1  /*
2   * Copyright 2011 Intel Corporation
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice (including the next
12   * paragraph) shall be included in all copies or substantial portions of the
13   * Software.
14   *
15   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18   * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21   * OTHER DEALINGS IN THE SOFTWARE.
22   */
23  
24  #ifndef DRM_FOURCC_H
25  #define DRM_FOURCC_H
26  
27  #include "drm.h"
28  
29  #if defined(__cplusplus)
30  extern "C" {
31  #endif
32  
33  /**
34   * DOC: overview
35   *
36   * In the DRM subsystem, framebuffer pixel formats are described using the
37   * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38   * fourcc code, a Format Modifier may optionally be provided, in order to
39   * further describe the buffer's format - for example tiling or compression.
40   *
41   * Format Modifiers
42   * ----------------
43   *
44   * Format modifiers are used in conjunction with a fourcc code, forming a
45   * unique fourcc:modifier pair. This format:modifier pair must fully define the
46   * format and data layout of the buffer, and should be the only way to describe
47   * that particular buffer.
48   *
49   * Having multiple fourcc:modifier pairs which describe the same layout should
50   * be avoided, as such aliases run the risk of different drivers exposing
51   * different names for the same data format, forcing userspace to understand
52   * that they are aliases.
53   *
54   * Format modifiers may change any property of the buffer, including the number
55   * of planes and/or the required allocation size. Format modifiers are
56   * vendor-namespaced, and as such the relationship between a fourcc code and a
57   * modifier is specific to the modifier being used. For example, some modifiers
58   * may preserve meaning - such as number of planes - from the fourcc code,
59   * whereas others may not.
60   *
61   * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62   * match only a single modifier. A modifier must not be a subset of layouts of
63   * another modifier. For instance, it's incorrect to encode pitch alignment in
64   * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65   * aligned modifier. That said, modifiers can have implicit minimal
66   * requirements.
67   *
68   * For modifiers where the combination of fourcc code and modifier can alias,
69   * a canonical pair needs to be defined and used by all drivers. Preferred
70   * combinations are also encouraged where all combinations might lead to
71   * confusion and unnecessarily reduced interoperability. An example for the
72   * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73   *
74   * There are two kinds of modifier users:
75   *
76   * - Kernel and user-space drivers: for drivers it's important that modifiers
77   *   don't alias, otherwise two drivers might support the same format but use
78   *   different aliases, preventing them from sharing buffers in an efficient
79   *   format.
80   * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81   *   see modifiers as opaque tokens they can check for equality and intersect.
82   *   These users mustn't need to know to reason about the modifier value
83   *   (i.e. they are not expected to extract information out of the modifier).
84   *
85   * Vendors should document their modifier usage in as much detail as
86   * possible, to ensure maximum compatibility across devices, drivers and
87   * applications.
88   *
89   * The authoritative list of format modifier codes is found in
90   * `include/uapi/drm/drm_fourcc.h`
91   *
92   * Open Source User Waiver
93   * -----------------------
94   *
95   * Because this is the authoritative source for pixel formats and modifiers
96   * referenced by GL, Vulkan extensions and other standards and hence used both
97   * by open source and closed source driver stacks, the usual requirement for an
98   * upstream in-kernel or open source userspace user does not apply.
99   *
100   * To ensure, as much as feasible, compatibility across stacks and avoid
101   * confusion with incompatible enumerations stakeholders for all relevant driver
102   * stacks should approve additions.
103   */
104  
105  #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
106  				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
107  
108  #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
109  
110  /* Reserve 0 for the invalid format specifier */
111  #define DRM_FORMAT_INVALID	0
112  
113  /* color index */
114  #define DRM_FORMAT_C1		fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
115  #define DRM_FORMAT_C2		fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
116  #define DRM_FORMAT_C4		fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
117  #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
118  
119  /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120  #define DRM_FORMAT_D1		fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
121  
122  /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
123  #define DRM_FORMAT_D2		fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
124  
125  /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126  #define DRM_FORMAT_D4		fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
127  
128  /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
129  #define DRM_FORMAT_D8		fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
130  
131  /* 1 bpp Red (direct relationship between channel value and brightness) */
132  #define DRM_FORMAT_R1		fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
133  
134  /* 2 bpp Red (direct relationship between channel value and brightness) */
135  #define DRM_FORMAT_R2		fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
136  
137  /* 4 bpp Red (direct relationship between channel value and brightness) */
138  #define DRM_FORMAT_R4		fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
139  
140  /* 8 bpp Red (direct relationship between channel value and brightness) */
141  #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
142  
143  /* 10 bpp Red (direct relationship between channel value and brightness) */
144  #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
145  
146  /* 12 bpp Red (direct relationship between channel value and brightness) */
147  #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
148  
149  /* 16 bpp Red (direct relationship between channel value and brightness) */
150  #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
151  
152  /* 16 bpp RG */
153  #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
154  #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
155  
156  /* 32 bpp RG */
157  #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
158  #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
159  
160  /* 8 bpp RGB */
161  #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
162  #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
163  
164  /* 16 bpp RGB */
165  #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
166  #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
167  #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
168  #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
169  
170  #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
171  #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
172  #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
173  #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
174  
175  #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
176  #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
177  #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
178  #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
179  
180  #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
181  #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
182  #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
183  #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
184  
185  #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186  #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
187  
188  /* 24 bpp RGB */
189  #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190  #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
191  
192  /* 32 bpp RGB */
193  #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
194  #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
195  #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
196  #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
197  
198  #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
199  #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
200  #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
201  #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
202  
203  #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
204  #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
205  #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
206  #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
207  
208  #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
209  #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
210  #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
211  #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
212  
213  /* 64 bpp RGB */
214  #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
215  #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
216  
217  #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
218  #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
219  
220  /*
221   * Floating point 64bpp RGB
222   * IEEE 754-2008 binary16 half-precision float
223   * [15:0] sign:exponent:mantissa 1:5:10
224   */
225  #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
226  #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
227  
228  #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
229  #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
230  
231  /*
232   * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
233   * of unused padding per component:
234   */
235  #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
236  
237  /* packed YCbCr */
238  #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
239  #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
240  #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
241  #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
242  
243  #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
244  #define DRM_FORMAT_AVUY8888	fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
245  #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
246  #define DRM_FORMAT_XVUY8888	fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
247  #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
248  #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
249  
250  /*
251   * packed Y2xx indicate for each component, xx valid data occupy msb
252   * 16-xx padding occupy lsb
253   */
254  #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
255  #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
256  #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
257  
258  /*
259   * packed Y4xx indicate for each component, xx valid data occupy msb
260   * 16-xx padding occupy lsb except Y410
261   */
262  #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
263  #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
264  #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
265  
266  #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
267  #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
268  #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
269  
270  /*
271   * packed YCbCr420 2x2 tiled formats
272   * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
273   */
274  /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
275  #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
276  /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
277  #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
278  
279  /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
280  #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
281  /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
282  #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
283  
284  /*
285   * 1-plane YUV 4:2:0
286   * In these formats, the component ordering is specified (Y, followed by U
287   * then V), but the exact Linear layout is undefined.
288   * These formats can only be used with a non-Linear modifier.
289   */
290  #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
291  #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
292  
293  /*
294   * 2 plane RGB + A
295   * index 0 = RGB plane, same format as the corresponding non _A8 format has
296   * index 1 = A plane, [7:0] A
297   */
298  #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
299  #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
300  #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
301  #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
302  #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
303  #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
304  #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
305  #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
306  
307  /*
308   * 2 plane YCbCr
309   * index 0 = Y plane, [7:0] Y
310   * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
311   * or
312   * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
313   */
314  #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
315  #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
316  #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
317  #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
318  #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
319  #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
320  /*
321   * 2 plane YCbCr
322   * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
323   * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
324   */
325  #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
326  #define DRM_FORMAT_NV20		fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
327  #define DRM_FORMAT_NV30		fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
328  
329  /*
330   * 2 plane YCbCr MSB aligned
331   * index 0 = Y plane, [15:0] Y:x [10:6] little endian
332   * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
333   */
334  #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
335  
336  /*
337   * 2 plane YCbCr MSB aligned
338   * index 0 = Y plane, [15:0] Y:x [10:6] little endian
339   * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
340   */
341  #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
342  
343  /*
344   * 2 plane YCbCr MSB aligned
345   * index 0 = Y plane, [15:0] Y:x [12:4] little endian
346   * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
347   */
348  #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
349  
350  /*
351   * 2 plane YCbCr MSB aligned
352   * index 0 = Y plane, [15:0] Y little endian
353   * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
354   */
355  #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
356  
357  /* 2 plane YCbCr420.
358   * 3 10 bit components and 2 padding bits packed into 4 bytes.
359   * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
360   * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
361   */
362  #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
363  
364  /* 3 plane non-subsampled (444) YCbCr
365   * 16 bits per component, but only 10 bits are used and 6 bits are padded
366   * index 0: Y plane, [15:0] Y:x [10:6] little endian
367   * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
368   * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
369   */
370  #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
371  
372  /* 3 plane non-subsampled (444) YCrCb
373   * 16 bits per component, but only 10 bits are used and 6 bits are padded
374   * index 0: Y plane, [15:0] Y:x [10:6] little endian
375   * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
376   * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
377   */
378  #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
379  
380  /*
381   * 3 plane YCbCr
382   * index 0: Y plane, [7:0] Y
383   * index 1: Cb plane, [7:0] Cb
384   * index 2: Cr plane, [7:0] Cr
385   * or
386   * index 1: Cr plane, [7:0] Cr
387   * index 2: Cb plane, [7:0] Cb
388   */
389  #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
390  #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
391  #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
392  #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
393  #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
394  #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
395  #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
396  #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
397  #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
398  #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
399  
400  
401  /*
402   * Format Modifiers:
403   *
404   * Format modifiers describe, typically, a re-ordering or modification
405   * of the data in a plane of an FB.  This can be used to express tiled/
406   * swizzled formats, or compression, or a combination of the two.
407   *
408   * The upper 8 bits of the format modifier are a vendor-id as assigned
409   * below.  The lower 56 bits are assigned as vendor sees fit.
410   */
411  
412  /* Vendor Ids: */
413  #define DRM_FORMAT_MOD_VENDOR_NONE    0
414  #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
415  #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
416  #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
417  #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
418  #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
419  #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
420  #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
421  #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
422  #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
423  #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
424  
425  /* add more to the end as needed */
426  
427  #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
428  
429  #define fourcc_mod_get_vendor(modifier) \
430  	(((modifier) >> 56) & 0xff)
431  
432  #define fourcc_mod_is_vendor(modifier, vendor) \
433  	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
434  
435  #define fourcc_mod_code(vendor, val) \
436  	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
437  
438  /*
439   * Format Modifier tokens:
440   *
441   * When adding a new token please document the layout with a code comment,
442   * similar to the fourcc codes above. drm_fourcc.h is considered the
443   * authoritative source for all of these.
444   *
445   * Generic modifier names:
446   *
447   * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
448   * for layouts which are common across multiple vendors. To preserve
449   * compatibility, in cases where a vendor-specific definition already exists and
450   * a generic name for it is desired, the common name is a purely symbolic alias
451   * and must use the same numerical value as the original definition.
452   *
453   * Note that generic names should only be used for modifiers which describe
454   * generic layouts (such as pixel re-ordering), which may have
455   * independently-developed support across multiple vendors.
456   *
457   * In future cases where a generic layout is identified before merging with a
458   * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
459   * 'NONE' could be considered. This should only be for obvious, exceptional
460   * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
461   * apply to a single vendor.
462   *
463   * Generic names should not be used for cases where multiple hardware vendors
464   * have implementations of the same standardised compression scheme (such as
465   * AFBC). In those cases, all implementations should use the same format
466   * modifier(s), reflecting the vendor of the standard.
467   */
468  
469  #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
470  
471  /*
472   * Invalid Modifier
473   *
474   * This modifier can be used as a sentinel to terminate the format modifiers
475   * list, or to initialize a variable with an invalid modifier. It might also be
476   * used to report an error back to userspace for certain APIs.
477   */
478  #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
479  
480  /*
481   * Linear Layout
482   *
483   * Just plain linear layout. Note that this is different from no specifying any
484   * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
485   * which tells the driver to also take driver-internal information into account
486   * and so might actually result in a tiled framebuffer.
487   */
488  #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
489  
490  /*
491   * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
492   *
493   * The "none" format modifier doesn't actually mean that the modifier is
494   * implicit, instead it means that the layout is linear. Whether modifiers are
495   * used is out-of-band information carried in an API-specific way (e.g. in a
496   * flag for drm_mode_fb_cmd2).
497   */
498  #define DRM_FORMAT_MOD_NONE	0
499  
500  /* Intel framebuffer modifiers */
501  
502  /*
503   * Intel X-tiling layout
504   *
505   * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
506   * in row-major layout. Within the tile bytes are laid out row-major, with
507   * a platform-dependent stride. On top of that the memory can apply
508   * platform-depending swizzling of some higher address bits into bit6.
509   *
510   * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
511   * On earlier platforms the is highly platforms specific and not useful for
512   * cross-driver sharing. It exists since on a given platform it does uniquely
513   * identify the layout in a simple way for i915-specific userspace, which
514   * facilitated conversion of userspace to modifiers. Additionally the exact
515   * format on some really old platforms is not known.
516   */
517  #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
518  
519  /*
520   * Intel Y-tiling layout
521   *
522   * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
523   * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
524   * chunks column-major, with a platform-dependent height. On top of that the
525   * memory can apply platform-depending swizzling of some higher address bits
526   * into bit6.
527   *
528   * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
529   * On earlier platforms the is highly platforms specific and not useful for
530   * cross-driver sharing. It exists since on a given platform it does uniquely
531   * identify the layout in a simple way for i915-specific userspace, which
532   * facilitated conversion of userspace to modifiers. Additionally the exact
533   * format on some really old platforms is not known.
534   */
535  #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
536  
537  /*
538   * Intel Yf-tiling layout
539   *
540   * This is a tiled layout using 4Kb tiles in row-major layout.
541   * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
542   * are arranged in four groups (two wide, two high) with column-major layout.
543   * Each group therefore consists out of four 256 byte units, which are also laid
544   * out as 2x2 column-major.
545   * 256 byte units are made out of four 64 byte blocks of pixels, producing
546   * either a square block or a 2:1 unit.
547   * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
548   * in pixel depends on the pixel depth.
549   */
550  #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
551  
552  /*
553   * Intel color control surface (CCS) for render compression
554   *
555   * The framebuffer format must be one of the 8:8:8:8 RGB formats.
556   * The main surface will be plane index 0 and must be Y/Yf-tiled,
557   * the CCS will be plane index 1.
558   *
559   * Each CCS tile matches a 1024x512 pixel area of the main surface.
560   * To match certain aspects of the 3D hardware the CCS is
561   * considered to be made up of normal 128Bx32 Y tiles, Thus
562   * the CCS pitch must be specified in multiples of 128 bytes.
563   *
564   * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
565   * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
566   * But that fact is not relevant unless the memory is accessed
567   * directly.
568   */
569  #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
570  #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
571  
572  /*
573   * Intel color control surfaces (CCS) for Gen-12 render compression.
574   *
575   * The main surface is Y-tiled and at plane index 0, the CCS is linear and
576   * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
577   * main surface. In other words, 4 bits in CCS map to a main surface cache
578   * line pair. The main surface pitch is required to be a multiple of four
579   * Y-tile widths.
580   */
581  #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
582  
583  /*
584   * Intel color control surfaces (CCS) for Gen-12 media compression
585   *
586   * The main surface is Y-tiled and at plane index 0, the CCS is linear and
587   * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
588   * main surface. In other words, 4 bits in CCS map to a main surface cache
589   * line pair. The main surface pitch is required to be a multiple of four
590   * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
591   * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
592   * planes 2 and 3 for the respective CCS.
593   */
594  #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
595  
596  /*
597   * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
598   * compression.
599   *
600   * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
601   * and at index 1. The clear color is stored at index 2, and the pitch should
602   * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
603   * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
604   * by 32 bits. The raw clear color is consumed by the 3d engine and generates
605   * the converted clear color of size 64 bits. The first 32 bits store the Lower
606   * Converted Clear Color value and the next 32 bits store the Higher Converted
607   * Clear Color value when applicable. The Converted Clear Color values are
608   * consumed by the DE. The last 64 bits are used to store Color Discard Enable
609   * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
610   * corresponds to an area of 4x1 tiles in the main surface. The main surface
611   * pitch is required to be a multiple of 4 tile widths.
612   */
613  #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
614  
615  /*
616   * Intel Tile 4 layout
617   *
618   * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
619   * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
620   * only differs from Tile Y at the 256B granularity in between. At this
621   * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
622   * of 64B x 8 rows.
623   */
624  #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
625  
626  /*
627   * Intel color control surfaces (CCS) for DG2 render compression.
628   *
629   * The main surface is Tile 4 and at plane index 0. The CCS data is stored
630   * outside of the GEM object in a reserved memory area dedicated for the
631   * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
632   * main surface pitch is required to be a multiple of four Tile 4 widths.
633   */
634  #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
635  
636  /*
637   * Intel color control surfaces (CCS) for DG2 media compression.
638   *
639   * The main surface is Tile 4 and at plane index 0. For semi-planar formats
640   * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
641   * 0 and 1, respectively. The CCS for all planes are stored outside of the
642   * GEM object in a reserved memory area dedicated for the storage of the
643   * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
644   * pitch is required to be a multiple of four Tile 4 widths.
645   */
646  #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
647  
648  /*
649   * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
650   *
651   * The main surface is Tile 4 and at plane index 0. The CCS data is stored
652   * outside of the GEM object in a reserved memory area dedicated for the
653   * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
654   * main surface pitch is required to be a multiple of four Tile 4 widths. The
655   * clear color is stored at plane index 1 and the pitch should be 64 bytes
656   * aligned. The format of the 256 bits of clear color data matches the one used
657   * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
658   * for details.
659   */
660  #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
661  
662  /*
663   * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
664   *
665   * The main surface is tile4 and at plane index 0, the CCS is linear and
666   * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
667   * main surface. In other words, 4 bits in CCS map to a main surface cache
668   * line pair. The main surface pitch is required to be a multiple of four
669   * tile4 widths.
670   */
671  #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
672  
673  /*
674   * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
675   *
676   * The main surface is tile4 and at plane index 0, the CCS is linear and
677   * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
678   * main surface. In other words, 4 bits in CCS map to a main surface cache
679   * line pair. The main surface pitch is required to be a multiple of four
680   * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
681   * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
682   * planes 2 and 3 for the respective CCS.
683   */
684  #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
685  
686  /*
687   * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
688   * compression.
689   *
690   * The main surface is tile4 and is at plane index 0 whereas CCS is linear
691   * and at index 1. The clear color is stored at index 2, and the pitch should
692   * be ignored. The clear color structure is 256 bits. The first 128 bits
693   * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
694   * by 32 bits. The raw clear color is consumed by the 3d engine and generates
695   * the converted clear color of size 64 bits. The first 32 bits store the Lower
696   * Converted Clear Color value and the next 32 bits store the Higher Converted
697   * Clear Color value when applicable. The Converted Clear Color values are
698   * consumed by the DE. The last 64 bits are used to store Color Discard Enable
699   * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
700   * corresponds to an area of 4x1 tiles in the main surface. The main surface
701   * pitch is required to be a multiple of 4 tile widths.
702   */
703  #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
704  
705  /*
706   * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
707   * on integrated graphics
708   *
709   * The main surface is Tile 4 and at plane index 0. For semi-planar formats
710   * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
711   * 0 and 1, respectively. The CCS for all planes are stored outside of the
712   * GEM object in a reserved memory area dedicated for the storage of the
713   * CCS data for all compressible GEM objects.
714   */
715  #define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16)
716  
717  /*
718   * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
719   * on discrete graphics
720   *
721   * The main surface is Tile 4 and at plane index 0. For semi-planar formats
722   * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
723   * 0 and 1, respectively. The CCS for all planes are stored outside of the
724   * GEM object in a reserved memory area dedicated for the storage of the
725   * CCS data for all compressible GEM objects. The GEM object must be stored in
726   * contiguous memory with a size aligned to 64KB
727   */
728  #define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17)
729  
730  /*
731   * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
732   *
733   * Macroblocks are laid in a Z-shape, and each pixel data is following the
734   * standard NV12 style.
735   * As for NV12, an image is the result of two frame buffers: one for Y,
736   * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
737   * Alignment requirements are (for each buffer):
738   * - multiple of 128 pixels for the width
739   * - multiple of  32 pixels for the height
740   *
741   * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
742   */
743  #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
744  
745  /*
746   * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
747   *
748   * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
749   * layout. For YCbCr formats Cb/Cr components are taken in such a way that
750   * they correspond to their 16x16 luma block.
751   */
752  #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
753  
754  /*
755   * Qualcomm Compressed Format
756   *
757   * Refers to a compressed variant of the base format that is compressed.
758   * Implementation may be platform and base-format specific.
759   *
760   * Each macrotile consists of m x n (mostly 4 x 4) tiles.
761   * Pixel data pitch/stride is aligned with macrotile width.
762   * Pixel data height is aligned with macrotile height.
763   * Entire pixel data buffer is aligned with 4k(bytes).
764   */
765  #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
766  
767  /*
768   * Qualcomm Tiled Format
769   *
770   * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
771   * Implementation may be platform and base-format specific.
772   *
773   * Each macrotile consists of m x n (mostly 4 x 4) tiles.
774   * Pixel data pitch/stride is aligned with macrotile width.
775   * Pixel data height is aligned with macrotile height.
776   * Entire pixel data buffer is aligned with 4k(bytes).
777   */
778  #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
779  
780  /*
781   * Qualcomm Alternate Tiled Format
782   *
783   * Alternate tiled format typically only used within GMEM.
784   * Implementation may be platform and base-format specific.
785   */
786  #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
787  
788  
789  /* Vivante framebuffer modifiers */
790  
791  /*
792   * Vivante 4x4 tiling layout
793   *
794   * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
795   * layout.
796   */
797  #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
798  
799  /*
800   * Vivante 64x64 super-tiling layout
801   *
802   * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
803   * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
804   * major layout.
805   *
806   * For more information: see
807   * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
808   */
809  #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
810  
811  /*
812   * Vivante 4x4 tiling layout for dual-pipe
813   *
814   * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
815   * different base address. Offsets from the base addresses are therefore halved
816   * compared to the non-split tiled layout.
817   */
818  #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
819  
820  /*
821   * Vivante 64x64 super-tiling layout for dual-pipe
822   *
823   * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
824   * starts at a different base address. Offsets from the base addresses are
825   * therefore halved compared to the non-split super-tiled layout.
826   */
827  #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
828  
829  /*
830   * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
831   * the color buffer tiling modifiers defined above. When TS is present it's a
832   * separate buffer containing the clear/compression status of each tile. The
833   * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
834   * tile size in bytes covered by one entry in the status buffer and s is the
835   * number of status bits per entry.
836   * We reserve the top 8 bits of the Vivante modifier space for tile status
837   * clear/compression modifiers, as future cores might add some more TS layout
838   * variations.
839   */
840  #define VIVANTE_MOD_TS_64_4               (1ULL << 48)
841  #define VIVANTE_MOD_TS_64_2               (2ULL << 48)
842  #define VIVANTE_MOD_TS_128_4              (3ULL << 48)
843  #define VIVANTE_MOD_TS_256_4              (4ULL << 48)
844  #define VIVANTE_MOD_TS_MASK               (0xfULL << 48)
845  
846  /*
847   * Vivante compression modifiers. Those depend on a TS modifier being present
848   * as the TS bits get reinterpreted as compression tags instead of simple
849   * clear markers when compression is enabled.
850   */
851  #define VIVANTE_MOD_COMP_DEC400           (1ULL << 52)
852  #define VIVANTE_MOD_COMP_MASK             (0xfULL << 52)
853  
854  /* Masking out the extension bits will yield the base modifier. */
855  #define VIVANTE_MOD_EXT_MASK              (VIVANTE_MOD_TS_MASK | \
856                                             VIVANTE_MOD_COMP_MASK)
857  
858  /* NVIDIA frame buffer modifiers */
859  
860  /*
861   * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
862   *
863   * Pixels are arranged in simple tiles of 16 x 16 bytes.
864   */
865  #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
866  
867  /*
868   * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
869   * and Tegra GPUs starting with Tegra K1.
870   *
871   * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
872   * based on the architecture generation.  GOBs themselves are then arranged in
873   * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
874   * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
875   * a block depth or height of "4").
876   *
877   * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
878   * in full detail.
879   *
880   *       Macro
881   * Bits  Param Description
882   * ----  ----- -----------------------------------------------------------------
883   *
884   *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
885   *             compatibility with the existing
886   *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
887   *
888   *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
889   *             compatibility with the existing
890   *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
891   *
892   *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
893   *             size).  Must be zero.
894   *
895   *             Note there is no log2(width) parameter.  Some portions of the
896   *             hardware support a block width of two gobs, but it is impractical
897   *             to use due to lack of support elsewhere, and has no known
898   *             benefits.
899   *
900   * 11:9  -     Reserved (To support 2D-array textures with variable array stride
901   *             in blocks, specified via log2(tile width in blocks)).  Must be
902   *             zero.
903   *
904   * 19:12 k     Page Kind.  This value directly maps to a field in the page
905   *             tables of all GPUs >= NV50.  It affects the exact layout of bits
906   *             in memory and can be derived from the tuple
907   *
908   *               (format, GPU model, compression type, samples per pixel)
909   *
910   *             Where compression type is defined below.  If GPU model were
911   *             implied by the format modifier, format, or memory buffer, page
912   *             kind would not need to be included in the modifier itself, but
913   *             since the modifier should define the layout of the associated
914   *             memory buffer independent from any device or other context, it
915   *             must be included here.
916   *
917   * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
918   *             starting with Fermi GPUs.  Additionally, the mapping between page
919   *             kind and bit layout has changed at various points.
920   *
921   *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
922   *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
923   *               2 = Gob Height 8, Turing+ Page Kind mapping
924   *               3 = Reserved for future use.
925   *
926   * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
927   *             bit remapping step that occurs at an even lower level than the
928   *             page kind and block linear swizzles.  This causes the layout of
929   *             surfaces mapped in those SOC's GPUs to be incompatible with the
930   *             equivalent mapping on other GPUs in the same system.
931   *
932   *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
933   *               1 = Desktop GPU and Tegra Xavier+ Layout
934   *
935   * 25:23 c     Lossless Framebuffer Compression type.
936   *
937   *               0 = none
938   *               1 = ROP/3D, layout 1, exact compression format implied by Page
939   *                   Kind field
940   *               2 = ROP/3D, layout 2, exact compression format implied by Page
941   *                   Kind field
942   *               3 = CDE horizontal
943   *               4 = CDE vertical
944   *               5 = Reserved for future use
945   *               6 = Reserved for future use
946   *               7 = Reserved for future use
947   *
948   * 55:25 -     Reserved for future use.  Must be zero.
949   */
950  #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
951  	fourcc_mod_code(NVIDIA, (0x10 | \
952  				 ((h) & 0xf) | \
953  				 (((k) & 0xff) << 12) | \
954  				 (((g) & 0x3) << 20) | \
955  				 (((s) & 0x1) << 22) | \
956  				 (((c) & 0x7) << 23)))
957  
958  /* To grandfather in prior block linear format modifiers to the above layout,
959   * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
960   * with block-linear layouts, is remapped within drivers to the value 0xfe,
961   * which corresponds to the "generic" kind used for simple single-sample
962   * uncompressed color formats on Fermi - Volta GPUs.
963   */
964  static inline __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)965  drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
966  {
967  	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
968  		return modifier;
969  	else
970  		return modifier | (0xfe << 12);
971  }
972  
973  /*
974   * 16Bx2 Block Linear layout, used by Tegra K1 and later
975   *
976   * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
977   * vertically by a power of 2 (1 to 32 GOBs) to form a block.
978   *
979   * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
980   *
981   * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
982   * Valid values are:
983   *
984   * 0 == ONE_GOB
985   * 1 == TWO_GOBS
986   * 2 == FOUR_GOBS
987   * 3 == EIGHT_GOBS
988   * 4 == SIXTEEN_GOBS
989   * 5 == THIRTYTWO_GOBS
990   *
991   * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
992   * in full detail.
993   */
994  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
995  	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
996  
997  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
998  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
999  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
1000  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
1001  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
1002  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
1003  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
1004  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
1005  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
1006  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
1007  #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
1008  	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
1009  
1010  /*
1011   * Some Broadcom modifiers take parameters, for example the number of
1012   * vertical lines in the image. Reserve the lower 32 bits for modifier
1013   * type, and the next 24 bits for parameters. Top 8 bits are the
1014   * vendor code.
1015   */
1016  #define __fourcc_mod_broadcom_param_shift 8
1017  #define __fourcc_mod_broadcom_param_bits 48
1018  #define fourcc_mod_broadcom_code(val, params) \
1019  	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
1020  #define fourcc_mod_broadcom_param(m) \
1021  	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
1022  	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
1023  #define fourcc_mod_broadcom_mod(m) \
1024  	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
1025  		 __fourcc_mod_broadcom_param_shift))
1026  
1027  /*
1028   * Broadcom VC4 "T" format
1029   *
1030   * This is the primary layout that the V3D GPU can texture from (it
1031   * can't do linear).  The T format has:
1032   *
1033   * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
1034   *   pixels at 32 bit depth.
1035   *
1036   * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1037   *   16x16 pixels).
1038   *
1039   * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
1040   *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1041   *   they're (TR, BR, BL, TL), where bottom left is start of memory.
1042   *
1043   * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1044   *   tiles) or right-to-left (odd rows of 4k tiles).
1045   */
1046  #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1047  
1048  /*
1049   * Broadcom SAND format
1050   *
1051   * This is the native format that the H.264 codec block uses.  For VC4
1052   * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1053   *
1054   * The image can be considered to be split into columns, and the
1055   * columns are placed consecutively into memory.  The width of those
1056   * columns can be either 32, 64, 128, or 256 pixels, but in practice
1057   * only 128 pixel columns are used.
1058   *
1059   * The pitch between the start of each column is set to optimally
1060   * switch between SDRAM banks. This is passed as the number of lines
1061   * of column width in the modifier (we can't use the stride value due
1062   * to various core checks that look at it , so you should set the
1063   * stride to width*cpp).
1064   *
1065   * Note that the column height for this format modifier is the same
1066   * for all of the planes, assuming that each column contains both Y
1067   * and UV.  Some SAND-using hardware stores UV in a separate tiled
1068   * image from Y to reduce the column height, which is not supported
1069   * with these modifiers.
1070   *
1071   * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1072   * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1073   * wide, but as this is a 10 bpp format that translates to 96 pixels.
1074   */
1075  
1076  #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1077  	fourcc_mod_broadcom_code(2, v)
1078  #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1079  	fourcc_mod_broadcom_code(3, v)
1080  #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1081  	fourcc_mod_broadcom_code(4, v)
1082  #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1083  	fourcc_mod_broadcom_code(5, v)
1084  
1085  #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1086  	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1087  #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1088  	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1089  #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1090  	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1091  #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1092  	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1093  
1094  /* Broadcom UIF format
1095   *
1096   * This is the common format for the current Broadcom multimedia
1097   * blocks, including V3D 3.x and newer, newer video codecs, and
1098   * displays.
1099   *
1100   * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1101   * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
1102   * stored in columns, with padding between the columns to ensure that
1103   * moving from one column to the next doesn't hit the same SDRAM page
1104   * bank.
1105   *
1106   * To calculate the padding, it is assumed that each hardware block
1107   * and the software driving it knows the platform's SDRAM page size,
1108   * number of banks, and XOR address, and that it's identical between
1109   * all blocks using the format.  This tiling modifier will use XOR as
1110   * necessary to reduce the padding.  If a hardware block can't do XOR,
1111   * the assumption is that a no-XOR tiling modifier will be created.
1112   */
1113  #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1114  
1115  /*
1116   * Arm Framebuffer Compression (AFBC) modifiers
1117   *
1118   * AFBC is a proprietary lossless image compression protocol and format.
1119   * It provides fine-grained random access and minimizes the amount of data
1120   * transferred between IP blocks.
1121   *
1122   * AFBC has several features which may be supported and/or used, which are
1123   * represented using bits in the modifier. Not all combinations are valid,
1124   * and different devices or use-cases may support different combinations.
1125   *
1126   * Further information on the use of AFBC modifiers can be found in
1127   * Documentation/gpu/afbc.rst
1128   */
1129  
1130  /*
1131   * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1132   * modifiers) denote the category for modifiers. Currently we have three
1133   * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1134   * sixteen different categories.
1135   */
1136  #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1137  	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1138  
1139  #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1140  #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1141  
1142  #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1143  	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1144  
1145  /*
1146   * AFBC superblock size
1147   *
1148   * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1149   * size (in pixels) must be aligned to a multiple of the superblock size.
1150   * Four lowest significant bits(LSBs) are reserved for block size.
1151   *
1152   * Where one superblock size is specified, it applies to all planes of the
1153   * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1154   * the first applies to the Luma plane and the second applies to the Chroma
1155   * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1156   * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1157   */
1158  #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1159  #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1160  #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1161  #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1162  #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1163  
1164  /*
1165   * AFBC lossless colorspace transform
1166   *
1167   * Indicates that the buffer makes use of the AFBC lossless colorspace
1168   * transform.
1169   */
1170  #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1171  
1172  /*
1173   * AFBC block-split
1174   *
1175   * Indicates that the payload of each superblock is split. The second
1176   * half of the payload is positioned at a predefined offset from the start
1177   * of the superblock payload.
1178   */
1179  #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1180  
1181  /*
1182   * AFBC sparse layout
1183   *
1184   * This flag indicates that the payload of each superblock must be stored at a
1185   * predefined position relative to the other superblocks in the same AFBC
1186   * buffer. This order is the same order used by the header buffer. In this mode
1187   * each superblock is given the same amount of space as an uncompressed
1188   * superblock of the particular format would require, rounding up to the next
1189   * multiple of 128 bytes in size.
1190   */
1191  #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1192  
1193  /*
1194   * AFBC copy-block restrict
1195   *
1196   * Buffers with this flag must obey the copy-block restriction. The restriction
1197   * is such that there are no copy-blocks referring across the border of 8x8
1198   * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1199   */
1200  #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1201  
1202  /*
1203   * AFBC tiled layout
1204   *
1205   * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1206   * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1207   * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1208   * larger bpp formats. The order between the tiles is scan line.
1209   * When the tiled layout is used, the buffer size (in pixels) must be aligned
1210   * to the tile size.
1211   */
1212  #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1213  
1214  /*
1215   * AFBC solid color blocks
1216   *
1217   * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1218   * can be reduced if a whole superblock is a single color.
1219   */
1220  #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1221  
1222  /*
1223   * AFBC double-buffer
1224   *
1225   * Indicates that the buffer is allocated in a layout safe for front-buffer
1226   * rendering.
1227   */
1228  #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1229  
1230  /*
1231   * AFBC buffer content hints
1232   *
1233   * Indicates that the buffer includes per-superblock content hints.
1234   */
1235  #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1236  
1237  /* AFBC uncompressed storage mode
1238   *
1239   * Indicates that the buffer is using AFBC uncompressed storage mode.
1240   * In this mode all superblock payloads in the buffer use the uncompressed
1241   * storage mode, which is usually only used for data which cannot be compressed.
1242   * The buffer layout is the same as for AFBC buffers without USM set, this only
1243   * affects the storage mode of the individual superblocks. Note that even a
1244   * buffer without USM set may use uncompressed storage mode for some or all
1245   * superblocks, USM just guarantees it for all.
1246   */
1247  #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1248  
1249  /*
1250   * Arm Fixed-Rate Compression (AFRC) modifiers
1251   *
1252   * AFRC is a proprietary fixed rate image compression protocol and format,
1253   * designed to provide guaranteed bandwidth and memory footprint
1254   * reductions in graphics and media use-cases.
1255   *
1256   * AFRC buffers consist of one or more planes, with the same components
1257   * and meaning as an uncompressed buffer using the same pixel format.
1258   *
1259   * Within each plane, the pixel/luma/chroma values are grouped into
1260   * "coding unit" blocks which are individually compressed to a
1261   * fixed size (in bytes). All coding units within a given plane of a buffer
1262   * store the same number of values, and have the same compressed size.
1263   *
1264   * The coding unit size is configurable, allowing different rates of compression.
1265   *
1266   * The start of each AFRC buffer plane must be aligned to an alignment granule which
1267   * depends on the coding unit size.
1268   *
1269   * Coding Unit Size   Plane Alignment
1270   * ----------------   ---------------
1271   * 16 bytes           1024 bytes
1272   * 24 bytes           512  bytes
1273   * 32 bytes           2048 bytes
1274   *
1275   * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1276   * to a multiple of the paging tile dimensions.
1277   * The dimensions of each paging tile depend on whether the buffer is optimised for
1278   * scanline (SCAN layout) or rotated (ROT layout) access.
1279   *
1280   * Layout   Paging Tile Width   Paging Tile Height
1281   * ------   -----------------   ------------------
1282   * SCAN     16 coding units     4 coding units
1283   * ROT      8  coding units     8 coding units
1284   *
1285   * The dimensions of each coding unit depend on the number of components
1286   * in the compressed plane and whether the buffer is optimised for
1287   * scanline (SCAN layout) or rotated (ROT layout) access.
1288   *
1289   * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1290   * -----------------------------   ---------   -----------------   ------------------
1291   * 1                               SCAN        16 samples          4 samples
1292   * Example: 16x4 luma samples in a 'Y' plane
1293   *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1294   * -----------------------------   ---------   -----------------   ------------------
1295   * 1                               ROT         8 samples           8 samples
1296   * Example: 8x8 luma samples in a 'Y' plane
1297   *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1298   * -----------------------------   ---------   -----------------   ------------------
1299   * 2                               DONT CARE   8 samples           4 samples
1300   * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1301   * -----------------------------   ---------   -----------------   ------------------
1302   * 3                               DONT CARE   4 samples           4 samples
1303   * Example: 4x4 pixels in an RGB buffer without alpha
1304   * -----------------------------   ---------   -----------------   ------------------
1305   * 4                               DONT CARE   4 samples           4 samples
1306   * Example: 4x4 pixels in an RGB buffer with alpha
1307   */
1308  
1309  #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1310  
1311  #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1312  	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1313  
1314  /*
1315   * AFRC coding unit size modifier.
1316   *
1317   * Indicates the number of bytes used to store each compressed coding unit for
1318   * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1319   * is the same for both Cb and Cr, which may be stored in separate planes.
1320   *
1321   * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1322   * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1323   * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1324   * this corresponds to the luma plane.
1325   *
1326   * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1327   * each compressed coding unit in the second and third planes in the buffer.
1328   * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1329   *
1330   * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1331   * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1332   * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1333   * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1334   */
1335  #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1336  #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1337  #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1338  #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1339  
1340  #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1341  #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1342  
1343  /*
1344   * AFRC scanline memory layout.
1345   *
1346   * Indicates if the buffer uses the scanline-optimised layout
1347   * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1348   * The memory layout is the same for all planes.
1349   */
1350  #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1351  
1352  /*
1353   * Arm 16x16 Block U-Interleaved modifier
1354   *
1355   * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1356   * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1357   * in the block are reordered.
1358   */
1359  #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1360  	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1361  
1362  /*
1363   * Allwinner tiled modifier
1364   *
1365   * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1366   * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1367   * planes.
1368   *
1369   * With this tiling, the luminance samples are disposed in tiles representing
1370   * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1371   * The pixel order in each tile is linear and the tiles are disposed linearly,
1372   * both in row-major order.
1373   */
1374  #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1375  
1376  /*
1377   * Amlogic Video Framebuffer Compression modifiers
1378   *
1379   * Amlogic uses a proprietary lossless image compression protocol and format
1380   * for their hardware video codec accelerators, either video decoders or
1381   * video input encoders.
1382   *
1383   * It considerably reduces memory bandwidth while writing and reading
1384   * frames in memory.
1385   *
1386   * The underlying storage is considered to be 3 components, 8bit or 10-bit
1387   * per component YCbCr 420, single plane :
1388   * - DRM_FORMAT_YUV420_8BIT
1389   * - DRM_FORMAT_YUV420_10BIT
1390   *
1391   * The first 8 bits of the mode defines the layout, then the following 8 bits
1392   * defines the options changing the layout.
1393   *
1394   * Not all combinations are valid, and different SoCs may support different
1395   * combinations of layout and options.
1396   */
1397  #define __fourcc_mod_amlogic_layout_mask 0xff
1398  #define __fourcc_mod_amlogic_options_shift 8
1399  #define __fourcc_mod_amlogic_options_mask 0xff
1400  
1401  #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1402  	fourcc_mod_code(AMLOGIC, \
1403  			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1404  			(((__options) & __fourcc_mod_amlogic_options_mask) \
1405  			 << __fourcc_mod_amlogic_options_shift))
1406  
1407  /* Amlogic FBC Layouts */
1408  
1409  /*
1410   * Amlogic FBC Basic Layout
1411   *
1412   * The basic layout is composed of:
1413   * - a body content organized in 64x32 superblocks with 4096 bytes per
1414   *   superblock in default mode.
1415   * - a 32 bytes per 128x64 header block
1416   *
1417   * This layout is transferrable between Amlogic SoCs supporting this modifier.
1418   */
1419  #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1420  
1421  /*
1422   * Amlogic FBC Scatter Memory layout
1423   *
1424   * Indicates the header contains IOMMU references to the compressed
1425   * frames content to optimize memory access and layout.
1426   *
1427   * In this mode, only the header memory address is needed, thus the
1428   * content memory organization is tied to the current producer
1429   * execution and cannot be saved/dumped neither transferrable between
1430   * Amlogic SoCs supporting this modifier.
1431   *
1432   * Due to the nature of the layout, these buffers are not expected to
1433   * be accessible by the user-space clients, but only accessible by the
1434   * hardware producers and consumers.
1435   *
1436   * The user-space clients should expect a failure while trying to mmap
1437   * the DMA-BUF handle returned by the producer.
1438   */
1439  #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1440  
1441  /* Amlogic FBC Layout Options Bit Mask */
1442  
1443  /*
1444   * Amlogic FBC Memory Saving mode
1445   *
1446   * Indicates the storage is packed when pixel size is multiple of word
1447   * boundaries, i.e. 8bit should be stored in this mode to save allocation
1448   * memory.
1449   *
1450   * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1451   * the basic layout and 3200 bytes per 64x32 superblock combined with
1452   * the scatter layout.
1453   */
1454  #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1455  
1456  /*
1457   * AMD modifiers
1458   *
1459   * Memory layout:
1460   *
1461   * without DCC:
1462   *   - main surface
1463   *
1464   * with DCC & without DCC_RETILE:
1465   *   - main surface in plane 0
1466   *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1467   *
1468   * with DCC & DCC_RETILE:
1469   *   - main surface in plane 0
1470   *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1471   *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1472   *
1473   * For multi-plane formats the above surfaces get merged into one plane for
1474   * each format plane, based on the required alignment only.
1475   *
1476   * Bits  Parameter                Notes
1477   * ----- ------------------------ ---------------------------------------------
1478   *
1479   *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1480   *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1481   *    13 DCC
1482   *    14 DCC_RETILE
1483   *    15 DCC_PIPE_ALIGN
1484   *    16 DCC_INDEPENDENT_64B
1485   *    17 DCC_INDEPENDENT_128B
1486   * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1487   *    20 DCC_CONSTANT_ENCODE
1488   * 23:21 PIPE_XOR_BITS            Only for some chips
1489   * 26:24 BANK_XOR_BITS            Only for some chips
1490   * 29:27 PACKERS                  Only for some chips
1491   * 32:30 RB                       Only for some chips
1492   * 35:33 PIPE                     Only for some chips
1493   * 55:36 -                        Reserved for future use, must be zero
1494   */
1495  #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1496  
1497  #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1498  
1499  /* Reserve 0 for GFX8 and older */
1500  #define AMD_FMT_MOD_TILE_VER_GFX9 1
1501  #define AMD_FMT_MOD_TILE_VER_GFX10 2
1502  #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1503  #define AMD_FMT_MOD_TILE_VER_GFX11 4
1504  #define AMD_FMT_MOD_TILE_VER_GFX12 5
1505  
1506  /*
1507   * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1508   * version.
1509   */
1510  #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1511  
1512  /*
1513   * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1514   * GFX9 as canonical version.
1515   *
1516   * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1517   */
1518  #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1519  #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1520  #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1521  #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1522  #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1523  
1524  /* Gfx12 swizzle modes:
1525   *    0 - LINEAR
1526   *    1 - 256B_2D  - 2D block dimensions
1527   *    2 - 4KB_2D
1528   *    3 - 64KB_2D
1529   *    4 - 256KB_2D
1530   *    5 - 4KB_3D   - 3D block dimensions
1531   *    6 - 64KB_3D
1532   *    7 - 256KB_3D
1533   */
1534  #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1535  #define AMD_FMT_MOD_TILE_GFX12_4K_2D 2
1536  #define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1537  #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1538  
1539  #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1540  #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1541  #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1542  
1543  #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1544  #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1545  #define AMD_FMT_MOD_TILE_SHIFT 8
1546  #define AMD_FMT_MOD_TILE_MASK 0x1F
1547  
1548  /* Whether DCC compression is enabled. */
1549  #define AMD_FMT_MOD_DCC_SHIFT 13
1550  #define AMD_FMT_MOD_DCC_MASK 0x1
1551  
1552  /*
1553   * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1554   * one which is not-aligned.
1555   */
1556  #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1557  #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1558  
1559  /* Only set if DCC_RETILE = false */
1560  #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1561  #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1562  
1563  #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1564  #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1565  #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1566  #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1567  #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1568  #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1569  
1570  /*
1571   * DCC supports embedding some clear colors directly in the DCC surface.
1572   * However, on older GPUs the rendering HW ignores the embedded clear color
1573   * and prefers the driver provided color. This necessitates doing a fastclear
1574   * eliminate operation before a process transfers control.
1575   *
1576   * If this bit is set that means the fastclear eliminate is not needed for these
1577   * embeddable colors.
1578   */
1579  #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1580  #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1581  
1582  /*
1583   * The below fields are for accounting for per GPU differences. These are only
1584   * relevant for GFX9 and later and if the tile field is *_X/_T.
1585   *
1586   * PIPE_XOR_BITS = always needed
1587   * BANK_XOR_BITS = only for TILE_VER_GFX9
1588   * PACKERS = only for TILE_VER_GFX10_RBPLUS
1589   * RB = only for TILE_VER_GFX9 & DCC
1590   * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1591   */
1592  #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1593  #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1594  #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1595  #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1596  #define AMD_FMT_MOD_PACKERS_SHIFT 27
1597  #define AMD_FMT_MOD_PACKERS_MASK 0x7
1598  #define AMD_FMT_MOD_RB_SHIFT 30
1599  #define AMD_FMT_MOD_RB_MASK 0x7
1600  #define AMD_FMT_MOD_PIPE_SHIFT 33
1601  #define AMD_FMT_MOD_PIPE_MASK 0x7
1602  
1603  #define AMD_FMT_MOD_SET(field, value) \
1604  	((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1605  #define AMD_FMT_MOD_GET(field, value) \
1606  	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1607  #define AMD_FMT_MOD_CLEAR(field) \
1608  	(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1609  
1610  #if defined(__cplusplus)
1611  }
1612  #endif
1613  
1614  #endif /* DRM_FOURCC_H */
1615