cmd_mbox_query_resource_data
562  * The resource
563  */
564 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
565 		     0x00, 0, 40, 0x8, 0, false);
566 
567 /* CONFIG_PROFILE (Set) - Configure Switch Profile
568  * ------------------------------
569  * OpMod == 1 (Set), INMmod == 0 (N/A)
570  * -----------------------------------
571  * The CONFIG_PROFILE command sets the switch profile. The command can be
572  * executed on the device only once at startup in order to allocate and
573  * configure all switch resources and prepare it for operational mode.
574  * It is not possible to change the device profile after the chip is
575  * in operational mode.
576  * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
577  * state therefore it is required to perform software reset to the device
578  * following an unsuccessful completion of the command. It is required
579  * to perform software reset to the device to change an existing profile.
580  */
581 
mlxsw_cmd_config_profile_set(struct mlxsw_core * mlxsw_core,char * in_mbox)582 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
583 					       char *in_mbox)
584 {
585 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
586 				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
587 }
588 
589 /* cmd_mbox_config_profile_set_max_vepa_channels
590  * Capability bit. Setting a bit to 1 configures the profile
591  * according to the mailbox contents.
592  */
593 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
594 
595 /* cmd_mbox_config_profile_set_max_lag
596  * Capability bit. Setting a bit to 1 configures the profile
597  * according to the mailbox contents.
598  */
599 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
600 
601 /* cmd_mbox_config_profile_set_max_port_per_lag
602  * Capability bit. Setting a bit to 1 configures the profile
603  * according to the mailbox contents.
604  */
605 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
606 
607 /* cmd_mbox_config_profile_set_max_mid
608  * Capability bit. Setting a bit to 1 configures the profile
609  * according to the mailbox contents.
610  */
611 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
612 
613 /* cmd_mbox_config_profile_set_max_pgt
614  * Capability bit. Setting a bit to 1 configures the profile
615  * according to the mailbox contents.
616  */
617 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
618 
619 /* cmd_mbox_config_profile_set_max_system_port
620  * Capability bit. Setting a bit to 1 configures the profile
621  * according to the mailbox contents.
622  */
623 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
624 
625 /* cmd_mbox_config_profile_set_max_vlan_groups
626  * Capability bit. Setting a bit to 1 configures the profile
627  * according to the mailbox contents.
628  */
629 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
630 
631 /* cmd_mbox_config_profile_set_max_regions
632  * Capability bit. Setting a bit to 1 configures the profile
633  * according to the mailbox contents.
634  */
635 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
636 
637 /* cmd_mbox_config_profile_set_flood_mode
638  * Capability bit. Setting a bit to 1 configures the profile
639  * according to the mailbox contents.
640  */
641 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
642 
643 /* cmd_mbox_config_profile_set_max_flood_tables
644  * Capability bit. Setting a bit to 1 configures the profile
645  * according to the mailbox contents.
646  */
647 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
648 
649 /* cmd_mbox_config_profile_set_max_ib_mc
650  * Capability bit. Setting a bit to 1 configures the profile
651  * according to the mailbox contents.
652  */
653 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
654 
655 /* cmd_mbox_config_profile_set_max_pkey
656  * Capability bit. Setting a bit to 1 configures the profile
657  * according to the mailbox contents.
658  */
659 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
660 
661 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
662  * Capability bit. Setting a bit to 1 configures the profile
663  * according to the mailbox contents.
664  */
665 MLXSW_ITEM32(cmd_mbox, config_profile,
666 	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
667 
668 /* cmd_mbox_config_profile_set_ar_sec
669  * Capability bit. Setting a bit to 1 configures the profile
670  * according to the mailbox contents.
671  */
672 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
673 
674 /* cmd_mbox_config_profile_set_ubridge
675  * Capability bit. Setting a bit to 1 configures the profile
676  * according to the mailbox contents.
677  */
678 MLXSW_ITEM32(cmd_mbox, config_profile, set_ubridge, 0x0C, 22, 1);
679 
680 /* cmd_mbox_config_profile_set_kvd_linear_size
681  * Capability bit. Setting a bit to 1 configures the profile
682  * according to the mailbox contents.
683  */
684 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
685 
686 /* cmd_mbox_config_profile_set_kvd_hash_single_size
687  * Capability bit. Setting a bit to 1 configures the profile
688  * according to the mailbox contents.
689  */
690 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
691 
692 /* cmd_mbox_config_profile_set_kvd_hash_double_size
693  * Capability bit. Setting a bit to 1 configures the profile
694  * according to the mailbox contents.
695  */
696 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
697 
698 /* cmd_mbox_config_profile_set_cqe_version
699  * Capability bit. Setting a bit to 1 configures the profile
700  * according to the mailbox contents.
701  */
702 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
703 
704 /* cmd_mbox_config_profile_set_cqe_time_stamp_type
705  * Capability bit. Setting a bit to 1 configures the profile
706  * according to the mailbox contents.
707  */
708 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_time_stamp_type, 0x08, 2, 1);
709 
710 /* cmd_mbox_config_profile_set_lag_mode
711  * Capability bit. Setting a bit to 1 configures the lag_mode
712  * according to the mailbox contents.
713  */
714 MLXSW_ITEM32(cmd_mbox, config_profile, set_lag_mode, 0x08, 7, 1);
715 
716 /* cmd_mbox_config_profile_max_vepa_channels
717  * Maximum number of VEPA channels per port (0 through 16)
718  * 0 - multi-channel VEPA is disabled
719  */
720 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
721 
722 /* cmd_mbox_config_profile_max_lag
723  * Maximum number of LAG IDs requested.
724  * Reserved when Spectrum-1/2/3, supported from Spectrum-4 and above.
725  * For Spectrum-4, firmware sets 128 for values between 1-128 and 256 for values
726  * between 129-256.
727  */
728 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
729 
730 /* cmd_mbox_config_profile_max_port_per_lag
731  * Maximum number of ports per LAG requested.
732  */
733 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
734 
735 /* cmd_mbox_config_profile_max_mid
736  * Maximum Multicast IDs.
737  * Multicast IDs are allocated from 0 to max_mid-1
738  */
739 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
740 
741 /* cmd_mbox_config_profile_max_pgt
742  * Maximum records in the Port Group Table per Switch Partition.
743  * Port Group Table indexes are from 0 to max_pgt-1
744  */
745 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
746 
747 /* cmd_mbox_config_profile_max_system_port
748  * The maximum number of system ports that can be allocated.
749  */
750 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
751 
752 /* cmd_mbox_config_profile_max_vlan_groups
753  * Maximum number VLAN Groups for VLAN binding.
754  */
755 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
756 
757 /* cmd_mbox_config_profile_max_regions
758  * Maximum number of TCAM Regions.
759  */
760 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
761 
762 /* cmd_mbox_config_profile_max_flood_tables
763  * Maximum number of single-entry flooding tables. Different flooding tables
764  * can be associated with different packet types.
765  */
766 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
767 
768 /* cmd_mbox_config_profile_max_vid_flood_tables
769  * Maximum number of per-vid flooding tables. Flooding tables are associated
770  * to the different packet types for the different switch partitions.
771  * Table size is 4K entries covering all VID space.
772  */
773 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
774 
775 enum mlxsw_cmd_mbox_config_profile_flood_mode {
776 	/* Mixed mode, where:
777 	 * max_flood_tables indicates the number of single-entry tables.
778 	 * max_vid_flood_tables indicates the number of per-VID tables.
779 	 * max_fid_offset_flood_tables indicates the number of FID-offset
780 	 * tables. max_fid_flood_tables indicates the number of per-FID tables.
781 	 * Reserved when unified bridge model is used.
782 	 */
783 	MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_MIXED = 3,
784 	/* Controlled flood tables. Reserved when legacy bridge model is
785 	 * used.
786 	 */
787 	MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_CONTROLLED = 4,
788 	/* CFF - Compressed FID Flood (CFF) mode.
789 	 * Reserved when legacy bridge model is used.
790 	 * Supported only by Spectrum-2+.
791 	 */
792 	MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_CFF = 5,
793 };
794 
795 /* cmd_mbox_config_profile_flood_mode
796  * Flooding mode to use.
797  */
798 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 3);
799 
800 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
801  * Maximum number of FID-offset flooding tables.
802  */
803 MLXSW_ITEM32(cmd_mbox, config_profile,
804 	     max_fid_offset_flood_tables, 0x34, 24, 4);
805 
806 /* cmd_mbox_config_profile_fid_offset_flood_table_size
807  * The size (number of entries) of each FID-offset flood table.
808  */
809 MLXSW_ITEM32(cmd_mbox, config_profile,
810 	     fid_offset_flood_table_size, 0x34, 0, 16);
811 
812 /* cmd_mbox_config_profile_max_fid_flood_tables
813  * Maximum number of per-FID flooding tables.
814  *
815  * Note: This flooding tables cover special FIDs only (vFIDs), starting at
816  * FID value 4K and higher.
817  */
818 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
819 
820 /* cmd_mbox_config_profile_fid_flood_table_size
821  * The size (number of entries) of each per-FID table.
822  */
823 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
824 
825 /* cmd_mbox_config_profile_max_ib_mc
826  * Maximum number of multicast FDB records for InfiniBand
827  * FDB (in 512 chunks) per InfiniBand switch partition.
828  */
829 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
830 
831 /* cmd_mbox_config_profile_max_pkey
832  * Maximum per port PKEY table size (for PKEY enforcement)
833  */
834 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
835 
836 /* cmd_mbox_config_profile_ar_sec
837  * Primary/secondary capability
838  * Describes the number of adaptive routing sub-groups
839  * 0 - disable primary/secondary (single group)
840  * 1 - enable primary/secondary (2 sub-groups)
841  * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
842  * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
843  */
844 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
845 
846 /* cmd_mbox_config_profile_adaptive_routing_group_cap
847  * Adaptive Routing Group Capability. Indicates the number of AR groups
848  * supported. Note that when Primary/secondary is enabled, each
849  * primary/secondary couple consumes 2 adaptive routing entries.
850  */
851 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
852 
853 /* cmd_mbox_config_profile_arn
854  * Adaptive Routing Notification Enable
855  * Not supported in SwitchX, SwitchX-2
856  */
857 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
858 
859 /* cmd_mbox_config_profile_ubridge
860  * Unified Bridge
861  * 0 - non unified bridge
862  * 1 - unified bridge
863  */
864 MLXSW_ITEM32(cmd_mbox, config_profile, ubridge, 0x50, 4, 1);
865 
866 enum mlxsw_cmd_mbox_config_profile_lag_mode {
867 	/* FW manages PGT LAG table */
868 	MLXSW_CMD_MBOX_CONFIG_PROFILE_LAG_MODE_FW,
869 	/* SW manages PGT LAG table */
870 	MLXSW_CMD_MBOX_CONFIG_PROFILE_LAG_MODE_SW,
871 };
872 
873 /* cmd_mbox_config_profile_lag_mode
874  * LAG mode
875  * Configured if set_lag_mode is set
876  * Supported from Spectrum-2 and above.
877  * Supported only when ubridge = 1
878  */
879 MLXSW_ITEM32(cmd_mbox, config_profile, lag_mode, 0x50, 3, 1);
880 
881 /* cmd_mbox_config_kvd_linear_size
882  * KVD Linear Size
883  * Valid for Spectrum only
884  * Allowed values are 128*N where N=0 or higher
885  */
886 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
887 
888 /* cmd_mbox_config_profile_kvd_hash_single_size
889  * KVD Hash single-entries size
890  * Valid for Spectrum only
891  * Allowed values are 128*N where N=0 or higher
892  * Must be greater or equal to cap_min_kvd_hash_single_size
893  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
894  */
895 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
896 
897 /* cmd_mbox_config_profile_kvd_hash_double_size
898  * KVD Hash double-entries size (units of single-size entries)
899  * Valid for Spectrum only
900  * Allowed values are 128*N where N=0 or higher
901  * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
902  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
903  */
904 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
905 
906 /* cmd_mbox_config_profile_swid_config_mask
907  * Modify Switch Partition Configuration mask. When set, the configu-
908  * ration value for the Switch Partition are taken from the mailbox.
909  * When clear, the current configuration values are used.
910  * Bit 0 - set type
911  * Bit 1 - properties
912  * Other - reserved
913  */
914 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
915 		     0x60, 24, 8, 0x08, 0x00, false);
916 
917 /* cmd_mbox_config_profile_swid_config_type
918  * Switch Partition type.
919  * 0000 - disabled (Switch Partition does not exist)
920  * 0001 - InfiniBand
921  * 0010 - Ethernet
922  * 1000 - router port (SwitchX-2 only)
923  * Other - reserved
924  */
925 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
926 		     0x60, 20, 4, 0x08, 0x00, false);
927 
928 /* cmd_mbox_config_profile_swid_config_properties
929  * Switch Partition properties.
930  */
931 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
932 		     0x60, 0, 8, 0x08, 0x00, false);
933 
934 enum mlxsw_cmd_mbox_config_profile_cqe_time_stamp_type {
935 	/* uSec - 1.024uSec (default). Only bits 15:0 are valid. */
936 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_USEC,
937 	/* FRC - Free Running Clock, units of 1nSec.
938 	 * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1.
939 	 */
940 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_FRC,
941 	/* UTC. time_stamp[37:30] = Sec, time_stamp[29:0] = nSec.
942 	 * Reserved when SwitchX/2, Switch-IB/2 and Spectrum-1.
943 	 */
944 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_UTC,
945 };
946 
947 /* cmd_mbox_config_profile_cqe_time_stamp_type
948  * CQE time_stamp_type for non-mirror-packets.
949  * Configured if set_cqe_time_stamp_type is set.
950  * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1.
951  */
952 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_time_stamp_type, 0xB0, 8, 2);
953 
954 /* cmd_mbox_config_profile_cqe_version
955  * CQE version:
956  * 0: CQE version is 0
957  * 1: CQE version is either 1 or 2
958  * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
959  */
960 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
961 
962 /* ACCESS_REG - Access EMAD Supported Register
963  * ----------------------------------
964  * OpMod == 0 (N/A), INMmod == 0 (N/A)
965  * -------------------------------------
966  * The ACCESS_REG command supports accessing device registers. This access
967  * is mainly used for bootstrapping.
968  */
969 
mlxsw_cmd_access_reg(struct mlxsw_core * mlxsw_core,bool reset_ok,char * in_mbox,char * out_mbox)970 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
971 				       bool reset_ok,
972 				       char *in_mbox, char *out_mbox)
973 {
974 	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
975 			      0, 0, false, reset_ok,
976 			      in_mbox, MLXSW_CMD_MBOX_SIZE,
977 			      out_mbox, MLXSW_CMD_MBOX_SIZE);
978 }
979 
980 /* SW2HW_DQ - Software to Hardware DQ
981  * ----------------------------------
982  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
983  * INMmod == DQ number
984  * ----------------------------------------------
985  * The SW2HW_DQ command transitions a descriptor queue from software to
986  * hardware ownership. The command enables posting WQEs and ringing DoorBells
987  * on the descriptor queue.
988  */
989 
__mlxsw_cmd_sw2hw_dq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number,u8 opcode_mod)990 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
991 				       char *in_mbox, u32 dq_number,
992 				       u8 opcode_mod)
993 {
994 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
995 				 opcode_mod, dq_number,
996 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
997 }
998 
999 enum {
1000 	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
1001 	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
1002 };
1003 
mlxsw_cmd_sw2hw_sdq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number)1004 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
1005 				      char *in_mbox, u32 dq_number)
1006 {
1007 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
1008 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1009 }
1010 
mlxsw_cmd_sw2hw_rdq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 dq_number)1011 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
1012 				      char *in_mbox, u32 dq_number)
1013 {
1014 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
1015 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1016 }
1017 
1018 /* cmd_mbox_sw2hw_dq_cq
1019  * Number of the CQ that this Descriptor Queue reports completions to.
1020  */
1021 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
1022 
1023 enum mlxsw_cmd_mbox_sw2hw_dq_sdq_lp {
1024 	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_WQE,
1025 	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_IGNORE_WQE,
1026 };
1027 
1028 /* cmd_mbox_sw2hw_dq_sdq_lp
1029  * SDQ local Processing
1030  * 0: local processing by wqe.lp
1031  * 1: local processing (ignoring wqe.lp)
1032  */
1033 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_lp, 0x00, 23, 1);
1034 
1035 /* cmd_mbox_sw2hw_dq_sdq_tclass
1036  * SDQ: CPU Egress TClass
1037  * RDQ: Reserved
1038  */
1039 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
1040 
1041 /* cmd_mbox_sw2hw_dq_log2_dq_sz
1042  * Log (base 2) of the Descriptor Queue size in 4KB pages.
1043  */
1044 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
1045 
1046 /* cmd_mbox_sw2hw_dq_pa
1047  * Physical Address.
1048  */
1049 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
1050 
1051 /* HW2SW_DQ - Hardware to Software DQ
1052  * ----------------------------------
1053  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1054  * INMmod == DQ number
1055  * ----------------------------------------------
1056  * The HW2SW_DQ command transitions a descriptor queue from hardware to
1057  * software ownership. Incoming packets on the DQ are silently discarded,
1058  * SW should not post descriptors on nonoperational DQs.
1059  */
1060 
__mlxsw_cmd_hw2sw_dq(struct mlxsw_core * mlxsw_core,u32 dq_number,u8 opcode_mod)1061 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
1062 				       u32 dq_number, u8 opcode_mod)
1063 {
1064 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
1065 				   opcode_mod, dq_number);
1066 }
1067 
mlxsw_cmd_hw2sw_sdq(struct mlxsw_core * mlxsw_core,u32 dq_number)1068 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
1069 				      u32 dq_number)
1070 {
1071 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
1072 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1073 }
1074 
mlxsw_cmd_hw2sw_rdq(struct mlxsw_core * mlxsw_core,u32 dq_number)1075 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
1076 				      u32 dq_number)
1077 {
1078 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
1079 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1080 }
1081 
1082 /* 2ERR_DQ - To Error DQ
1083  * ---------------------
1084  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1085  * INMmod == DQ number
1086  * ----------------------------------------------
1087  * The 2ERR_DQ command transitions the DQ into the error state from the state
1088  * in which it has been. While the command is executed, some in-process
1089  * descriptors may complete. Once the DQ transitions into the error state,
1090  * if there are posted descriptors on the RDQ/SDQ, the hardware writes
1091  * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
1092  * When the command is completed successfully, the DQ is already in
1093  * the error state.
1094  */
1095 
__mlxsw_cmd_2err_dq(struct mlxsw_core * mlxsw_core,u32 dq_number,u8 opcode_mod)1096 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
1097 				      u32 dq_number, u8 opcode_mod)
1098 {
1099 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1100 				   opcode_mod, dq_number);
1101 }
1102 
mlxsw_cmd_2err_sdq(struct mlxsw_core * mlxsw_core,u32 dq_number)1103 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
1104 				     u32 dq_number)
1105 {
1106 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1107 				   MLXSW_CMD_OPCODE_MOD_SDQ);
1108 }
1109 
mlxsw_cmd_2err_rdq(struct mlxsw_core * mlxsw_core,u32 dq_number)1110 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
1111 				     u32 dq_number)
1112 {
1113 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1114 				   MLXSW_CMD_OPCODE_MOD_RDQ);
1115 }
1116 
1117 /* QUERY_DQ - Query DQ
1118  * ---------------------
1119  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1120  * INMmod == DQ number
1121  * ----------------------------------------------
1122  * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
1123  *
1124  * Note: Output mailbox has the same format as SW2HW_DQ.
1125  */
1126 
__mlxsw_cmd_query_dq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number,u8 opcode_mod)1127 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1128 				       char *out_mbox, u32 dq_number,
1129 				       u8 opcode_mod)
1130 {
1131 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1132 				  opcode_mod, dq_number, false,
1133 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1134 }
1135 
mlxsw_cmd_query_sdq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number)1136 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1137 				      char *out_mbox, u32 dq_number)
1138 {
1139 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1140 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1141 }
1142 
mlxsw_cmd_query_rdq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 dq_number)1143 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1144 				      char *out_mbox, u32 dq_number)
1145 {
1146 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1147 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1148 }
1149 
1150 /* SW2HW_CQ - Software to Hardware CQ
1151  * ----------------------------------
1152  * OpMod == 0 (N/A), INMmod == CQ number
1153  * -------------------------------------
1154  * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1155  * to hardware. The command takes the CQ context entry from the input mailbox
1156  * and stores it in the CQC in the ownership of the hardware. The command fails
1157  * if the requested CQC entry is already in the ownership of the hardware.
1158  */
1159 
mlxsw_cmd_sw2hw_cq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 cq_number)1160 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1161 				     char *in_mbox, u32 cq_number)
1162 {
1163 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1164 				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1165 }
1166 
1167 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1168 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1169 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1170 };
1171 
1172 /* cmd_mbox_sw2hw_cq_cqe_ver
1173  * CQE Version.
1174  */
1175 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1176 
1177 /* cmd_mbox_sw2hw_cq_c_eqn
1178  * Event Queue this CQ reports completion events to.
1179  */
1180 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1181 
1182 /* cmd_mbox_sw2hw_cq_st
1183  * Event delivery state machine
1184  * 0x0 - FIRED
1185  * 0x1 - ARMED (Request for Notification)
1186  */
1187 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1188 
1189 /* cmd_mbox_sw2hw_cq_log_cq_size
1190  * Log (base 2) of the CQ size (in entries).
1191  */
1192 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1193 
1194 /* cmd_mbox_sw2hw_cq_producer_counter
1195  * Producer Counter. The counter is incremented for each CQE that is
1196  * written by the HW to the CQ.
1197  * Maintained by HW (valid for the QUERY_CQ command only)
1198  */
1199 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1200 
1201 /* cmd_mbox_sw2hw_cq_pa
1202  * Physical Address.
1203  */
1204 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1205 
1206 /* HW2SW_CQ - Hardware to Software CQ
1207  * ----------------------------------
1208  * OpMod == 0 (N/A), INMmod == CQ number
1209  * -------------------------------------
1210  * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1211  * to software. The CQC entry is invalidated as a result of this command.
1212  */
1213 
mlxsw_cmd_hw2sw_cq(struct mlxsw_core * mlxsw_core,u32 cq_number)1214 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1215 				     u32 cq_number)
1216 {
1217 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1218 				   0, cq_number);
1219 }
1220 
1221 /* QUERY_CQ - Query CQ
1222  * ----------------------------------
1223  * OpMod == 0 (N/A), INMmod == CQ number
1224  * -------------------------------------
1225  * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1226  * The command stores the snapshot in the output mailbox in the software format.
1227  * Note that the CQ context state and values are not affected by the QUERY_CQ
1228  * command. The QUERY_CQ command is for debug purposes only.
1229  *
1230  * Note: Output mailbox has the same format as SW2HW_CQ.
1231  */
1232 
mlxsw_cmd_query_cq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 cq_number)1233 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1234 				     char *out_mbox, u32 cq_number)
1235 {
1236 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1237 				  0, cq_number, false,
1238 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1239 }
1240 
1241 /* SW2HW_EQ - Software to Hardware EQ
1242  * ----------------------------------
1243  * OpMod == 0 (N/A), INMmod == EQ number
1244  * -------------------------------------
1245  * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1246  * to hardware. The command takes the EQ context entry from the input mailbox
1247  * and stores it in the EQC in the ownership of the hardware. The command fails
1248  * if the requested EQC entry is already in the ownership of the hardware.
1249  */
1250 
mlxsw_cmd_sw2hw_eq(struct mlxsw_core * mlxsw_core,char * in_mbox,u32 eq_number)1251 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1252 				     char *in_mbox, u32 eq_number)
1253 {
1254 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1255 				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1256 }
1257 
1258 /* cmd_mbox_sw2hw_eq_int_msix
1259  * When set, MSI-X cycles will be generated by this EQ.
1260  * When cleared, an interrupt will be generated by this EQ.
1261  */
1262 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1263 
1264 /* cmd_mbox_sw2hw_eq_st
1265  * Event delivery state machine
1266  * 0x0 - FIRED
1267  * 0x1 - ARMED (Request for Notification)
1268  * 0x11 - Always ARMED
1269  * other - reserved
1270  */
1271 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1272 
1273 /* cmd_mbox_sw2hw_eq_log_eq_size
1274  * Log (base 2) of the EQ size (in entries).
1275  */
1276 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1277 
1278 /* cmd_mbox_sw2hw_eq_producer_counter
1279  * Producer Counter. The counter is incremented for each EQE that is written
1280  * by the HW to the EQ.
1281  * Maintained by HW (valid for the QUERY_EQ command only)
1282  */
1283 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1284 
1285 /* cmd_mbox_sw2hw_eq_pa
1286  * Physical Address.
1287  */
1288 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1289 
1290 /* HW2SW_EQ - Hardware to Software EQ
1291  * ----------------------------------
1292  * OpMod == 0 (N/A), INMmod == EQ number
1293  * -------------------------------------
1294  */
1295 
mlxsw_cmd_hw2sw_eq(struct mlxsw_core * mlxsw_core,u32 eq_number)1296 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1297 				     u32 eq_number)
1298 {
1299 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1300 				   0, eq_number);
1301 }
1302 
1303 /* QUERY_EQ - Query EQ
1304  * ----------------------------------
1305  * OpMod == 0 (N/A), INMmod == EQ number
1306  * -------------------------------------
1307  *
1308  * Note: Output mailbox has the same format as SW2HW_EQ.
1309  */
1310 
mlxsw_cmd_query_eq(struct mlxsw_core * mlxsw_core,char * out_mbox,u32 eq_number)1311 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1312 				     char *out_mbox, u32 eq_number)
1313 {
1314 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1315 				  0, eq_number, false,
1316 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1317 }
1318 
1319 #endif
1320