1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/mmu.h>
13 #include <asm/cpufeature.h>
14
15 /*
16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17 * "negative" addresses. This makes it impossible to directly share
18 * mappings with the kernel.
19 *
20 * Instead, give the HYP mode its own VA region at a fixed offset from
21 * the kernel by just masking the top bits (which are all ones for a
22 * kernel address). We need to find out how many bits to mask.
23 *
24 * We want to build a set of page tables that cover both parts of the
25 * idmap (the trampoline page used to initialize EL2), and our normal
26 * runtime VA space, at the same time.
27 *
28 * Given that the kernel uses VA_BITS for its entire address space,
29 * and that half of that space (VA_BITS - 1) is used for the linear
30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31 *
32 * The main question is "Within the VA_BITS space, does EL2 use the
33 * top or the bottom half of that space to shadow the kernel's linear
34 * mapping?". As we need to idmap the trampoline page, this is
35 * determined by the range in which this page lives.
36 *
37 * If the page is in the bottom half, we have to use the top half. If
38 * the page is in the top half, we have to use the bottom half:
39 *
40 * T = __pa_symbol(__hyp_idmap_text_start)
41 * if (T & BIT(VA_BITS - 1))
42 * HYP_VA_MIN = 0 //idmap in upper half
43 * else
44 * HYP_VA_MIN = 1 << (VA_BITS - 1)
45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46 *
47 * When using VHE, there are no separate hyp mappings and all KVM
48 * functionality is already mapped as part of the main kernel
49 * mappings, and none of this applies in that case.
50 */
51
52 #ifdef __ASSEMBLY__
53
54 #include <asm/alternative.h>
55
56 /*
57 * Convert a hypervisor VA to a PA
58 * reg: hypervisor address to be converted in place
59 * tmp: temporary register
60 */
61 .macro hyp_pa reg, tmp
62 ldr_l \tmp, hyp_physvirt_offset
63 add \reg, \reg, \tmp
64 .endm
65
66 /*
67 * Convert a hypervisor VA to a kernel image address
68 * reg: hypervisor address to be converted in place
69 * tmp: temporary register
70 *
71 * The actual code generation takes place in kvm_get_kimage_voffset, and
72 * the instructions below are only there to reserve the space and
73 * perform the register allocation (kvm_get_kimage_voffset uses the
74 * specific registers encoded in the instructions).
75 */
76 .macro hyp_kimg_va reg, tmp
77 /* Convert hyp VA -> PA. */
78 hyp_pa \reg, \tmp
79
80 /* Load kimage_voffset. */
81 alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset
82 movz \tmp, #0
83 movk \tmp, #0, lsl #16
84 movk \tmp, #0, lsl #32
85 movk \tmp, #0, lsl #48
86 alternative_cb_end
87
88 /* Convert PA -> kimg VA. */
89 add \reg, \reg, \tmp
90 .endm
91
92 #else
93
94 #include <linux/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <asm/cache.h>
97 #include <asm/cacheflush.h>
98 #include <asm/mmu_context.h>
99 #include <asm/kvm_emulate.h>
100 #include <asm/kvm_host.h>
101 #include <asm/kvm_nested.h>
102
103 void kvm_update_va_mask(struct alt_instr *alt,
104 __le32 *origptr, __le32 *updptr, int nr_inst);
105 void kvm_compute_layout(void);
106 void kvm_apply_hyp_relocations(void);
107
108 #define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
109
110 /*
111 * Convert a kernel VA into a HYP VA.
112 *
113 * Can be called from hyp or non-hyp context.
114 *
115 * The actual code generation takes place in kvm_update_va_mask(), and
116 * the instructions below are only there to reserve the space and
117 * perform the register allocation (kvm_update_va_mask() uses the
118 * specific registers encoded in the instructions).
119 */
__kern_hyp_va(unsigned long v)120 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
121 {
122 /*
123 * This #ifndef is an optimisation for when this is called from VHE hyp
124 * context. When called from a VHE non-hyp context, kvm_update_va_mask() will
125 * replace the instructions with `nop`s.
126 */
127 #ifndef __KVM_VHE_HYPERVISOR__
128 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" /* mask with va_mask */
129 "ror %0, %0, #1\n" /* rotate to the first tag bit */
130 "add %0, %0, #0\n" /* insert the low 12 bits of the tag */
131 "add %0, %0, #0, lsl 12\n" /* insert the top 12 bits of the tag */
132 "ror %0, %0, #63\n", /* rotate back */
133 ARM64_ALWAYS_SYSTEM,
134 kvm_update_va_mask)
135 : "+r" (v));
136 #endif
137 return v;
138 }
139
140 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
141
142 /*
143 * We currently support using a VM-specified IPA size. For backward
144 * compatibility, the default IPA size is fixed to 40bits.
145 */
146 #define KVM_PHYS_SHIFT (40)
147
148 #define kvm_phys_shift(mmu) VTCR_EL2_IPA((mmu)->vtcr)
149 #define kvm_phys_size(mmu) (_AC(1, ULL) << kvm_phys_shift(mmu))
150 #define kvm_phys_mask(mmu) (kvm_phys_size(mmu) - _AC(1, ULL))
151
152 #include <asm/kvm_pgtable.h>
153 #include <asm/stage2_pgtable.h>
154
155 int kvm_share_hyp(void *from, void *to);
156 void kvm_unshare_hyp(void *from, void *to);
157 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
158 int __create_hyp_mappings(unsigned long start, unsigned long size,
159 unsigned long phys, enum kvm_pgtable_prot prot);
160 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
161 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
162 void __iomem **kaddr,
163 void __iomem **haddr);
164 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
165 void **haddr);
166 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr);
167 void __init free_hyp_pgds(void);
168
169 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
170 u64 size, bool may_block);
171 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end);
172 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end);
173
174 void stage2_unmap_vm(struct kvm *kvm);
175 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
176 void kvm_uninit_stage2_mmu(struct kvm *kvm);
177 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
178 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
179 phys_addr_t pa, unsigned long size, bool writable);
180
181 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
182
183 phys_addr_t kvm_mmu_get_httbr(void);
184 phys_addr_t kvm_get_idmap_vector(void);
185 int __init kvm_mmu_init(u32 *hyp_va_bits);
186
__kvm_vector_slot2addr(void * base,enum arm64_hyp_spectre_vector slot)187 static inline void *__kvm_vector_slot2addr(void *base,
188 enum arm64_hyp_spectre_vector slot)
189 {
190 int idx = slot - (slot != HYP_VECTOR_DIRECT);
191
192 return base + (idx * SZ_2K);
193 }
194
195 struct kvm;
196
197 #define kvm_flush_dcache_to_poc(a,l) \
198 dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l))
199
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)200 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
201 {
202 u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C;
203 int reg;
204
205 if (vcpu_is_el2(vcpu))
206 reg = SCTLR_EL2;
207 else
208 reg = SCTLR_EL1;
209
210 return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits;
211 }
212
__clean_dcache_guest_page(void * va,size_t size)213 static inline void __clean_dcache_guest_page(void *va, size_t size)
214 {
215 /*
216 * With FWB, we ensure that the guest always accesses memory using
217 * cacheable attributes, and we don't have to clean to PoC when
218 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
219 * PoU is not required either in this case.
220 */
221 if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
222 return;
223
224 kvm_flush_dcache_to_poc(va, size);
225 }
226
__invalidate_icache_max_range(void)227 static inline size_t __invalidate_icache_max_range(void)
228 {
229 u8 iminline;
230 u64 ctr;
231
232 asm volatile(ALTERNATIVE_CB("movz %0, #0\n"
233 "movk %0, #0, lsl #16\n"
234 "movk %0, #0, lsl #32\n"
235 "movk %0, #0, lsl #48\n",
236 ARM64_ALWAYS_SYSTEM,
237 kvm_compute_final_ctr_el0)
238 : "=r" (ctr));
239
240 iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2;
241 return MAX_DVM_OPS << iminline;
242 }
243
__invalidate_icache_guest_page(void * va,size_t size)244 static inline void __invalidate_icache_guest_page(void *va, size_t size)
245 {
246 /*
247 * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the
248 * invalidation range exceeds our arbitrary limit on invadations by
249 * cache line.
250 */
251 if (icache_is_aliasing() || size > __invalidate_icache_max_range())
252 icache_inval_all_pou();
253 else
254 icache_inval_pou((unsigned long)va, (unsigned long)va + size);
255 }
256
257 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
258 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
259
kvm_get_vmid_bits(void)260 static inline unsigned int kvm_get_vmid_bits(void)
261 {
262 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
263
264 return get_vmid_bits(reg);
265 }
266
267 /*
268 * We are not in the kvm->srcu critical section most of the time, so we take
269 * the SRCU read lock here. Since we copy the data from the user page, we
270 * can immediately drop the lock again.
271 */
kvm_read_guest_lock(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)272 static inline int kvm_read_guest_lock(struct kvm *kvm,
273 gpa_t gpa, void *data, unsigned long len)
274 {
275 int srcu_idx = srcu_read_lock(&kvm->srcu);
276 int ret = kvm_read_guest(kvm, gpa, data, len);
277
278 srcu_read_unlock(&kvm->srcu, srcu_idx);
279
280 return ret;
281 }
282
kvm_write_guest_lock(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)283 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
284 const void *data, unsigned long len)
285 {
286 int srcu_idx = srcu_read_lock(&kvm->srcu);
287 int ret = kvm_write_guest(kvm, gpa, data, len);
288
289 srcu_read_unlock(&kvm->srcu, srcu_idx);
290
291 return ret;
292 }
293
294 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
295
296 /*
297 * When this is (directly or indirectly) used on the TLB invalidation
298 * path, we rely on a previously issued DSB so that page table updates
299 * and VMID reads are correctly ordered.
300 */
kvm_get_vttbr(struct kvm_s2_mmu * mmu)301 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
302 {
303 struct kvm_vmid *vmid = &mmu->vmid;
304 u64 vmid_field, baddr;
305 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
306
307 baddr = mmu->pgd_phys;
308 vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
309 vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
310 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
311 }
312
313 /*
314 * Must be called from hyp code running at EL2 with an updated VTTBR
315 * and interrupts disabled.
316 */
__load_stage2(struct kvm_s2_mmu * mmu,struct kvm_arch * arch)317 static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
318 struct kvm_arch *arch)
319 {
320 write_sysreg(mmu->vtcr, vtcr_el2);
321 write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
322
323 /*
324 * ARM errata 1165522 and 1530923 require the actual execution of the
325 * above before we can switch to the EL1/EL0 translation regime used by
326 * the guest.
327 */
328 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
329 }
330
kvm_s2_mmu_to_kvm(struct kvm_s2_mmu * mmu)331 static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
332 {
333 return container_of(mmu->arch, struct kvm, arch);
334 }
335
get_vmid(u64 vttbr)336 static inline u64 get_vmid(u64 vttbr)
337 {
338 return (vttbr & VTTBR_VMID_MASK(kvm_get_vmid_bits())) >>
339 VTTBR_VMID_SHIFT;
340 }
341
kvm_s2_mmu_valid(struct kvm_s2_mmu * mmu)342 static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu)
343 {
344 return !(mmu->tlb_vttbr & VTTBR_CNP_BIT);
345 }
346
kvm_is_nested_s2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)347 static inline bool kvm_is_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
348 {
349 /*
350 * Be careful, mmu may not be fully initialised so do look at
351 * *any* of its fields.
352 */
353 return &kvm->arch.mmu != mmu;
354 }
355
356 #ifdef CONFIG_PTDUMP_STAGE2_DEBUGFS
357 void kvm_s2_ptdump_create_debugfs(struct kvm *kvm);
358 #else
kvm_s2_ptdump_create_debugfs(struct kvm * kvm)359 static inline void kvm_s2_ptdump_create_debugfs(struct kvm *kvm) {}
360 #endif /* CONFIG_PTDUMP_STAGE2_DEBUGFS */
361
362 #endif /* __ASSEMBLY__ */
363 #endif /* __ARM64_KVM_MMU_H__ */
364