1  /* ******************************************************************
2   * FSE : Finite State Entropy codec
3   * Public Prototypes declaration
4   * Copyright (c) Yann Collet, Facebook, Inc.
5   *
6   * You can contact the author at :
7   * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
8   *
9   * This source code is licensed under both the BSD-style license (found in the
10   * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11   * in the COPYING file in the root directory of this source tree).
12   * You may select, at your option, one of the above-listed licenses.
13  ****************************************************************** */
14  
15  
16  #ifndef FSE_H
17  #define FSE_H
18  
19  
20  /*-*****************************************
21  *  Dependencies
22  ******************************************/
23  #include "zstd_deps.h"    /* size_t, ptrdiff_t */
24  
25  
26  /*-*****************************************
27  *  FSE_PUBLIC_API : control library symbols visibility
28  ******************************************/
29  #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
30  #  define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
31  #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1)   /* Visual expected */
32  #  define FSE_PUBLIC_API __declspec(dllexport)
33  #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
34  #  define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
35  #else
36  #  define FSE_PUBLIC_API
37  #endif
38  
39  /*------   Version   ------*/
40  #define FSE_VERSION_MAJOR    0
41  #define FSE_VERSION_MINOR    9
42  #define FSE_VERSION_RELEASE  0
43  
44  #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
45  #define FSE_QUOTE(str) #str
46  #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
47  #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
48  
49  #define FSE_VERSION_NUMBER  (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
50  FSE_PUBLIC_API unsigned FSE_versionNumber(void);   /*< library version number; to be used when checking dll version */
51  
52  
53  /*-****************************************
54  *  FSE simple functions
55  ******************************************/
56  /*! FSE_compress() :
57      Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
58      'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
59      @return : size of compressed data (<= dstCapacity).
60      Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
61                       if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
62                       if FSE_isError(return), compression failed (more details using FSE_getErrorName())
63  */
64  FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
65                               const void* src, size_t srcSize);
66  
67  /*! FSE_decompress():
68      Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
69      into already allocated destination buffer 'dst', of size 'dstCapacity'.
70      @return : size of regenerated data (<= maxDstSize),
71                or an error code, which can be tested using FSE_isError() .
72  
73      ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
74      Why ? : making this distinction requires a header.
75      Header management is intentionally delegated to the user layer, which can better manage special cases.
76  */
77  FSE_PUBLIC_API size_t FSE_decompress(void* dst,  size_t dstCapacity,
78                                 const void* cSrc, size_t cSrcSize);
79  
80  
81  /*-*****************************************
82  *  Tool functions
83  ******************************************/
84  FSE_PUBLIC_API size_t FSE_compressBound(size_t size);       /* maximum compressed size */
85  
86  /* Error Management */
87  FSE_PUBLIC_API unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
88  FSE_PUBLIC_API const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
89  
90  
91  /*-*****************************************
92  *  FSE advanced functions
93  ******************************************/
94  /*! FSE_compress2() :
95      Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
96      Both parameters can be defined as '0' to mean : use default value
97      @return : size of compressed data
98      Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
99                       if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
100                       if FSE_isError(return), it's an error code.
101  */
102  FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
103  
104  
105  /*-*****************************************
106  *  FSE detailed API
107  ******************************************/
108  /*!
109  FSE_compress() does the following:
110  1. count symbol occurrence from source[] into table count[] (see hist.h)
111  2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
112  3. save normalized counters to memory buffer using writeNCount()
113  4. build encoding table 'CTable' from normalized counters
114  5. encode the data stream using encoding table 'CTable'
115  
116  FSE_decompress() does the following:
117  1. read normalized counters with readNCount()
118  2. build decoding table 'DTable' from normalized counters
119  3. decode the data stream using decoding table 'DTable'
120  
121  The following API allows targeting specific sub-functions for advanced tasks.
122  For example, it's possible to compress several blocks using the same 'CTable',
123  or to save and provide normalized distribution using external method.
124  */
125  
126  /* *** COMPRESSION *** */
127  
128  /*! FSE_optimalTableLog():
129      dynamically downsize 'tableLog' when conditions are met.
130      It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
131      @return : recommended tableLog (necessarily <= 'maxTableLog') */
132  FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
133  
134  /*! FSE_normalizeCount():
135      normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
136      'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
137      useLowProbCount is a boolean parameter which trades off compressed size for
138      faster header decoding. When it is set to 1, the compressed data will be slightly
139      smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
140      faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
141      is a good default, since header deserialization makes a big speed difference.
142      Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
143      @return : tableLog,
144                or an errorCode, which can be tested using FSE_isError() */
145  FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
146                      const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
147  
148  /*! FSE_NCountWriteBound():
149      Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
150      Typically useful for allocation purpose. */
151  FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
152  
153  /*! FSE_writeNCount():
154      Compactly save 'normalizedCounter' into 'buffer'.
155      @return : size of the compressed table,
156                or an errorCode, which can be tested using FSE_isError(). */
157  FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
158                                   const short* normalizedCounter,
159                                   unsigned maxSymbolValue, unsigned tableLog);
160  
161  /*! Constructor and Destructor of FSE_CTable.
162      Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
163  typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
164  FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog);
165  FSE_PUBLIC_API void        FSE_freeCTable (FSE_CTable* ct);
166  
167  /*! FSE_buildCTable():
168      Builds `ct`, which must be already allocated, using FSE_createCTable().
169      @return : 0, or an errorCode, which can be tested using FSE_isError() */
170  FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
171  
172  /*! FSE_compress_usingCTable():
173      Compress `src` using `ct` into `dst` which must be already allocated.
174      @return : size of compressed data (<= `dstCapacity`),
175                or 0 if compressed data could not fit into `dst`,
176                or an errorCode, which can be tested using FSE_isError() */
177  FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
178  
179  /*!
180  Tutorial :
181  ----------
182  The first step is to count all symbols. FSE_count() does this job very fast.
183  Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
184  'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
185  maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
186  FSE_count() will return the number of occurrence of the most frequent symbol.
187  This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
188  If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
189  
190  The next step is to normalize the frequencies.
191  FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
192  It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
193  You can use 'tableLog'==0 to mean "use default tableLog value".
194  If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
195  which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
196  
197  The result of FSE_normalizeCount() will be saved into a table,
198  called 'normalizedCounter', which is a table of signed short.
199  'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
200  The return value is tableLog if everything proceeded as expected.
201  It is 0 if there is a single symbol within distribution.
202  If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
203  
204  'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
205  'buffer' must be already allocated.
206  For guaranteed success, buffer size must be at least FSE_headerBound().
207  The result of the function is the number of bytes written into 'buffer'.
208  If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
209  
210  'normalizedCounter' can then be used to create the compression table 'CTable'.
211  The space required by 'CTable' must be already allocated, using FSE_createCTable().
212  You can then use FSE_buildCTable() to fill 'CTable'.
213  If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
214  
215  'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
216  Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
217  The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
218  If it returns '0', compressed data could not fit into 'dst'.
219  If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
220  */
221  
222  
223  /* *** DECOMPRESSION *** */
224  
225  /*! FSE_readNCount():
226      Read compactly saved 'normalizedCounter' from 'rBuffer'.
227      @return : size read from 'rBuffer',
228                or an errorCode, which can be tested using FSE_isError().
229                maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
230  FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
231                             unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
232                             const void* rBuffer, size_t rBuffSize);
233  
234  /*! FSE_readNCount_bmi2():
235   * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
236   */
237  FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
238                             unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
239                             const void* rBuffer, size_t rBuffSize, int bmi2);
240  
241  /*! Constructor and Destructor of FSE_DTable.
242      Note that its size depends on 'tableLog' */
243  typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
244  FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
245  FSE_PUBLIC_API void        FSE_freeDTable(FSE_DTable* dt);
246  
247  /*! FSE_buildDTable():
248      Builds 'dt', which must be already allocated, using FSE_createDTable().
249      return : 0, or an errorCode, which can be tested using FSE_isError() */
250  FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
251  
252  /*! FSE_decompress_usingDTable():
253      Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
254      into `dst` which must be already allocated.
255      @return : size of regenerated data (necessarily <= `dstCapacity`),
256                or an errorCode, which can be tested using FSE_isError() */
257  FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
258  
259  /*!
260  Tutorial :
261  ----------
262  (Note : these functions only decompress FSE-compressed blocks.
263   If block is uncompressed, use memcpy() instead
264   If block is a single repeated byte, use memset() instead )
265  
266  The first step is to obtain the normalized frequencies of symbols.
267  This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
268  'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
269  In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
270  or size the table to handle worst case situations (typically 256).
271  FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
272  The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
273  Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
274  If there is an error, the function will return an error code, which can be tested using FSE_isError().
275  
276  The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
277  This is performed by the function FSE_buildDTable().
278  The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
279  If there is an error, the function will return an error code, which can be tested using FSE_isError().
280  
281  `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
282  `cSrcSize` must be strictly correct, otherwise decompression will fail.
283  FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
284  If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
285  */
286  
287  #endif  /* FSE_H */
288  
289  #if !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
290  #define FSE_H_FSE_STATIC_LINKING_ONLY
291  
292  /* *** Dependency *** */
293  #include "bitstream.h"
294  
295  
296  /* *****************************************
297  *  Static allocation
298  *******************************************/
299  /* FSE buffer bounds */
300  #define FSE_NCOUNTBOUND 512
301  #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
302  #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
303  
304  /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
305  #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
306  #define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<(maxTableLog)))
307  
308  /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
309  #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue)   (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
310  #define FSE_DTABLE_SIZE(maxTableLog)                   (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
311  
312  
313  /* *****************************************
314   *  FSE advanced API
315   ***************************************** */
316  
317  unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
318  /*< same as FSE_optimalTableLog(), which used `minus==2` */
319  
320  /* FSE_compress_wksp() :
321   * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
322   * FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
323   */
324  #define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue)   ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
325  size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
326  
327  size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
328  /*< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
329  
330  size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
331  /*< build a fake FSE_CTable, designed to compress always the same symbolValue */
332  
333  /* FSE_buildCTable_wksp() :
334   * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
335   * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
336   * See FSE_buildCTable_wksp() for breakdown of workspace usage.
337   */
338  #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
339  #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
340  size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
341  
342  #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
343  #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
344  FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
345  /*< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
346  
347  size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
348  /*< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
349  
350  size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
351  /*< build a fake FSE_DTable, designed to always generate the same symbolValue */
352  
353  #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
354  #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
355  size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize);
356  /*< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */
357  
358  size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
359  /*< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */
360  
361  typedef enum {
362     FSE_repeat_none,  /*< Cannot use the previous table */
363     FSE_repeat_check, /*< Can use the previous table but it must be checked */
364     FSE_repeat_valid  /*< Can use the previous table and it is assumed to be valid */
365   } FSE_repeat;
366  
367  /* *****************************************
368  *  FSE symbol compression API
369  *******************************************/
370  /*!
371     This API consists of small unitary functions, which highly benefit from being inlined.
372     Hence their body are included in next section.
373  */
374  typedef struct {
375      ptrdiff_t   value;
376      const void* stateTable;
377      const void* symbolTT;
378      unsigned    stateLog;
379  } FSE_CState_t;
380  
381  static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
382  
383  static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
384  
385  static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
386  
387  /*<
388  These functions are inner components of FSE_compress_usingCTable().
389  They allow the creation of custom streams, mixing multiple tables and bit sources.
390  
391  A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
392  So the first symbol you will encode is the last you will decode, like a LIFO stack.
393  
394  You will need a few variables to track your CStream. They are :
395  
396  FSE_CTable    ct;         // Provided by FSE_buildCTable()
397  BIT_CStream_t bitStream;  // bitStream tracking structure
398  FSE_CState_t  state;      // State tracking structure (can have several)
399  
400  
401  The first thing to do is to init bitStream and state.
402      size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
403      FSE_initCState(&state, ct);
404  
405  Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
406  You can then encode your input data, byte after byte.
407  FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
408  Remember decoding will be done in reverse direction.
409      FSE_encodeByte(&bitStream, &state, symbol);
410  
411  At any time, you can also add any bit sequence.
412  Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
413      BIT_addBits(&bitStream, bitField, nbBits);
414  
415  The above methods don't commit data to memory, they just store it into local register, for speed.
416  Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
417  Writing data to memory is a manual operation, performed by the flushBits function.
418      BIT_flushBits(&bitStream);
419  
420  Your last FSE encoding operation shall be to flush your last state value(s).
421      FSE_flushState(&bitStream, &state);
422  
423  Finally, you must close the bitStream.
424  The function returns the size of CStream in bytes.
425  If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
426  If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
427      size_t size = BIT_closeCStream(&bitStream);
428  */
429  
430  
431  /* *****************************************
432  *  FSE symbol decompression API
433  *******************************************/
434  typedef struct {
435      size_t      state;
436      const void* table;   /* precise table may vary, depending on U16 */
437  } FSE_DState_t;
438  
439  
440  static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
441  
442  static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
443  
444  static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
445  
446  /*<
447  Let's now decompose FSE_decompress_usingDTable() into its unitary components.
448  You will decode FSE-encoded symbols from the bitStream,
449  and also any other bitFields you put in, **in reverse order**.
450  
451  You will need a few variables to track your bitStream. They are :
452  
453  BIT_DStream_t DStream;    // Stream context
454  FSE_DState_t  DState;     // State context. Multiple ones are possible
455  FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
456  
457  The first thing to do is to init the bitStream.
458      errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
459  
460  You should then retrieve your initial state(s)
461  (in reverse flushing order if you have several ones) :
462      errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
463  
464  You can then decode your data, symbol after symbol.
465  For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
466  Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
467      unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
468  
469  You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
470  Note : maximum allowed nbBits is 25, for 32-bits compatibility
471      size_t bitField = BIT_readBits(&DStream, nbBits);
472  
473  All above operations only read from local register (which size depends on size_t).
474  Refueling the register from memory is manually performed by the reload method.
475      endSignal = FSE_reloadDStream(&DStream);
476  
477  BIT_reloadDStream() result tells if there is still some more data to read from DStream.
478  BIT_DStream_unfinished : there is still some data left into the DStream.
479  BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
480  BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
481  BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
482  
483  When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
484  to properly detect the exact end of stream.
485  After each decoded symbol, check if DStream is fully consumed using this simple test :
486      BIT_reloadDStream(&DStream) >= BIT_DStream_completed
487  
488  When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
489  Checking if DStream has reached its end is performed by :
490      BIT_endOfDStream(&DStream);
491  Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
492      FSE_endOfDState(&DState);
493  */
494  
495  
496  /* *****************************************
497  *  FSE unsafe API
498  *******************************************/
499  static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
500  /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
501  
502  
503  /* *****************************************
504  *  Implementation of inlined functions
505  *******************************************/
506  typedef struct {
507      int deltaFindState;
508      U32 deltaNbBits;
509  } FSE_symbolCompressionTransform; /* total 8 bytes */
510  
FSE_initCState(FSE_CState_t * statePtr,const FSE_CTable * ct)511  MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
512  {
513      const void* ptr = ct;
514      const U16* u16ptr = (const U16*) ptr;
515      const U32 tableLog = MEM_read16(ptr);
516      statePtr->value = (ptrdiff_t)1<<tableLog;
517      statePtr->stateTable = u16ptr+2;
518      statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
519      statePtr->stateLog = tableLog;
520  }
521  
522  
523  /*! FSE_initCState2() :
524  *   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
525  *   uses the smallest state value possible, saving the cost of this symbol */
FSE_initCState2(FSE_CState_t * statePtr,const FSE_CTable * ct,U32 symbol)526  MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
527  {
528      FSE_initCState(statePtr, ct);
529      {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
530          const U16* stateTable = (const U16*)(statePtr->stateTable);
531          U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
532          statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
533          statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
534      }
535  }
536  
FSE_encodeSymbol(BIT_CStream_t * bitC,FSE_CState_t * statePtr,unsigned symbol)537  MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
538  {
539      FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
540      const U16* const stateTable = (const U16*)(statePtr->stateTable);
541      U32 const nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
542      BIT_addBits(bitC, statePtr->value, nbBitsOut);
543      statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
544  }
545  
FSE_flushCState(BIT_CStream_t * bitC,const FSE_CState_t * statePtr)546  MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
547  {
548      BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
549      BIT_flushBits(bitC);
550  }
551  
552  
553  /* FSE_getMaxNbBits() :
554   * Approximate maximum cost of a symbol, in bits.
555   * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
556   * note 1 : assume symbolValue is valid (<= maxSymbolValue)
557   * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
FSE_getMaxNbBits(const void * symbolTTPtr,U32 symbolValue)558  MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
559  {
560      const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
561      return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
562  }
563  
564  /* FSE_bitCost() :
565   * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
566   * note 1 : assume symbolValue is valid (<= maxSymbolValue)
567   * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
FSE_bitCost(const void * symbolTTPtr,U32 tableLog,U32 symbolValue,U32 accuracyLog)568  MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
569  {
570      const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
571      U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
572      U32 const threshold = (minNbBits+1) << 16;
573      assert(tableLog < 16);
574      assert(accuracyLog < 31-tableLog);  /* ensure enough room for renormalization double shift */
575      {   U32 const tableSize = 1 << tableLog;
576          U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
577          U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog;   /* linear interpolation (very approximate) */
578          U32 const bitMultiplier = 1 << accuracyLog;
579          assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
580          assert(normalizedDeltaFromThreshold <= bitMultiplier);
581          return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
582      }
583  }
584  
585  
586  /* ======    Decompression    ====== */
587  
588  typedef struct {
589      U16 tableLog;
590      U16 fastMode;
591  } FSE_DTableHeader;   /* sizeof U32 */
592  
593  typedef struct
594  {
595      unsigned short newState;
596      unsigned char  symbol;
597      unsigned char  nbBits;
598  } FSE_decode_t;   /* size == U32 */
599  
FSE_initDState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD,const FSE_DTable * dt)600  MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
601  {
602      const void* ptr = dt;
603      const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
604      DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
605      BIT_reloadDStream(bitD);
606      DStatePtr->table = dt + 1;
607  }
608  
FSE_peekSymbol(const FSE_DState_t * DStatePtr)609  MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
610  {
611      FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
612      return DInfo.symbol;
613  }
614  
FSE_updateState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)615  MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
616  {
617      FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
618      U32 const nbBits = DInfo.nbBits;
619      size_t const lowBits = BIT_readBits(bitD, nbBits);
620      DStatePtr->state = DInfo.newState + lowBits;
621  }
622  
FSE_decodeSymbol(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)623  MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
624  {
625      FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
626      U32 const nbBits = DInfo.nbBits;
627      BYTE const symbol = DInfo.symbol;
628      size_t const lowBits = BIT_readBits(bitD, nbBits);
629  
630      DStatePtr->state = DInfo.newState + lowBits;
631      return symbol;
632  }
633  
634  /*! FSE_decodeSymbolFast() :
635      unsafe, only works if no symbol has a probability > 50% */
FSE_decodeSymbolFast(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)636  MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
637  {
638      FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
639      U32 const nbBits = DInfo.nbBits;
640      BYTE const symbol = DInfo.symbol;
641      size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
642  
643      DStatePtr->state = DInfo.newState + lowBits;
644      return symbol;
645  }
646  
FSE_endOfDState(const FSE_DState_t * DStatePtr)647  MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
648  {
649      return DStatePtr->state == 0;
650  }
651  
652  
653  
654  #ifndef FSE_COMMONDEFS_ONLY
655  
656  /* **************************************************************
657  *  Tuning parameters
658  ****************************************************************/
659  /*!MEMORY_USAGE :
660  *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
661  *  Increasing memory usage improves compression ratio
662  *  Reduced memory usage can improve speed, due to cache effect
663  *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
664  #ifndef FSE_MAX_MEMORY_USAGE
665  #  define FSE_MAX_MEMORY_USAGE 14
666  #endif
667  #ifndef FSE_DEFAULT_MEMORY_USAGE
668  #  define FSE_DEFAULT_MEMORY_USAGE 13
669  #endif
670  #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
671  #  error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
672  #endif
673  
674  /*!FSE_MAX_SYMBOL_VALUE :
675  *  Maximum symbol value authorized.
676  *  Required for proper stack allocation */
677  #ifndef FSE_MAX_SYMBOL_VALUE
678  #  define FSE_MAX_SYMBOL_VALUE 255
679  #endif
680  
681  /* **************************************************************
682  *  template functions type & suffix
683  ****************************************************************/
684  #define FSE_FUNCTION_TYPE BYTE
685  #define FSE_FUNCTION_EXTENSION
686  #define FSE_DECODE_TYPE FSE_decode_t
687  
688  
689  #endif   /* !FSE_COMMONDEFS_ONLY */
690  
691  
692  /* ***************************************************************
693  *  Constants
694  *****************************************************************/
695  #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
696  #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
697  #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
698  #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
699  #define FSE_MIN_TABLELOG 5
700  
701  #define FSE_TABLELOG_ABSOLUTE_MAX 15
702  #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
703  #  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
704  #endif
705  
706  #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
707  
708  
709  #endif /* FSE_STATIC_LINKING_ONLY */
710  
711  
712