1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11 
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13  * In practice this is far bigger than any realistic pointer offset; this limit
14  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15  */
16 #define BPF_MAX_VAR_OFF	(1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
18  * that converting umax_value to int cannot overflow.
19  */
20 #define BPF_MAX_VAR_SIZ	(1 << 29)
21 /* size of tmp_str_buf in bpf_verifier.
22  * we need at least 306 bytes to fit full stack mask representation
23  * (in the "-8,-16,...,-512" form)
24  */
25 #define TMP_STR_BUF_LEN 320
26 /* Patch buffer size */
27 #define INSN_BUF_SIZE 32
28 
29 /* Liveness marks, used for registers and spilled-regs (in stack slots).
30  * Read marks propagate upwards until they find a write mark; they record that
31  * "one of this state's descendants read this reg" (and therefore the reg is
32  * relevant for states_equal() checks).
33  * Write marks collect downwards and do not propagate; they record that "the
34  * straight-line code that reached this state (from its parent) wrote this reg"
35  * (and therefore that reads propagated from this state or its descendants
36  * should not propagate to its parent).
37  * A state with a write mark can receive read marks; it just won't propagate
38  * them to its parent, since the write mark is a property, not of the state,
39  * but of the link between it and its parent.  See mark_reg_read() and
40  * mark_stack_slot_read() in kernel/bpf/verifier.c.
41  */
42 enum bpf_reg_liveness {
43 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
44 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
45 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
46 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
47 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
48 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
49 };
50 
51 /* For every reg representing a map value or allocated object pointer,
52  * we consider the tuple of (ptr, id) for them to be unique in verifier
53  * context and conside them to not alias each other for the purposes of
54  * tracking lock state.
55  */
56 struct bpf_active_lock {
57 	/* This can either be reg->map_ptr or reg->btf. If ptr is NULL,
58 	 * there's no active lock held, and other fields have no
59 	 * meaning. If non-NULL, it indicates that a lock is held and
60 	 * id member has the reg->id of the register which can be >= 0.
61 	 */
62 	void *ptr;
63 	/* This will be reg->id */
64 	u32 id;
65 };
66 
67 #define ITER_PREFIX "bpf_iter_"
68 
69 enum bpf_iter_state {
70 	BPF_ITER_STATE_INVALID, /* for non-first slot */
71 	BPF_ITER_STATE_ACTIVE,
72 	BPF_ITER_STATE_DRAINED,
73 };
74 
75 struct bpf_reg_state {
76 	/* Ordering of fields matters.  See states_equal() */
77 	enum bpf_reg_type type;
78 	/*
79 	 * Fixed part of pointer offset, pointer types only.
80 	 * Or constant delta between "linked" scalars with the same ID.
81 	 */
82 	s32 off;
83 	union {
84 		/* valid when type == PTR_TO_PACKET */
85 		int range;
86 
87 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
88 		 *   PTR_TO_MAP_VALUE_OR_NULL
89 		 */
90 		struct {
91 			struct bpf_map *map_ptr;
92 			/* To distinguish map lookups from outer map
93 			 * the map_uid is non-zero for registers
94 			 * pointing to inner maps.
95 			 */
96 			u32 map_uid;
97 		};
98 
99 		/* for PTR_TO_BTF_ID */
100 		struct {
101 			struct btf *btf;
102 			u32 btf_id;
103 		};
104 
105 		struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
106 			u32 mem_size;
107 			u32 dynptr_id; /* for dynptr slices */
108 		};
109 
110 		/* For dynptr stack slots */
111 		struct {
112 			enum bpf_dynptr_type type;
113 			/* A dynptr is 16 bytes so it takes up 2 stack slots.
114 			 * We need to track which slot is the first slot
115 			 * to protect against cases where the user may try to
116 			 * pass in an address starting at the second slot of the
117 			 * dynptr.
118 			 */
119 			bool first_slot;
120 		} dynptr;
121 
122 		/* For bpf_iter stack slots */
123 		struct {
124 			/* BTF container and BTF type ID describing
125 			 * struct bpf_iter_<type> of an iterator state
126 			 */
127 			struct btf *btf;
128 			u32 btf_id;
129 			/* packing following two fields to fit iter state into 16 bytes */
130 			enum bpf_iter_state state:2;
131 			int depth:30;
132 		} iter;
133 
134 		/* Max size from any of the above. */
135 		struct {
136 			unsigned long raw1;
137 			unsigned long raw2;
138 		} raw;
139 
140 		u32 subprogno; /* for PTR_TO_FUNC */
141 	};
142 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
143 	 * the actual value.
144 	 * For pointer types, this represents the variable part of the offset
145 	 * from the pointed-to object, and is shared with all bpf_reg_states
146 	 * with the same id as us.
147 	 */
148 	struct tnum var_off;
149 	/* Used to determine if any memory access using this register will
150 	 * result in a bad access.
151 	 * These refer to the same value as var_off, not necessarily the actual
152 	 * contents of the register.
153 	 */
154 	s64 smin_value; /* minimum possible (s64)value */
155 	s64 smax_value; /* maximum possible (s64)value */
156 	u64 umin_value; /* minimum possible (u64)value */
157 	u64 umax_value; /* maximum possible (u64)value */
158 	s32 s32_min_value; /* minimum possible (s32)value */
159 	s32 s32_max_value; /* maximum possible (s32)value */
160 	u32 u32_min_value; /* minimum possible (u32)value */
161 	u32 u32_max_value; /* maximum possible (u32)value */
162 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
163 	 * offset, so they can share range knowledge.
164 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
165 	 * came from, when one is tested for != NULL.
166 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
167 	 * for the purpose of tracking that it's freed.
168 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
169 	 * same reference to the socket, to determine proper reference freeing.
170 	 * For stack slots that are dynptrs, this is used to track references to
171 	 * the dynptr to determine proper reference freeing.
172 	 * Similarly to dynptrs, we use ID to track "belonging" of a reference
173 	 * to a specific instance of bpf_iter.
174 	 */
175 	/*
176 	 * Upper bit of ID is used to remember relationship between "linked"
177 	 * registers. Example:
178 	 * r1 = r2;    both will have r1->id == r2->id == N
179 	 * r1 += 10;   r1->id == N | BPF_ADD_CONST and r1->off == 10
180 	 */
181 #define BPF_ADD_CONST (1U << 31)
182 	u32 id;
183 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
184 	 * from a pointer-cast helper, bpf_sk_fullsock() and
185 	 * bpf_tcp_sock().
186 	 *
187 	 * Consider the following where "sk" is a reference counted
188 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
189 	 *
190 	 * 1: sk = bpf_sk_lookup_tcp();
191 	 * 2: if (!sk) { return 0; }
192 	 * 3: fullsock = bpf_sk_fullsock(sk);
193 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
194 	 * 5: tp = bpf_tcp_sock(fullsock);
195 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
196 	 * 7: bpf_sk_release(sk);
197 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
198 	 *
199 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
200 	 * "tp" ptr should be invalidated also.  In order to do that,
201 	 * the reg holding "fullsock" and "sk" need to remember
202 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
203 	 * such that the verifier can reset all regs which have
204 	 * ref_obj_id matching the sk_reg->id.
205 	 *
206 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
207 	 * sk_reg->id will stay as NULL-marking purpose only.
208 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
209 	 *
210 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
211 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
212 	 *
213 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
214 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
215 	 * which is the same as sk_reg->ref_obj_id.
216 	 *
217 	 * From the verifier perspective, if sk, fullsock and tp
218 	 * are not NULL, they are the same ptr with different
219 	 * reg->type.  In particular, bpf_sk_release(tp) is also
220 	 * allowed and has the same effect as bpf_sk_release(sk).
221 	 */
222 	u32 ref_obj_id;
223 	/* parentage chain for liveness checking */
224 	struct bpf_reg_state *parent;
225 	/* Inside the callee two registers can be both PTR_TO_STACK like
226 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
227 	 * while another to the caller's stack. To differentiate them 'frameno'
228 	 * is used which is an index in bpf_verifier_state->frame[] array
229 	 * pointing to bpf_func_state.
230 	 */
231 	u32 frameno;
232 	/* Tracks subreg definition. The stored value is the insn_idx of the
233 	 * writing insn. This is safe because subreg_def is used before any insn
234 	 * patching which only happens after main verification finished.
235 	 */
236 	s32 subreg_def;
237 	enum bpf_reg_liveness live;
238 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
239 	bool precise;
240 };
241 
242 enum bpf_stack_slot_type {
243 	STACK_INVALID,    /* nothing was stored in this stack slot */
244 	STACK_SPILL,      /* register spilled into stack */
245 	STACK_MISC,	  /* BPF program wrote some data into this slot */
246 	STACK_ZERO,	  /* BPF program wrote constant zero */
247 	/* A dynptr is stored in this stack slot. The type of dynptr
248 	 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
249 	 */
250 	STACK_DYNPTR,
251 	STACK_ITER,
252 };
253 
254 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
255 
256 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \
257 			  (1 << BPF_REG_3) | (1 << BPF_REG_4) | \
258 			  (1 << BPF_REG_5))
259 
260 #define BPF_DYNPTR_SIZE		sizeof(struct bpf_dynptr_kern)
261 #define BPF_DYNPTR_NR_SLOTS		(BPF_DYNPTR_SIZE / BPF_REG_SIZE)
262 
263 struct bpf_stack_state {
264 	struct bpf_reg_state spilled_ptr;
265 	u8 slot_type[BPF_REG_SIZE];
266 };
267 
268 struct bpf_reference_state {
269 	/* Track each reference created with a unique id, even if the same
270 	 * instruction creates the reference multiple times (eg, via CALL).
271 	 */
272 	int id;
273 	/* Instruction where the allocation of this reference occurred. This
274 	 * is used purely to inform the user of a reference leak.
275 	 */
276 	int insn_idx;
277 	/* There can be a case like:
278 	 * main (frame 0)
279 	 *  cb (frame 1)
280 	 *   func (frame 3)
281 	 *    cb (frame 4)
282 	 * Hence for frame 4, if callback_ref just stored boolean, it would be
283 	 * impossible to distinguish nested callback refs. Hence store the
284 	 * frameno and compare that to callback_ref in check_reference_leak when
285 	 * exiting a callback function.
286 	 */
287 	int callback_ref;
288 };
289 
290 struct bpf_retval_range {
291 	s32 minval;
292 	s32 maxval;
293 };
294 
295 /* state of the program:
296  * type of all registers and stack info
297  */
298 struct bpf_func_state {
299 	struct bpf_reg_state regs[MAX_BPF_REG];
300 	/* index of call instruction that called into this func */
301 	int callsite;
302 	/* stack frame number of this function state from pov of
303 	 * enclosing bpf_verifier_state.
304 	 * 0 = main function, 1 = first callee.
305 	 */
306 	u32 frameno;
307 	/* subprog number == index within subprog_info
308 	 * zero == main subprog
309 	 */
310 	u32 subprogno;
311 	/* Every bpf_timer_start will increment async_entry_cnt.
312 	 * It's used to distinguish:
313 	 * void foo(void) { for(;;); }
314 	 * void foo(void) { bpf_timer_set_callback(,foo); }
315 	 */
316 	u32 async_entry_cnt;
317 	struct bpf_retval_range callback_ret_range;
318 	bool in_callback_fn;
319 	bool in_async_callback_fn;
320 	bool in_exception_callback_fn;
321 	/* For callback calling functions that limit number of possible
322 	 * callback executions (e.g. bpf_loop) keeps track of current
323 	 * simulated iteration number.
324 	 * Value in frame N refers to number of times callback with frame
325 	 * N+1 was simulated, e.g. for the following call:
326 	 *
327 	 *   bpf_loop(..., fn, ...); | suppose current frame is N
328 	 *                           | fn would be simulated in frame N+1
329 	 *                           | number of simulations is tracked in frame N
330 	 */
331 	u32 callback_depth;
332 
333 	/* The following fields should be last. See copy_func_state() */
334 	int acquired_refs;
335 	struct bpf_reference_state *refs;
336 	/* The state of the stack. Each element of the array describes BPF_REG_SIZE
337 	 * (i.e. 8) bytes worth of stack memory.
338 	 * stack[0] represents bytes [*(r10-8)..*(r10-1)]
339 	 * stack[1] represents bytes [*(r10-16)..*(r10-9)]
340 	 * ...
341 	 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)]
342 	 */
343 	struct bpf_stack_state *stack;
344 	/* Size of the current stack, in bytes. The stack state is tracked below, in
345 	 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE.
346 	 */
347 	int allocated_stack;
348 };
349 
350 #define MAX_CALL_FRAMES 8
351 
352 /* instruction history flags, used in bpf_jmp_history_entry.flags field */
353 enum {
354 	/* instruction references stack slot through PTR_TO_STACK register;
355 	 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8)
356 	 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512,
357 	 * 8 bytes per slot, so slot index (spi) is [0, 63])
358 	 */
359 	INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */
360 
361 	INSN_F_SPI_MASK = 0x3f, /* 6 bits */
362 	INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */
363 
364 	INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */
365 };
366 
367 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES);
368 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8);
369 
370 struct bpf_jmp_history_entry {
371 	u32 idx;
372 	/* insn idx can't be bigger than 1 million */
373 	u32 prev_idx : 22;
374 	/* special flags, e.g., whether insn is doing register stack spill/load */
375 	u32 flags : 10;
376 	/* additional registers that need precision tracking when this
377 	 * jump is backtracked, vector of six 10-bit records
378 	 */
379 	u64 linked_regs;
380 };
381 
382 /* Maximum number of register states that can exist at once */
383 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
384 struct bpf_verifier_state {
385 	/* call stack tracking */
386 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
387 	struct bpf_verifier_state *parent;
388 	/*
389 	 * 'branches' field is the number of branches left to explore:
390 	 * 0 - all possible paths from this state reached bpf_exit or
391 	 * were safely pruned
392 	 * 1 - at least one path is being explored.
393 	 * This state hasn't reached bpf_exit
394 	 * 2 - at least two paths are being explored.
395 	 * This state is an immediate parent of two children.
396 	 * One is fallthrough branch with branches==1 and another
397 	 * state is pushed into stack (to be explored later) also with
398 	 * branches==1. The parent of this state has branches==1.
399 	 * The verifier state tree connected via 'parent' pointer looks like:
400 	 * 1
401 	 * 1
402 	 * 2 -> 1 (first 'if' pushed into stack)
403 	 * 1
404 	 * 2 -> 1 (second 'if' pushed into stack)
405 	 * 1
406 	 * 1
407 	 * 1 bpf_exit.
408 	 *
409 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
410 	 * and the verifier state tree will look:
411 	 * 1
412 	 * 1
413 	 * 2 -> 1 (first 'if' pushed into stack)
414 	 * 1
415 	 * 1 -> 1 (second 'if' pushed into stack)
416 	 * 0
417 	 * 0
418 	 * 0 bpf_exit.
419 	 * After pop_stack() the do_check() will resume at second 'if'.
420 	 *
421 	 * If is_state_visited() sees a state with branches > 0 it means
422 	 * there is a loop. If such state is exactly equal to the current state
423 	 * it's an infinite loop. Note states_equal() checks for states
424 	 * equivalency, so two states being 'states_equal' does not mean
425 	 * infinite loop. The exact comparison is provided by
426 	 * states_maybe_looping() function. It's a stronger pre-check and
427 	 * much faster than states_equal().
428 	 *
429 	 * This algorithm may not find all possible infinite loops or
430 	 * loop iteration count may be too high.
431 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
432 	 */
433 	u32 branches;
434 	u32 insn_idx;
435 	u32 curframe;
436 
437 	struct bpf_active_lock active_lock;
438 	bool speculative;
439 	bool active_rcu_lock;
440 	u32 active_preempt_lock;
441 	/* If this state was ever pointed-to by other state's loop_entry field
442 	 * this flag would be set to true. Used to avoid freeing such states
443 	 * while they are still in use.
444 	 */
445 	bool used_as_loop_entry;
446 	bool in_sleepable;
447 
448 	/* first and last insn idx of this verifier state */
449 	u32 first_insn_idx;
450 	u32 last_insn_idx;
451 	/* If this state is a part of states loop this field points to some
452 	 * parent of this state such that:
453 	 * - it is also a member of the same states loop;
454 	 * - DFS states traversal starting from initial state visits loop_entry
455 	 *   state before this state.
456 	 * Used to compute topmost loop entry for state loops.
457 	 * State loops might appear because of open coded iterators logic.
458 	 * See get_loop_entry() for more information.
459 	 */
460 	struct bpf_verifier_state *loop_entry;
461 	/* jmp history recorded from first to last.
462 	 * backtracking is using it to go from last to first.
463 	 * For most states jmp_history_cnt is [0-3].
464 	 * For loops can go up to ~40.
465 	 */
466 	struct bpf_jmp_history_entry *jmp_history;
467 	u32 jmp_history_cnt;
468 	u32 dfs_depth;
469 	u32 callback_unroll_depth;
470 	u32 may_goto_depth;
471 };
472 
473 #define bpf_get_spilled_reg(slot, frame, mask)				\
474 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
475 	  ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \
476 	 ? &frame->stack[slot].spilled_ptr : NULL)
477 
478 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
479 #define bpf_for_each_spilled_reg(iter, frame, reg, mask)			\
480 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask);		\
481 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
482 	     iter++, reg = bpf_get_spilled_reg(iter, frame, mask))
483 
484 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr)   \
485 	({                                                               \
486 		struct bpf_verifier_state *___vstate = __vst;            \
487 		int ___i, ___j;                                          \
488 		for (___i = 0; ___i <= ___vstate->curframe; ___i++) {    \
489 			struct bpf_reg_state *___regs;                   \
490 			__state = ___vstate->frame[___i];                \
491 			___regs = __state->regs;                         \
492 			for (___j = 0; ___j < MAX_BPF_REG; ___j++) {     \
493 				__reg = &___regs[___j];                  \
494 				(void)(__expr);                          \
495 			}                                                \
496 			bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \
497 				if (!__reg)                              \
498 					continue;                        \
499 				(void)(__expr);                          \
500 			}                                                \
501 		}                                                        \
502 	})
503 
504 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
505 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \
506 	bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr)
507 
508 /* linked list of verifier states used to prune search */
509 struct bpf_verifier_state_list {
510 	struct bpf_verifier_state state;
511 	struct bpf_verifier_state_list *next;
512 	int miss_cnt, hit_cnt;
513 };
514 
515 struct bpf_loop_inline_state {
516 	unsigned int initialized:1; /* set to true upon first entry */
517 	unsigned int fit_for_inline:1; /* true if callback function is the same
518 					* at each call and flags are always zero
519 					*/
520 	u32 callback_subprogno; /* valid when fit_for_inline is true */
521 };
522 
523 /* pointer and state for maps */
524 struct bpf_map_ptr_state {
525 	struct bpf_map *map_ptr;
526 	bool poison;
527 	bool unpriv;
528 };
529 
530 /* Possible states for alu_state member. */
531 #define BPF_ALU_SANITIZE_SRC		(1U << 0)
532 #define BPF_ALU_SANITIZE_DST		(1U << 1)
533 #define BPF_ALU_NEG_VALUE		(1U << 2)
534 #define BPF_ALU_NON_POINTER		(1U << 3)
535 #define BPF_ALU_IMMEDIATE		(1U << 4)
536 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
537 					 BPF_ALU_SANITIZE_DST)
538 
539 struct bpf_insn_aux_data {
540 	union {
541 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
542 		struct bpf_map_ptr_state map_ptr_state;
543 		s32 call_imm;			/* saved imm field of call insn */
544 		u32 alu_limit;			/* limit for add/sub register with pointer */
545 		struct {
546 			u32 map_index;		/* index into used_maps[] */
547 			u32 map_off;		/* offset from value base address */
548 		};
549 		struct {
550 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
551 			union {
552 				struct {
553 					struct btf *btf;
554 					u32 btf_id;	/* btf_id for struct typed var */
555 				};
556 				u32 mem_size;	/* mem_size for non-struct typed var */
557 			};
558 		} btf_var;
559 		/* if instruction is a call to bpf_loop this field tracks
560 		 * the state of the relevant registers to make decision about inlining
561 		 */
562 		struct bpf_loop_inline_state loop_inline_state;
563 	};
564 	union {
565 		/* remember the size of type passed to bpf_obj_new to rewrite R1 */
566 		u64 obj_new_size;
567 		/* remember the offset of node field within type to rewrite */
568 		u64 insert_off;
569 	};
570 	struct btf_struct_meta *kptr_struct_meta;
571 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
572 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
573 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
574 	bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
575 	bool zext_dst; /* this insn zero extends dst reg */
576 	bool needs_zext; /* alu op needs to clear upper bits */
577 	bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
578 	bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */
579 	bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */
580 	u8 alu_state; /* used in combination with alu_limit */
581 	/* true if STX or LDX instruction is a part of a spill/fill
582 	 * pattern for a bpf_fastcall call.
583 	 */
584 	u8 fastcall_pattern:1;
585 	/* for CALL instructions, a number of spill/fill pairs in the
586 	 * bpf_fastcall pattern.
587 	 */
588 	u8 fastcall_spills_num:3;
589 
590 	/* below fields are initialized once */
591 	unsigned int orig_idx; /* original instruction index */
592 	bool jmp_point;
593 	bool prune_point;
594 	/* ensure we check state equivalence and save state checkpoint and
595 	 * this instruction, regardless of any heuristics
596 	 */
597 	bool force_checkpoint;
598 	/* true if instruction is a call to a helper function that
599 	 * accepts callback function as a parameter.
600 	 */
601 	bool calls_callback;
602 };
603 
604 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
605 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
606 
607 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
608 
609 struct bpf_verifier_log {
610 	/* Logical start and end positions of a "log window" of the verifier log.
611 	 * start_pos == 0 means we haven't truncated anything.
612 	 * Once truncation starts to happen, start_pos + len_total == end_pos,
613 	 * except during log reset situations, in which (end_pos - start_pos)
614 	 * might get smaller than len_total (see bpf_vlog_reset()).
615 	 * Generally, (end_pos - start_pos) gives number of useful data in
616 	 * user log buffer.
617 	 */
618 	u64 start_pos;
619 	u64 end_pos;
620 	char __user *ubuf;
621 	u32 level;
622 	u32 len_total;
623 	u32 len_max;
624 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
625 };
626 
627 #define BPF_LOG_LEVEL1	1
628 #define BPF_LOG_LEVEL2	2
629 #define BPF_LOG_STATS	4
630 #define BPF_LOG_FIXED	8
631 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
632 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED)
633 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
634 #define BPF_LOG_MIN_ALIGNMENT 8U
635 #define BPF_LOG_ALIGNMENT 40U
636 
bpf_verifier_log_needed(const struct bpf_verifier_log * log)637 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
638 {
639 	return log && log->level;
640 }
641 
642 #define BPF_MAX_SUBPROGS 256
643 
644 struct bpf_subprog_arg_info {
645 	enum bpf_arg_type arg_type;
646 	union {
647 		u32 mem_size;
648 		u32 btf_id;
649 	};
650 };
651 
652 struct bpf_subprog_info {
653 	/* 'start' has to be the first field otherwise find_subprog() won't work */
654 	u32 start; /* insn idx of function entry point */
655 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
656 	u16 stack_depth; /* max. stack depth used by this function */
657 	u16 stack_extra;
658 	/* offsets in range [stack_depth .. fastcall_stack_off)
659 	 * are used for bpf_fastcall spills and fills.
660 	 */
661 	s16 fastcall_stack_off;
662 	bool has_tail_call: 1;
663 	bool tail_call_reachable: 1;
664 	bool has_ld_abs: 1;
665 	bool is_cb: 1;
666 	bool is_async_cb: 1;
667 	bool is_exception_cb: 1;
668 	bool args_cached: 1;
669 	/* true if bpf_fastcall stack region is used by functions that can't be inlined */
670 	bool keep_fastcall_stack: 1;
671 
672 	u8 arg_cnt;
673 	struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS];
674 };
675 
676 struct bpf_verifier_env;
677 
678 struct backtrack_state {
679 	struct bpf_verifier_env *env;
680 	u32 frame;
681 	u32 reg_masks[MAX_CALL_FRAMES];
682 	u64 stack_masks[MAX_CALL_FRAMES];
683 };
684 
685 struct bpf_id_pair {
686 	u32 old;
687 	u32 cur;
688 };
689 
690 struct bpf_idmap {
691 	u32 tmp_id_gen;
692 	struct bpf_id_pair map[BPF_ID_MAP_SIZE];
693 };
694 
695 struct bpf_idset {
696 	u32 count;
697 	u32 ids[BPF_ID_MAP_SIZE];
698 };
699 
700 /* single container for all structs
701  * one verifier_env per bpf_check() call
702  */
703 struct bpf_verifier_env {
704 	u32 insn_idx;
705 	u32 prev_insn_idx;
706 	struct bpf_prog *prog;		/* eBPF program being verified */
707 	const struct bpf_verifier_ops *ops;
708 	struct module *attach_btf_mod;	/* The owner module of prog->aux->attach_btf */
709 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
710 	int stack_size;			/* number of states to be processed */
711 	bool strict_alignment;		/* perform strict pointer alignment checks */
712 	bool test_state_freq;		/* test verifier with different pruning frequency */
713 	bool test_reg_invariants;	/* fail verification on register invariants violations */
714 	struct bpf_verifier_state *cur_state; /* current verifier state */
715 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
716 	struct bpf_verifier_state_list *free_list;
717 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
718 	struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
719 	u32 used_map_cnt;		/* number of used maps */
720 	u32 used_btf_cnt;		/* number of used BTF objects */
721 	u32 id_gen;			/* used to generate unique reg IDs */
722 	u32 hidden_subprog_cnt;		/* number of hidden subprogs */
723 	int exception_callback_subprog;
724 	bool explore_alu_limits;
725 	bool allow_ptr_leaks;
726 	/* Allow access to uninitialized stack memory. Writes with fixed offset are
727 	 * always allowed, so this refers to reads (with fixed or variable offset),
728 	 * to writes with variable offset and to indirect (helper) accesses.
729 	 */
730 	bool allow_uninit_stack;
731 	bool bpf_capable;
732 	bool bypass_spec_v1;
733 	bool bypass_spec_v4;
734 	bool seen_direct_write;
735 	bool seen_exception;
736 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
737 	const struct bpf_line_info *prev_linfo;
738 	struct bpf_verifier_log log;
739 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */
740 	union {
741 		struct bpf_idmap idmap_scratch;
742 		struct bpf_idset idset_scratch;
743 	};
744 	struct {
745 		int *insn_state;
746 		int *insn_stack;
747 		int cur_stack;
748 	} cfg;
749 	struct backtrack_state bt;
750 	struct bpf_jmp_history_entry *cur_hist_ent;
751 	u32 pass_cnt; /* number of times do_check() was called */
752 	u32 subprog_cnt;
753 	/* number of instructions analyzed by the verifier */
754 	u32 prev_insn_processed, insn_processed;
755 	/* number of jmps, calls, exits analyzed so far */
756 	u32 prev_jmps_processed, jmps_processed;
757 	/* total verification time */
758 	u64 verification_time;
759 	/* maximum number of verifier states kept in 'branching' instructions */
760 	u32 max_states_per_insn;
761 	/* total number of allocated verifier states */
762 	u32 total_states;
763 	/* some states are freed during program analysis.
764 	 * this is peak number of states. this number dominates kernel
765 	 * memory consumption during verification
766 	 */
767 	u32 peak_states;
768 	/* longest register parentage chain walked for liveness marking */
769 	u32 longest_mark_read_walk;
770 	bpfptr_t fd_array;
771 
772 	/* bit mask to keep track of whether a register has been accessed
773 	 * since the last time the function state was printed
774 	 */
775 	u32 scratched_regs;
776 	/* Same as scratched_regs but for stack slots */
777 	u64 scratched_stack_slots;
778 	u64 prev_log_pos, prev_insn_print_pos;
779 	/* buffer used to temporary hold constants as scalar registers */
780 	struct bpf_reg_state fake_reg[2];
781 	/* buffer used to generate temporary string representations,
782 	 * e.g., in reg_type_str() to generate reg_type string
783 	 */
784 	char tmp_str_buf[TMP_STR_BUF_LEN];
785 	struct bpf_insn insn_buf[INSN_BUF_SIZE];
786 	struct bpf_insn epilogue_buf[INSN_BUF_SIZE];
787 };
788 
subprog_aux(struct bpf_verifier_env * env,int subprog)789 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog)
790 {
791 	return &env->prog->aux->func_info_aux[subprog];
792 }
793 
subprog_info(struct bpf_verifier_env * env,int subprog)794 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog)
795 {
796 	return &env->subprog_info[subprog];
797 }
798 
799 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
800 				      const char *fmt, va_list args);
801 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
802 					   const char *fmt, ...);
803 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
804 			    const char *fmt, ...);
805 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
806 		  char __user *log_buf, u32 log_size);
807 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos);
808 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual);
809 
810 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
811 				  u32 insn_off,
812 				  const char *prefix_fmt, ...);
813 
cur_func(struct bpf_verifier_env * env)814 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
815 {
816 	struct bpf_verifier_state *cur = env->cur_state;
817 
818 	return cur->frame[cur->curframe];
819 }
820 
cur_regs(struct bpf_verifier_env * env)821 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
822 {
823 	return cur_func(env)->regs;
824 }
825 
826 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
827 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
828 				 int insn_idx, int prev_insn_idx);
829 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
830 void
831 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
832 			      struct bpf_insn *insn);
833 void
834 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
835 
836 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,struct btf * btf,u32 btf_id)837 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
838 					     struct btf *btf, u32 btf_id)
839 {
840 	if (tgt_prog)
841 		return ((u64)tgt_prog->aux->id << 32) | btf_id;
842 	else
843 		return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
844 }
845 
846 /* unpack the IDs from the key as constructed above */
bpf_trampoline_unpack_key(u64 key,u32 * obj_id,u32 * btf_id)847 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
848 {
849 	if (obj_id)
850 		*obj_id = key >> 32;
851 	if (btf_id)
852 		*btf_id = key & 0x7FFFFFFF;
853 }
854 
855 int bpf_check_attach_target(struct bpf_verifier_log *log,
856 			    const struct bpf_prog *prog,
857 			    const struct bpf_prog *tgt_prog,
858 			    u32 btf_id,
859 			    struct bpf_attach_target_info *tgt_info);
860 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
861 
862 int mark_chain_precision(struct bpf_verifier_env *env, int regno);
863 
864 #define BPF_BASE_TYPE_MASK	GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
865 
866 /* extract base type from bpf_{arg, return, reg}_type. */
base_type(u32 type)867 static inline u32 base_type(u32 type)
868 {
869 	return type & BPF_BASE_TYPE_MASK;
870 }
871 
872 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
type_flag(u32 type)873 static inline u32 type_flag(u32 type)
874 {
875 	return type & ~BPF_BASE_TYPE_MASK;
876 }
877 
878 /* only use after check_attach_btf_id() */
resolve_prog_type(const struct bpf_prog * prog)879 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
880 {
881 	return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ?
882 		prog->aux->saved_dst_prog_type : prog->type;
883 }
884 
bpf_prog_check_recur(const struct bpf_prog * prog)885 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
886 {
887 	switch (resolve_prog_type(prog)) {
888 	case BPF_PROG_TYPE_TRACING:
889 		return prog->expected_attach_type != BPF_TRACE_ITER;
890 	case BPF_PROG_TYPE_STRUCT_OPS:
891 	case BPF_PROG_TYPE_LSM:
892 		return false;
893 	default:
894 		return true;
895 	}
896 }
897 
898 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF)
899 
bpf_type_has_unsafe_modifiers(u32 type)900 static inline bool bpf_type_has_unsafe_modifiers(u32 type)
901 {
902 	return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
903 }
904 
type_is_ptr_alloc_obj(u32 type)905 static inline bool type_is_ptr_alloc_obj(u32 type)
906 {
907 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
908 }
909 
type_is_non_owning_ref(u32 type)910 static inline bool type_is_non_owning_ref(u32 type)
911 {
912 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
913 }
914 
type_is_pkt_pointer(enum bpf_reg_type type)915 static inline bool type_is_pkt_pointer(enum bpf_reg_type type)
916 {
917 	type = base_type(type);
918 	return type == PTR_TO_PACKET ||
919 	       type == PTR_TO_PACKET_META;
920 }
921 
type_is_sk_pointer(enum bpf_reg_type type)922 static inline bool type_is_sk_pointer(enum bpf_reg_type type)
923 {
924 	return type == PTR_TO_SOCKET ||
925 		type == PTR_TO_SOCK_COMMON ||
926 		type == PTR_TO_TCP_SOCK ||
927 		type == PTR_TO_XDP_SOCK;
928 }
929 
type_may_be_null(u32 type)930 static inline bool type_may_be_null(u32 type)
931 {
932 	return type & PTR_MAYBE_NULL;
933 }
934 
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)935 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
936 {
937 	env->scratched_regs |= 1U << regno;
938 }
939 
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)940 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
941 {
942 	env->scratched_stack_slots |= 1ULL << spi;
943 }
944 
reg_scratched(const struct bpf_verifier_env * env,u32 regno)945 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
946 {
947 	return (env->scratched_regs >> regno) & 1;
948 }
949 
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)950 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
951 {
952 	return (env->scratched_stack_slots >> regno) & 1;
953 }
954 
verifier_state_scratched(const struct bpf_verifier_env * env)955 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env)
956 {
957 	return env->scratched_regs || env->scratched_stack_slots;
958 }
959 
mark_verifier_state_clean(struct bpf_verifier_env * env)960 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env)
961 {
962 	env->scratched_regs = 0U;
963 	env->scratched_stack_slots = 0ULL;
964 }
965 
966 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)967 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env)
968 {
969 	env->scratched_regs = ~0U;
970 	env->scratched_stack_slots = ~0ULL;
971 }
972 
bpf_stack_narrow_access_ok(int off,int fill_size,int spill_size)973 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size)
974 {
975 #ifdef __BIG_ENDIAN
976 	off -= spill_size - fill_size;
977 #endif
978 
979 	return !(off % BPF_REG_SIZE);
980 }
981 
982 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type);
983 const char *dynptr_type_str(enum bpf_dynptr_type type);
984 const char *iter_type_str(const struct btf *btf, u32 btf_id);
985 const char *iter_state_str(enum bpf_iter_state state);
986 
987 void print_verifier_state(struct bpf_verifier_env *env,
988 			  const struct bpf_func_state *state, bool print_all);
989 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state);
990 
991 #endif /* _LINUX_BPF_VERIFIER_H */
992