1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_MAPLE_TREE_H 3 #define _LINUX_MAPLE_TREE_H 4 /* 5 * Maple Tree - An RCU-safe adaptive tree for storing ranges 6 * Copyright (c) 2018-2022 Oracle 7 * Authors: Liam R. Howlett <Liam.Howlett@Oracle.com> 8 * Matthew Wilcox <willy@infradead.org> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/rcupdate.h> 13 #include <linux/spinlock.h> 14 /* #define CONFIG_MAPLE_RCU_DISABLED */ 15 16 /* 17 * Allocated nodes are mutable until they have been inserted into the tree, 18 * at which time they cannot change their type until they have been removed 19 * from the tree and an RCU grace period has passed. 20 * 21 * Removed nodes have their ->parent set to point to themselves. RCU readers 22 * check ->parent before relying on the value that they loaded from the 23 * slots array. This lets us reuse the slots array for the RCU head. 24 * 25 * Nodes in the tree point to their parent unless bit 0 is set. 26 */ 27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) 28 /* 64bit sizes */ 29 #define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */ 30 #define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */ 31 #define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */ 32 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1) 33 #else 34 /* 32bit sizes */ 35 #define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */ 36 #define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */ 37 #define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */ 38 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2) 39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */ 40 41 #define MAPLE_NODE_MASK 255UL 42 43 /* 44 * The node->parent of the root node has bit 0 set and the rest of the pointer 45 * is a pointer to the tree itself. No more bits are available in this pointer 46 * (on m68k, the data structure may only be 2-byte aligned). 47 * 48 * Internal non-root nodes can only have maple_range_* nodes as parents. The 49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32 50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an 51 * extra bit to store the offset. This extra bit comes from a reuse of the last 52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2 53 * is part of the type or the slot. 54 * 55 * Once the type is decided, the decision of an allocation range type or a 56 * range type is done by examining the immutable tree flag for the 57 * MT_FLAGS_ALLOC_RANGE flag. 58 * 59 * Node types: 60 * 0x??1 = Root 61 * 0x?00 = 16 bit nodes 62 * 0x010 = 32 bit nodes 63 * 0x110 = 64 bit nodes 64 * 65 * Slot size and location in the parent pointer: 66 * type : slot location 67 * 0x??1 : Root 68 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6 69 * 0x010 : 32 bit values, type in 0-2, slot in 3-6 70 * 0x110 : 64 bit values, type in 0-2, slot in 3-6 71 */ 72 73 /* 74 * This metadata is used to optimize the gap updating code and in reverse 75 * searching for gaps or any other code that needs to find the end of the data. 76 */ 77 struct maple_metadata { 78 unsigned char end; 79 unsigned char gap; 80 }; 81 82 /* 83 * Leaf nodes do not store pointers to nodes, they store user data. Users may 84 * store almost any bit pattern. As noted above, the optimisation of storing an 85 * entry at 0 in the root pointer cannot be done for data which have the bottom 86 * two bits set to '10'. We also reserve values with the bottom two bits set to 87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs 88 * return errnos as a negative errno shifted right by two bits and the bottom 89 * two bits set to '10', and while choosing to store these values in the array 90 * is not an error, it may lead to confusion if you're testing for an error with 91 * mas_is_err(). 92 * 93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits 94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now. 95 * 96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 97 * indicate that the tree is specifying ranges, Pivots may appear in the 98 * subtree with an entry attached to the value whereas keys are unique to a 99 * specific position of a B-tree. Pivot values are inclusive of the slot with 100 * the same index. 101 */ 102 103 struct maple_range_64 { 104 struct maple_pnode *parent; 105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1]; 106 union { 107 void __rcu *slot[MAPLE_RANGE64_SLOTS]; 108 struct { 109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1]; 110 struct maple_metadata meta; 111 }; 112 }; 113 }; 114 115 /* 116 * At tree creation time, the user can specify that they're willing to trade off 117 * storing fewer entries in a tree in return for storing more information in 118 * each node. 119 * 120 * The maple tree supports recording the largest range of NULL entries available 121 * in this node, also called gaps. This optimises the tree for allocating a 122 * range. 123 */ 124 struct maple_arange_64 { 125 struct maple_pnode *parent; 126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1]; 127 void __rcu *slot[MAPLE_ARANGE64_SLOTS]; 128 unsigned long gap[MAPLE_ARANGE64_SLOTS]; 129 struct maple_metadata meta; 130 }; 131 132 struct maple_alloc { 133 unsigned long total; 134 unsigned char node_count; 135 unsigned int request_count; 136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS]; 137 }; 138 139 struct maple_topiary { 140 struct maple_pnode *parent; 141 struct maple_enode *next; /* Overlaps the pivot */ 142 }; 143 144 enum maple_type { 145 maple_dense, 146 maple_leaf_64, 147 maple_range_64, 148 maple_arange_64, 149 }; 150 151 enum store_type { 152 wr_invalid, 153 wr_new_root, 154 wr_store_root, 155 wr_exact_fit, 156 wr_spanning_store, 157 wr_split_store, 158 wr_rebalance, 159 wr_append, 160 wr_node_store, 161 wr_slot_store, 162 }; 163 164 /** 165 * DOC: Maple tree flags 166 * 167 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree 168 * * MT_FLAGS_USE_RCU - Operate in RCU mode 169 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags 170 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value 171 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used 172 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe 173 * * MT_FLAGS_LOCK_BH - Acquired bh-safe 174 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used 175 * 176 * MAPLE_HEIGHT_MAX The largest height that can be stored 177 */ 178 #define MT_FLAGS_ALLOC_RANGE 0x01 179 #define MT_FLAGS_USE_RCU 0x02 180 #define MT_FLAGS_HEIGHT_OFFSET 0x02 181 #define MT_FLAGS_HEIGHT_MASK 0x7C 182 #define MT_FLAGS_LOCK_MASK 0x300 183 #define MT_FLAGS_LOCK_IRQ 0x100 184 #define MT_FLAGS_LOCK_BH 0x200 185 #define MT_FLAGS_LOCK_EXTERN 0x300 186 #define MT_FLAGS_ALLOC_WRAPPED 0x0800 187 188 #define MAPLE_HEIGHT_MAX 31 189 190 191 #define MAPLE_NODE_TYPE_MASK 0x0F 192 #define MAPLE_NODE_TYPE_SHIFT 0x03 193 194 #define MAPLE_RESERVED_RANGE 4096 195 196 #ifdef CONFIG_LOCKDEP 197 typedef struct lockdep_map *lockdep_map_p; 198 #define mt_lock_is_held(mt) \ 199 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock)) 200 201 #define mt_write_lock_is_held(mt) \ 202 (!(mt)->ma_external_lock || \ 203 lock_is_held_type((mt)->ma_external_lock, 0)) 204 205 #define mt_set_external_lock(mt, lock) \ 206 (mt)->ma_external_lock = &(lock)->dep_map 207 208 #define mt_on_stack(mt) (mt).ma_external_lock = NULL 209 #else 210 typedef struct { /* nothing */ } lockdep_map_p; 211 #define mt_lock_is_held(mt) 1 212 #define mt_write_lock_is_held(mt) 1 213 #define mt_set_external_lock(mt, lock) do { } while (0) 214 #define mt_on_stack(mt) do { } while (0) 215 #endif 216 217 /* 218 * If the tree contains a single entry at index 0, it is usually stored in 219 * tree->ma_root. To optimise for the page cache, an entry which ends in '00', 220 * '01' or '11' is stored in the root, but an entry which ends in '10' will be 221 * stored in a node. Bits 3-6 are used to store enum maple_type. 222 * 223 * The flags are used both to store some immutable information about this tree 224 * (set at tree creation time) and dynamic information set under the spinlock. 225 * 226 * Another use of flags are to indicate global states of the tree. This is the 227 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in 228 * RCU mode. This mode was added to allow the tree to reuse nodes instead of 229 * re-allocating and RCU freeing nodes when there is a single user. 230 */ 231 struct maple_tree { 232 union { 233 spinlock_t ma_lock; 234 lockdep_map_p ma_external_lock; 235 }; 236 unsigned int ma_flags; 237 void __rcu *ma_root; 238 }; 239 240 /** 241 * MTREE_INIT() - Initialize a maple tree 242 * @name: The maple tree name 243 * @__flags: The maple tree flags 244 * 245 */ 246 #define MTREE_INIT(name, __flags) { \ 247 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \ 248 .ma_flags = __flags, \ 249 .ma_root = NULL, \ 250 } 251 252 /** 253 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock. 254 * @name: The tree name 255 * @__flags: The maple tree flags 256 * @__lock: The external lock 257 */ 258 #ifdef CONFIG_LOCKDEP 259 #define MTREE_INIT_EXT(name, __flags, __lock) { \ 260 .ma_external_lock = &(__lock).dep_map, \ 261 .ma_flags = (__flags), \ 262 .ma_root = NULL, \ 263 } 264 #else 265 #define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags) 266 #endif 267 268 #define DEFINE_MTREE(name) \ 269 struct maple_tree name = MTREE_INIT(name, 0) 270 271 #define mtree_lock(mt) spin_lock((&(mt)->ma_lock)) 272 #define mtree_lock_nested(mas, subclass) \ 273 spin_lock_nested((&(mt)->ma_lock), subclass) 274 #define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock)) 275 276 /* 277 * The Maple Tree squeezes various bits in at various points which aren't 278 * necessarily obvious. Usually, this is done by observing that pointers are 279 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We 280 * don't use the high bits of pointers to store additional information because 281 * we don't know what bits are unused on any given architecture. 282 * 283 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8 284 * low bits for our own purposes. Nodes are currently of 4 types: 285 * 1. Single pointer (Range is 0-0) 286 * 2. Non-leaf Allocation Range nodes 287 * 3. Non-leaf Range nodes 288 * 4. Leaf Range nodes All nodes consist of a number of node slots, 289 * pivots, and a parent pointer. 290 */ 291 292 struct maple_node { 293 union { 294 struct { 295 struct maple_pnode *parent; 296 void __rcu *slot[MAPLE_NODE_SLOTS]; 297 }; 298 struct { 299 void *pad; 300 struct rcu_head rcu; 301 struct maple_enode *piv_parent; 302 unsigned char parent_slot; 303 enum maple_type type; 304 unsigned char slot_len; 305 unsigned int ma_flags; 306 }; 307 struct maple_range_64 mr64; 308 struct maple_arange_64 ma64; 309 struct maple_alloc alloc; 310 }; 311 }; 312 313 /* 314 * More complicated stores can cause two nodes to become one or three and 315 * potentially alter the height of the tree. Either half of the tree may need 316 * to be rebalanced against the other. The ma_topiary struct is used to track 317 * which nodes have been 'cut' from the tree so that the change can be done 318 * safely at a later date. This is done to support RCU. 319 */ 320 struct ma_topiary { 321 struct maple_enode *head; 322 struct maple_enode *tail; 323 struct maple_tree *mtree; 324 }; 325 326 void *mtree_load(struct maple_tree *mt, unsigned long index); 327 328 int mtree_insert(struct maple_tree *mt, unsigned long index, 329 void *entry, gfp_t gfp); 330 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 331 unsigned long last, void *entry, gfp_t gfp); 332 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 333 void *entry, unsigned long size, unsigned long min, 334 unsigned long max, gfp_t gfp); 335 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 336 void *entry, unsigned long range_lo, unsigned long range_hi, 337 unsigned long *next, gfp_t gfp); 338 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 339 void *entry, unsigned long size, unsigned long min, 340 unsigned long max, gfp_t gfp); 341 342 int mtree_store_range(struct maple_tree *mt, unsigned long first, 343 unsigned long last, void *entry, gfp_t gfp); 344 int mtree_store(struct maple_tree *mt, unsigned long index, 345 void *entry, gfp_t gfp); 346 void *mtree_erase(struct maple_tree *mt, unsigned long index); 347 348 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 349 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 350 351 void mtree_destroy(struct maple_tree *mt); 352 void __mt_destroy(struct maple_tree *mt); 353 354 /** 355 * mtree_empty() - Determine if a tree has any present entries. 356 * @mt: Maple Tree. 357 * 358 * Context: Any context. 359 * Return: %true if the tree contains only NULL pointers. 360 */ mtree_empty(const struct maple_tree * mt)361 static inline bool mtree_empty(const struct maple_tree *mt) 362 { 363 return mt->ma_root == NULL; 364 } 365 366 /* Advanced API */ 367 368 /* 369 * Maple State Status 370 * ma_active means the maple state is pointing to a node and offset and can 371 * continue operating on the tree. 372 * ma_start means we have not searched the tree. 373 * ma_root means we have searched the tree and the entry we found lives in 374 * the root of the tree (ie it has index 0, length 1 and is the only entry in 375 * the tree). 376 * ma_none means we have searched the tree and there is no node in the 377 * tree for this entry. For example, we searched for index 1 in an empty 378 * tree. Or we have a tree which points to a full leaf node and we 379 * searched for an entry which is larger than can be contained in that 380 * leaf node. 381 * ma_pause means the data within the maple state may be stale, restart the 382 * operation 383 * ma_overflow means the search has reached the upper limit of the search 384 * ma_underflow means the search has reached the lower limit of the search 385 * ma_error means there was an error, check the node for the error number. 386 */ 387 enum maple_status { 388 ma_active, 389 ma_start, 390 ma_root, 391 ma_none, 392 ma_pause, 393 ma_overflow, 394 ma_underflow, 395 ma_error, 396 }; 397 398 /* 399 * The maple state is defined in the struct ma_state and is used to keep track 400 * of information during operations, and even between operations when using the 401 * advanced API. 402 * 403 * If state->node has bit 0 set then it references a tree location which is not 404 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative 405 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the 406 * node type. 407 * 408 * state->alloc either has a request number of nodes or an allocated node. If 409 * stat->alloc has a requested number of nodes, the first bit will be set (0x1) 410 * and the remaining bits are the value. If state->alloc is a node, then the 411 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for 412 * storing more allocated nodes, a total number of nodes allocated, and the 413 * node_count in this node. node_count is the number of allocated nodes in this 414 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further 415 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc 416 * by removing a node from the state->alloc node until state->alloc->node_count 417 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted 418 * to state->alloc. Nodes are pushed onto state->alloc by putting the current 419 * state->alloc into the pushed node's slot[0]. 420 * 421 * The state also contains the implied min/max of the state->node, the depth of 422 * this search, and the offset. The implied min/max are either from the parent 423 * node or are 0-oo for the root node. The depth is incremented or decremented 424 * every time a node is walked down or up. The offset is the slot/pivot of 425 * interest in the node - either for reading or writing. 426 * 427 * When returning a value the maple state index and last respectively contain 428 * the start and end of the range for the entry. Ranges are inclusive in the 429 * Maple Tree. 430 * 431 * The status of the state is used to determine how the next action should treat 432 * the state. For instance, if the status is ma_start then the next action 433 * should start at the root of the tree and walk down. If the status is 434 * ma_pause then the node may be stale data and should be discarded. If the 435 * status is ma_overflow, then the last action hit the upper limit. 436 * 437 */ 438 struct ma_state { 439 struct maple_tree *tree; /* The tree we're operating in */ 440 unsigned long index; /* The index we're operating on - range start */ 441 unsigned long last; /* The last index we're operating on - range end */ 442 struct maple_enode *node; /* The node containing this entry */ 443 unsigned long min; /* The minimum index of this node - implied pivot min */ 444 unsigned long max; /* The maximum index of this node - implied pivot max */ 445 struct maple_alloc *alloc; /* Allocated nodes for this operation */ 446 enum maple_status status; /* The status of the state (active, start, none, etc) */ 447 unsigned char depth; /* depth of tree descent during write */ 448 unsigned char offset; 449 unsigned char mas_flags; 450 unsigned char end; /* The end of the node */ 451 enum store_type store_type; /* The type of store needed for this operation */ 452 }; 453 454 struct ma_wr_state { 455 struct ma_state *mas; 456 struct maple_node *node; /* Decoded mas->node */ 457 unsigned long r_min; /* range min */ 458 unsigned long r_max; /* range max */ 459 enum maple_type type; /* mas->node type */ 460 unsigned char offset_end; /* The offset where the write ends */ 461 unsigned long *pivots; /* mas->node->pivots pointer */ 462 unsigned long end_piv; /* The pivot at the offset end */ 463 void __rcu **slots; /* mas->node->slots pointer */ 464 void *entry; /* The entry to write */ 465 void *content; /* The existing entry that is being overwritten */ 466 }; 467 468 #define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock)) 469 #define mas_lock_nested(mas, subclass) \ 470 spin_lock_nested(&((mas)->tree->ma_lock), subclass) 471 #define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock)) 472 473 /* 474 * Special values for ma_state.node. 475 * MA_ERROR represents an errno. After dropping the lock and attempting 476 * to resolve the error, the walk would have to be restarted from the 477 * top of the tree as the tree may have been modified. 478 */ 479 #define MA_ERROR(err) \ 480 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL)) 481 482 #define MA_STATE(name, mt, first, end) \ 483 struct ma_state name = { \ 484 .tree = mt, \ 485 .index = first, \ 486 .last = end, \ 487 .node = NULL, \ 488 .status = ma_start, \ 489 .min = 0, \ 490 .max = ULONG_MAX, \ 491 .alloc = NULL, \ 492 .mas_flags = 0, \ 493 .store_type = wr_invalid, \ 494 } 495 496 #define MA_WR_STATE(name, ma_state, wr_entry) \ 497 struct ma_wr_state name = { \ 498 .mas = ma_state, \ 499 .content = NULL, \ 500 .entry = wr_entry, \ 501 } 502 503 #define MA_TOPIARY(name, tree) \ 504 struct ma_topiary name = { \ 505 .head = NULL, \ 506 .tail = NULL, \ 507 .mtree = tree, \ 508 } 509 510 void *mas_walk(struct ma_state *mas); 511 void *mas_store(struct ma_state *mas, void *entry); 512 void *mas_erase(struct ma_state *mas); 513 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp); 514 void mas_store_prealloc(struct ma_state *mas, void *entry); 515 void *mas_find(struct ma_state *mas, unsigned long max); 516 void *mas_find_range(struct ma_state *mas, unsigned long max); 517 void *mas_find_rev(struct ma_state *mas, unsigned long min); 518 void *mas_find_range_rev(struct ma_state *mas, unsigned long max); 519 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp); 520 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 521 void *entry, unsigned long range_lo, unsigned long range_hi, 522 unsigned long *next, gfp_t gfp); 523 524 bool mas_nomem(struct ma_state *mas, gfp_t gfp); 525 void mas_pause(struct ma_state *mas); 526 void maple_tree_init(void); 527 void mas_destroy(struct ma_state *mas); 528 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries); 529 530 void *mas_prev(struct ma_state *mas, unsigned long min); 531 void *mas_prev_range(struct ma_state *mas, unsigned long max); 532 void *mas_next(struct ma_state *mas, unsigned long max); 533 void *mas_next_range(struct ma_state *mas, unsigned long max); 534 535 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max, 536 unsigned long size); 537 /* 538 * This finds an empty area from the highest address to the lowest. 539 * AKA "Topdown" version, 540 */ 541 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 542 unsigned long max, unsigned long size); 543 mas_init(struct ma_state * mas,struct maple_tree * tree,unsigned long addr)544 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree, 545 unsigned long addr) 546 { 547 memset(mas, 0, sizeof(struct ma_state)); 548 mas->tree = tree; 549 mas->index = mas->last = addr; 550 mas->max = ULONG_MAX; 551 mas->status = ma_start; 552 mas->node = NULL; 553 } 554 mas_is_active(struct ma_state * mas)555 static inline bool mas_is_active(struct ma_state *mas) 556 { 557 return mas->status == ma_active; 558 } 559 mas_is_err(struct ma_state * mas)560 static inline bool mas_is_err(struct ma_state *mas) 561 { 562 return mas->status == ma_error; 563 } 564 565 /** 566 * mas_reset() - Reset a Maple Tree operation state. 567 * @mas: Maple Tree operation state. 568 * 569 * Resets the error or walk state of the @mas so future walks of the 570 * array will start from the root. Use this if you have dropped the 571 * lock and want to reuse the ma_state. 572 * 573 * Context: Any context. 574 */ mas_reset(struct ma_state * mas)575 static __always_inline void mas_reset(struct ma_state *mas) 576 { 577 mas->status = ma_start; 578 mas->node = NULL; 579 } 580 581 /** 582 * mas_for_each() - Iterate over a range of the maple tree. 583 * @__mas: Maple Tree operation state (maple_state) 584 * @__entry: Entry retrieved from the tree 585 * @__max: maximum index to retrieve from the tree 586 * 587 * When returned, mas->index and mas->last will hold the entire range for the 588 * entry. 589 * 590 * Note: may return the zero entry. 591 */ 592 #define mas_for_each(__mas, __entry, __max) \ 593 while (((__entry) = mas_find((__mas), (__max))) != NULL) 594 595 #ifdef CONFIG_DEBUG_MAPLE_TREE 596 enum mt_dump_format { 597 mt_dump_dec, 598 mt_dump_hex, 599 }; 600 601 extern atomic_t maple_tree_tests_run; 602 extern atomic_t maple_tree_tests_passed; 603 604 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format); 605 void mas_dump(const struct ma_state *mas); 606 void mas_wr_dump(const struct ma_wr_state *wr_mas); 607 void mt_validate(struct maple_tree *mt); 608 void mt_cache_shrink(void); 609 #define MT_BUG_ON(__tree, __x) do { \ 610 atomic_inc(&maple_tree_tests_run); \ 611 if (__x) { \ 612 pr_info("BUG at %s:%d (%u)\n", \ 613 __func__, __LINE__, __x); \ 614 mt_dump(__tree, mt_dump_hex); \ 615 pr_info("Pass: %u Run:%u\n", \ 616 atomic_read(&maple_tree_tests_passed), \ 617 atomic_read(&maple_tree_tests_run)); \ 618 dump_stack(); \ 619 } else { \ 620 atomic_inc(&maple_tree_tests_passed); \ 621 } \ 622 } while (0) 623 624 #define MAS_BUG_ON(__mas, __x) do { \ 625 atomic_inc(&maple_tree_tests_run); \ 626 if (__x) { \ 627 pr_info("BUG at %s:%d (%u)\n", \ 628 __func__, __LINE__, __x); \ 629 mas_dump(__mas); \ 630 mt_dump((__mas)->tree, mt_dump_hex); \ 631 pr_info("Pass: %u Run:%u\n", \ 632 atomic_read(&maple_tree_tests_passed), \ 633 atomic_read(&maple_tree_tests_run)); \ 634 dump_stack(); \ 635 } else { \ 636 atomic_inc(&maple_tree_tests_passed); \ 637 } \ 638 } while (0) 639 640 #define MAS_WR_BUG_ON(__wrmas, __x) do { \ 641 atomic_inc(&maple_tree_tests_run); \ 642 if (__x) { \ 643 pr_info("BUG at %s:%d (%u)\n", \ 644 __func__, __LINE__, __x); \ 645 mas_wr_dump(__wrmas); \ 646 mas_dump((__wrmas)->mas); \ 647 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 648 pr_info("Pass: %u Run:%u\n", \ 649 atomic_read(&maple_tree_tests_passed), \ 650 atomic_read(&maple_tree_tests_run)); \ 651 dump_stack(); \ 652 } else { \ 653 atomic_inc(&maple_tree_tests_passed); \ 654 } \ 655 } while (0) 656 657 #define MT_WARN_ON(__tree, __x) ({ \ 658 int ret = !!(__x); \ 659 atomic_inc(&maple_tree_tests_run); \ 660 if (ret) { \ 661 pr_info("WARN at %s:%d (%u)\n", \ 662 __func__, __LINE__, __x); \ 663 mt_dump(__tree, mt_dump_hex); \ 664 pr_info("Pass: %u Run:%u\n", \ 665 atomic_read(&maple_tree_tests_passed), \ 666 atomic_read(&maple_tree_tests_run)); \ 667 dump_stack(); \ 668 } else { \ 669 atomic_inc(&maple_tree_tests_passed); \ 670 } \ 671 unlikely(ret); \ 672 }) 673 674 #define MAS_WARN_ON(__mas, __x) ({ \ 675 int ret = !!(__x); \ 676 atomic_inc(&maple_tree_tests_run); \ 677 if (ret) { \ 678 pr_info("WARN at %s:%d (%u)\n", \ 679 __func__, __LINE__, __x); \ 680 mas_dump(__mas); \ 681 mt_dump((__mas)->tree, mt_dump_hex); \ 682 pr_info("Pass: %u Run:%u\n", \ 683 atomic_read(&maple_tree_tests_passed), \ 684 atomic_read(&maple_tree_tests_run)); \ 685 dump_stack(); \ 686 } else { \ 687 atomic_inc(&maple_tree_tests_passed); \ 688 } \ 689 unlikely(ret); \ 690 }) 691 692 #define MAS_WR_WARN_ON(__wrmas, __x) ({ \ 693 int ret = !!(__x); \ 694 atomic_inc(&maple_tree_tests_run); \ 695 if (ret) { \ 696 pr_info("WARN at %s:%d (%u)\n", \ 697 __func__, __LINE__, __x); \ 698 mas_wr_dump(__wrmas); \ 699 mas_dump((__wrmas)->mas); \ 700 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 701 pr_info("Pass: %u Run:%u\n", \ 702 atomic_read(&maple_tree_tests_passed), \ 703 atomic_read(&maple_tree_tests_run)); \ 704 dump_stack(); \ 705 } else { \ 706 atomic_inc(&maple_tree_tests_passed); \ 707 } \ 708 unlikely(ret); \ 709 }) 710 #else 711 #define MT_BUG_ON(__tree, __x) BUG_ON(__x) 712 #define MAS_BUG_ON(__mas, __x) BUG_ON(__x) 713 #define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x) 714 #define MT_WARN_ON(__tree, __x) WARN_ON(__x) 715 #define MAS_WARN_ON(__mas, __x) WARN_ON(__x) 716 #define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x) 717 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 718 719 /** 720 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the 721 * current location. 722 * @mas: Maple Tree operation state. 723 * @start: New start of range in the Maple Tree. 724 * @last: New end of range in the Maple Tree. 725 * 726 * set the internal maple state values to a sub-range. 727 * Please use mas_set_range() if you do not know where you are in the tree. 728 */ __mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)729 static inline void __mas_set_range(struct ma_state *mas, unsigned long start, 730 unsigned long last) 731 { 732 /* Ensure the range starts within the current slot */ 733 MAS_WARN_ON(mas, mas_is_active(mas) && 734 (mas->index > start || mas->last < start)); 735 mas->index = start; 736 mas->last = last; 737 } 738 739 /** 740 * mas_set_range() - Set up Maple Tree operation state for a different index. 741 * @mas: Maple Tree operation state. 742 * @start: New start of range in the Maple Tree. 743 * @last: New end of range in the Maple Tree. 744 * 745 * Move the operation state to refer to a different range. This will 746 * have the effect of starting a walk from the top; see mas_next() 747 * to move to an adjacent index. 748 */ 749 static inline mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)750 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last) 751 { 752 mas_reset(mas); 753 __mas_set_range(mas, start, last); 754 } 755 756 /** 757 * mas_set() - Set up Maple Tree operation state for a different index. 758 * @mas: Maple Tree operation state. 759 * @index: New index into the Maple Tree. 760 * 761 * Move the operation state to refer to a different index. This will 762 * have the effect of starting a walk from the top; see mas_next() 763 * to move to an adjacent index. 764 */ mas_set(struct ma_state * mas,unsigned long index)765 static inline void mas_set(struct ma_state *mas, unsigned long index) 766 { 767 768 mas_set_range(mas, index, index); 769 } 770 mt_external_lock(const struct maple_tree * mt)771 static inline bool mt_external_lock(const struct maple_tree *mt) 772 { 773 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN; 774 } 775 776 /** 777 * mt_init_flags() - Initialise an empty maple tree with flags. 778 * @mt: Maple Tree 779 * @flags: maple tree flags. 780 * 781 * If you need to initialise a Maple Tree with special flags (eg, an 782 * allocation tree), use this function. 783 * 784 * Context: Any context. 785 */ mt_init_flags(struct maple_tree * mt,unsigned int flags)786 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags) 787 { 788 mt->ma_flags = flags; 789 if (!mt_external_lock(mt)) 790 spin_lock_init(&mt->ma_lock); 791 rcu_assign_pointer(mt->ma_root, NULL); 792 } 793 794 /** 795 * mt_init() - Initialise an empty maple tree. 796 * @mt: Maple Tree 797 * 798 * An empty Maple Tree. 799 * 800 * Context: Any context. 801 */ mt_init(struct maple_tree * mt)802 static inline void mt_init(struct maple_tree *mt) 803 { 804 mt_init_flags(mt, 0); 805 } 806 mt_in_rcu(struct maple_tree * mt)807 static inline bool mt_in_rcu(struct maple_tree *mt) 808 { 809 #ifdef CONFIG_MAPLE_RCU_DISABLED 810 return false; 811 #endif 812 return mt->ma_flags & MT_FLAGS_USE_RCU; 813 } 814 815 /** 816 * mt_clear_in_rcu() - Switch the tree to non-RCU mode. 817 * @mt: The Maple Tree 818 */ mt_clear_in_rcu(struct maple_tree * mt)819 static inline void mt_clear_in_rcu(struct maple_tree *mt) 820 { 821 if (!mt_in_rcu(mt)) 822 return; 823 824 if (mt_external_lock(mt)) { 825 WARN_ON(!mt_lock_is_held(mt)); 826 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 827 } else { 828 mtree_lock(mt); 829 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 830 mtree_unlock(mt); 831 } 832 } 833 834 /** 835 * mt_set_in_rcu() - Switch the tree to RCU safe mode. 836 * @mt: The Maple Tree 837 */ mt_set_in_rcu(struct maple_tree * mt)838 static inline void mt_set_in_rcu(struct maple_tree *mt) 839 { 840 if (mt_in_rcu(mt)) 841 return; 842 843 if (mt_external_lock(mt)) { 844 WARN_ON(!mt_lock_is_held(mt)); 845 mt->ma_flags |= MT_FLAGS_USE_RCU; 846 } else { 847 mtree_lock(mt); 848 mt->ma_flags |= MT_FLAGS_USE_RCU; 849 mtree_unlock(mt); 850 } 851 } 852 mt_height(const struct maple_tree * mt)853 static inline unsigned int mt_height(const struct maple_tree *mt) 854 { 855 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET; 856 } 857 858 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max); 859 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 860 unsigned long max); 861 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min); 862 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max); 863 864 /** 865 * mt_for_each - Iterate over each entry starting at index until max. 866 * @__tree: The Maple Tree 867 * @__entry: The current entry 868 * @__index: The index to start the search from. Subsequently used as iterator. 869 * @__max: The maximum limit for @index 870 * 871 * This iterator skips all entries, which resolve to a NULL pointer, 872 * e.g. entries which has been reserved with XA_ZERO_ENTRY. 873 */ 874 #define mt_for_each(__tree, __entry, __index, __max) \ 875 for (__entry = mt_find(__tree, &(__index), __max); \ 876 __entry; __entry = mt_find_after(__tree, &(__index), __max)) 877 878 #endif /*_LINUX_MAPLE_TREE_H */ 879