1 # SPDX-License-Identifier: GPL-2.0
2 config ARM
3 	bool
4 	default y
5 	select ARCH_32BIT_OFF_T
6 	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE if HAVE_KRETPROBES && FRAME_POINTER && !ARM_UNWIND
7 	select ARCH_HAS_BINFMT_FLAT
8 	select ARCH_HAS_CPU_CACHE_ALIASING
9 	select ARCH_HAS_CPU_FINALIZE_INIT if MMU
10 	select ARCH_HAS_CURRENT_STACK_POINTER
11 	select ARCH_HAS_DEBUG_VIRTUAL if MMU
12 	select ARCH_HAS_DMA_ALLOC if MMU
13 	select ARCH_HAS_DMA_OPS
14 	select ARCH_HAS_DMA_WRITE_COMBINE if !ARM_DMA_MEM_BUFFERABLE
15 	select ARCH_HAS_ELF_RANDOMIZE
16 	select ARCH_HAS_FORTIFY_SOURCE
17 	select ARCH_HAS_KEEPINITRD
18 	select ARCH_HAS_KCOV
19 	select ARCH_HAS_MEMBARRIER_SYNC_CORE
20 	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
21 	select ARCH_HAS_PTE_SPECIAL if ARM_LPAE
22 	select ARCH_HAS_SETUP_DMA_OPS
23 	select ARCH_HAS_SET_MEMORY
24 	select ARCH_STACKWALK
25 	select ARCH_HAS_STRICT_KERNEL_RWX if MMU && !XIP_KERNEL
26 	select ARCH_HAS_STRICT_MODULE_RWX if MMU
27 	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
28 	select ARCH_HAS_SYNC_DMA_FOR_CPU
29 	select ARCH_HAS_TEARDOWN_DMA_OPS if MMU
30 	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
31 	select ARCH_HAVE_NMI_SAFE_CMPXCHG if CPU_V7 || CPU_V7M || CPU_V6K
32 	select ARCH_HAS_GCOV_PROFILE_ALL
33 	select ARCH_KEEP_MEMBLOCK
34 	select ARCH_HAS_UBSAN
35 	select ARCH_MIGHT_HAVE_PC_PARPORT
36 	select ARCH_OPTIONAL_KERNEL_RWX if ARCH_HAS_STRICT_KERNEL_RWX
37 	select ARCH_OPTIONAL_KERNEL_RWX_DEFAULT if CPU_V7
38 	select ARCH_NEED_CMPXCHG_1_EMU if CPU_V6
39 	select ARCH_SUPPORTS_ATOMIC_RMW
40 	select ARCH_SUPPORTS_CFI_CLANG
41 	select ARCH_SUPPORTS_HUGETLBFS if ARM_LPAE
42 	select ARCH_SUPPORTS_PER_VMA_LOCK
43 	select ARCH_USE_BUILTIN_BSWAP
44 	select ARCH_USE_CMPXCHG_LOCKREF
45 	select ARCH_USE_MEMTEST
46 	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT if MMU
47 	select ARCH_WANT_GENERAL_HUGETLB
48 	select ARCH_WANT_IPC_PARSE_VERSION
49 	select ARCH_WANT_LD_ORPHAN_WARN
50 	select BINFMT_FLAT_ARGVP_ENVP_ON_STACK
51 	select BUILDTIME_TABLE_SORT if MMU
52 	select COMMON_CLK if !(ARCH_RPC || ARCH_FOOTBRIDGE)
53 	select CLONE_BACKWARDS
54 	select CPU_PM if SUSPEND || CPU_IDLE
55 	select DCACHE_WORD_ACCESS if HAVE_EFFICIENT_UNALIGNED_ACCESS
56 	select DMA_DECLARE_COHERENT
57 	select DMA_GLOBAL_POOL if !MMU
58 	select DMA_NONCOHERENT_MMAP if MMU
59 	select EDAC_SUPPORT
60 	select EDAC_ATOMIC_SCRUB
61 	select GENERIC_ALLOCATOR
62 	select GENERIC_ARCH_TOPOLOGY if ARM_CPU_TOPOLOGY
63 	select GENERIC_ATOMIC64 if CPU_V7M || CPU_V6 || !CPU_32v6K || !AEABI
64 	select GENERIC_CLOCKEVENTS_BROADCAST if SMP
65 	select GENERIC_IRQ_IPI if SMP
66 	select GENERIC_CPU_AUTOPROBE
67 	select GENERIC_CPU_DEVICES
68 	select GENERIC_EARLY_IOREMAP
69 	select GENERIC_IDLE_POLL_SETUP
70 	select GENERIC_IRQ_MULTI_HANDLER
71 	select GENERIC_IRQ_PROBE
72 	select GENERIC_IRQ_SHOW
73 	select GENERIC_IRQ_SHOW_LEVEL
74 	select GENERIC_LIB_DEVMEM_IS_ALLOWED
75 	select GENERIC_PCI_IOMAP
76 	select GENERIC_SCHED_CLOCK
77 	select GENERIC_SMP_IDLE_THREAD
78 	select HARDIRQS_SW_RESEND
79 	select HAS_IOPORT
80 	select HAVE_ARCH_AUDITSYSCALL if AEABI && !OABI_COMPAT
81 	select HAVE_ARCH_BITREVERSE if (CPU_32v7M || CPU_32v7) && !CPU_32v6
82 	select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL && !CPU_ENDIAN_BE32 && MMU
83 	select HAVE_ARCH_KFENCE if MMU && !XIP_KERNEL
84 	select HAVE_ARCH_KGDB if !CPU_ENDIAN_BE32 && MMU
85 	select HAVE_ARCH_KASAN if MMU && !XIP_KERNEL
86 	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
87 	select HAVE_ARCH_MMAP_RND_BITS if MMU
88 	select HAVE_ARCH_PFN_VALID
89 	select HAVE_ARCH_SECCOMP
90 	select HAVE_ARCH_SECCOMP_FILTER if AEABI && !OABI_COMPAT
91 	select HAVE_ARCH_STACKLEAK
92 	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
93 	select HAVE_ARCH_TRACEHOOK
94 	select HAVE_ARCH_TRANSPARENT_HUGEPAGE if ARM_LPAE
95 	select HAVE_ARM_SMCCC if CPU_V7
96 	select HAVE_EBPF_JIT if !CPU_ENDIAN_BE32
97 	select HAVE_CONTEXT_TRACKING_USER
98 	select HAVE_C_RECORDMCOUNT
99 	select HAVE_BUILDTIME_MCOUNT_SORT
100 	select HAVE_DEBUG_KMEMLEAK if !XIP_KERNEL
101 	select HAVE_DMA_CONTIGUOUS if MMU
102 	select HAVE_DYNAMIC_FTRACE if !XIP_KERNEL && !CPU_ENDIAN_BE32 && MMU
103 	select HAVE_DYNAMIC_FTRACE_WITH_REGS if HAVE_DYNAMIC_FTRACE
104 	select HAVE_EFFICIENT_UNALIGNED_ACCESS if (CPU_V6 || CPU_V6K || CPU_V7) && MMU
105 	select HAVE_EXIT_THREAD
106 	select HAVE_GUP_FAST if ARM_LPAE
107 	select HAVE_FTRACE_MCOUNT_RECORD if !XIP_KERNEL
108 	select HAVE_FUNCTION_ERROR_INJECTION
109 	select HAVE_FUNCTION_GRAPH_TRACER
110 	select HAVE_FUNCTION_TRACER if !XIP_KERNEL
111 	select HAVE_GCC_PLUGINS
112 	select HAVE_HW_BREAKPOINT if PERF_EVENTS && (CPU_V6 || CPU_V6K || CPU_V7)
113 	select HAVE_IRQ_TIME_ACCOUNTING
114 	select HAVE_KERNEL_GZIP
115 	select HAVE_KERNEL_LZ4
116 	select HAVE_KERNEL_LZMA
117 	select HAVE_KERNEL_LZO
118 	select HAVE_KERNEL_XZ
119 	select HAVE_KPROBES if !XIP_KERNEL && !CPU_ENDIAN_BE32 && !CPU_V7M
120 	select HAVE_KRETPROBES if HAVE_KPROBES
121 	select HAVE_LD_DEAD_CODE_DATA_ELIMINATION if (LD_VERSION >= 23600 || LD_IS_LLD)
122 	select HAVE_MOD_ARCH_SPECIFIC
123 	select HAVE_NMI
124 	select HAVE_OPTPROBES if !THUMB2_KERNEL
125 	select HAVE_PAGE_SIZE_4KB
126 	select HAVE_PCI if MMU
127 	select HAVE_PERF_EVENTS
128 	select HAVE_PERF_REGS
129 	select HAVE_PERF_USER_STACK_DUMP
130 	select MMU_GATHER_RCU_TABLE_FREE if SMP && ARM_LPAE
131 	select HAVE_REGS_AND_STACK_ACCESS_API
132 	select HAVE_RSEQ
133 	select HAVE_STACKPROTECTOR
134 	select HAVE_SYSCALL_TRACEPOINTS
135 	select HAVE_UID16
136 	select HAVE_VIRT_CPU_ACCOUNTING_GEN
137 	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
138 	select IRQ_FORCED_THREADING
139 	select LOCK_MM_AND_FIND_VMA
140 	select MODULES_USE_ELF_REL
141 	select NEED_DMA_MAP_STATE
142 	select OF_EARLY_FLATTREE if OF
143 	select OLD_SIGACTION
144 	select OLD_SIGSUSPEND3
145 	select PCI_DOMAINS_GENERIC if PCI
146 	select PCI_SYSCALL if PCI
147 	select PERF_USE_VMALLOC
148 	select RTC_LIB
149 	select SPARSE_IRQ if !(ARCH_FOOTBRIDGE || ARCH_RPC)
150 	select SYS_SUPPORTS_APM_EMULATION
151 	select THREAD_INFO_IN_TASK
152 	select TIMER_OF if OF
153 	select HAVE_ARCH_VMAP_STACK if MMU && ARM_HAS_GROUP_RELOCS
154 	select TRACE_IRQFLAGS_SUPPORT if !CPU_V7M
155 	select USE_OF if !(ARCH_FOOTBRIDGE || ARCH_RPC || ARCH_SA1100)
156 	# Above selects are sorted alphabetically; please add new ones
157 	# according to that.  Thanks.
158 	help
159 	  The ARM series is a line of low-power-consumption RISC chip designs
160 	  licensed by ARM Ltd and targeted at embedded applications and
161 	  handhelds such as the Compaq IPAQ.  ARM-based PCs are no longer
162 	  manufactured, but legacy ARM-based PC hardware remains popular in
163 	  Europe.  There is an ARM Linux project with a web page at
164 	  <http://www.arm.linux.org.uk/>.
165 
166 config ARM_HAS_GROUP_RELOCS
167 	def_bool y
168 	depends on !LD_IS_LLD || LLD_VERSION >= 140000
169 	depends on !COMPILE_TEST
170 	help
171 	  Whether or not to use R_ARM_ALU_PC_Gn or R_ARM_LDR_PC_Gn group
172 	  relocations, which have been around for a long time, but were not
173 	  supported in LLD until version 14. The combined range is -/+ 256 MiB,
174 	  which is usually sufficient, but not for allyesconfig, so we disable
175 	  this feature when doing compile testing.
176 
177 config ARM_DMA_USE_IOMMU
178 	bool
179 	select NEED_SG_DMA_LENGTH
180 
181 if ARM_DMA_USE_IOMMU
182 
183 config ARM_DMA_IOMMU_ALIGNMENT
184 	int "Maximum PAGE_SIZE order of alignment for DMA IOMMU buffers"
185 	range 4 9
186 	default 8
187 	help
188 	  DMA mapping framework by default aligns all buffers to the smallest
189 	  PAGE_SIZE order which is greater than or equal to the requested buffer
190 	  size. This works well for buffers up to a few hundreds kilobytes, but
191 	  for larger buffers it just a waste of address space. Drivers which has
192 	  relatively small addressing window (like 64Mib) might run out of
193 	  virtual space with just a few allocations.
194 
195 	  With this parameter you can specify the maximum PAGE_SIZE order for
196 	  DMA IOMMU buffers. Larger buffers will be aligned only to this
197 	  specified order. The order is expressed as a power of two multiplied
198 	  by the PAGE_SIZE.
199 
200 endif
201 
202 config SYS_SUPPORTS_APM_EMULATION
203 	bool
204 
205 config HAVE_TCM
206 	bool
207 	select GENERIC_ALLOCATOR
208 
209 config HAVE_PROC_CPU
210 	bool
211 
212 config NO_IOPORT_MAP
213 	bool
214 
215 config SBUS
216 	bool
217 
218 config STACKTRACE_SUPPORT
219 	bool
220 	default y
221 
222 config LOCKDEP_SUPPORT
223 	bool
224 	default y
225 
226 config ARCH_HAS_ILOG2_U32
227 	bool
228 
229 config ARCH_HAS_ILOG2_U64
230 	bool
231 
232 config ARCH_HAS_BANDGAP
233 	bool
234 
235 config FIX_EARLYCON_MEM
236 	def_bool y if MMU
237 
238 config GENERIC_HWEIGHT
239 	bool
240 	default y
241 
242 config GENERIC_CALIBRATE_DELAY
243 	bool
244 	default y
245 
246 config ARCH_MAY_HAVE_PC_FDC
247 	bool
248 
249 config ARCH_SUPPORTS_UPROBES
250 	def_bool y
251 
252 config GENERIC_ISA_DMA
253 	bool
254 
255 config FIQ
256 	bool
257 
258 config ARCH_MTD_XIP
259 	bool
260 
261 config ARM_PATCH_PHYS_VIRT
262 	bool "Patch physical to virtual translations at runtime" if !ARCH_MULTIPLATFORM
263 	default y
264 	depends on MMU
265 	help
266 	  Patch phys-to-virt and virt-to-phys translation functions at
267 	  boot and module load time according to the position of the
268 	  kernel in system memory.
269 
270 	  This can only be used with non-XIP MMU kernels where the base
271 	  of physical memory is at a 2 MiB boundary.
272 
273 	  Only disable this option if you know that you do not require
274 	  this feature (eg, building a kernel for a single machine) and
275 	  you need to shrink the kernel to the minimal size.
276 
277 config NEED_MACH_IO_H
278 	bool
279 	help
280 	  Select this when mach/io.h is required to provide special
281 	  definitions for this platform.  The need for mach/io.h should
282 	  be avoided when possible.
283 
284 config NEED_MACH_MEMORY_H
285 	bool
286 	help
287 	  Select this when mach/memory.h is required to provide special
288 	  definitions for this platform.  The need for mach/memory.h should
289 	  be avoided when possible.
290 
291 config PHYS_OFFSET
292 	hex "Physical address of main memory" if MMU
293 	depends on !ARM_PATCH_PHYS_VIRT || !AUTO_ZRELADDR
294 	default DRAM_BASE if !MMU
295 	default 0x00000000 if ARCH_FOOTBRIDGE
296 	default 0x10000000 if ARCH_OMAP1 || ARCH_RPC
297 	default 0xa0000000 if ARCH_PXA
298 	default 0xc0000000 if ARCH_EP93XX || ARCH_SA1100
299 	default 0
300 	help
301 	  Please provide the physical address corresponding to the
302 	  location of main memory in your system.
303 
304 config GENERIC_BUG
305 	def_bool y
306 	depends on BUG
307 
308 config PGTABLE_LEVELS
309 	int
310 	default 3 if ARM_LPAE
311 	default 2
312 
313 menu "System Type"
314 
315 config MMU
316 	bool "MMU-based Paged Memory Management Support"
317 	default y
318 	help
319 	  Select if you want MMU-based virtualised addressing space
320 	  support by paged memory management. If unsure, say 'Y'.
321 
322 config ARM_SINGLE_ARMV7M
323 	def_bool !MMU
324 	select ARM_NVIC
325 	select CPU_V7M
326 	select NO_IOPORT_MAP
327 
328 config ARCH_MMAP_RND_BITS_MIN
329 	default 8
330 
331 config ARCH_MMAP_RND_BITS_MAX
332 	default 14 if PAGE_OFFSET=0x40000000
333 	default 15 if PAGE_OFFSET=0x80000000
334 	default 16
335 
336 config ARCH_MULTIPLATFORM
337 	bool "Require kernel to be portable to multiple machines" if EXPERT
338 	depends on MMU && !(ARCH_FOOTBRIDGE || ARCH_RPC || ARCH_SA1100)
339 	default y
340 	help
341 	  In general, all Arm machines can be supported in a single
342 	  kernel image, covering either Armv4/v5 or Armv6/v7.
343 
344 	  However, some configuration options require hardcoding machine
345 	  specific physical addresses or enable errata workarounds that may
346 	  break other machines.
347 
348 	  Selecting N here allows using those options, including
349 	  DEBUG_UNCOMPRESS, XIP_KERNEL and ZBOOT_ROM. If unsure, say Y.
350 
351 source "arch/arm/Kconfig.platforms"
352 
353 #
354 # This is sorted alphabetically by mach-* pathname.  However, plat-*
355 # Kconfigs may be included either alphabetically (according to the
356 # plat- suffix) or along side the corresponding mach-* source.
357 #
358 source "arch/arm/mach-actions/Kconfig"
359 
360 source "arch/arm/mach-alpine/Kconfig"
361 
362 source "arch/arm/mach-artpec/Kconfig"
363 
364 source "arch/arm/mach-aspeed/Kconfig"
365 
366 source "arch/arm/mach-at91/Kconfig"
367 
368 source "arch/arm/mach-axxia/Kconfig"
369 
370 source "arch/arm/mach-bcm/Kconfig"
371 
372 source "arch/arm/mach-berlin/Kconfig"
373 
374 source "arch/arm/mach-clps711x/Kconfig"
375 
376 source "arch/arm/mach-davinci/Kconfig"
377 
378 source "arch/arm/mach-digicolor/Kconfig"
379 
380 source "arch/arm/mach-dove/Kconfig"
381 
382 source "arch/arm/mach-ep93xx/Kconfig"
383 
384 source "arch/arm/mach-exynos/Kconfig"
385 
386 source "arch/arm/mach-footbridge/Kconfig"
387 
388 source "arch/arm/mach-gemini/Kconfig"
389 
390 source "arch/arm/mach-highbank/Kconfig"
391 
392 source "arch/arm/mach-hisi/Kconfig"
393 
394 source "arch/arm/mach-hpe/Kconfig"
395 
396 source "arch/arm/mach-imx/Kconfig"
397 
398 source "arch/arm/mach-ixp4xx/Kconfig"
399 
400 source "arch/arm/mach-keystone/Kconfig"
401 
402 source "arch/arm/mach-lpc32xx/Kconfig"
403 
404 source "arch/arm/mach-mediatek/Kconfig"
405 
406 source "arch/arm/mach-meson/Kconfig"
407 
408 source "arch/arm/mach-milbeaut/Kconfig"
409 
410 source "arch/arm/mach-mmp/Kconfig"
411 
412 source "arch/arm/mach-mstar/Kconfig"
413 
414 source "arch/arm/mach-mv78xx0/Kconfig"
415 
416 source "arch/arm/mach-mvebu/Kconfig"
417 
418 source "arch/arm/mach-mxs/Kconfig"
419 
420 source "arch/arm/mach-nomadik/Kconfig"
421 
422 source "arch/arm/mach-npcm/Kconfig"
423 
424 source "arch/arm/mach-omap1/Kconfig"
425 
426 source "arch/arm/mach-omap2/Kconfig"
427 
428 source "arch/arm/mach-orion5x/Kconfig"
429 
430 source "arch/arm/mach-pxa/Kconfig"
431 
432 source "arch/arm/mach-qcom/Kconfig"
433 
434 source "arch/arm/mach-realtek/Kconfig"
435 
436 source "arch/arm/mach-rpc/Kconfig"
437 
438 source "arch/arm/mach-rockchip/Kconfig"
439 
440 source "arch/arm/mach-s3c/Kconfig"
441 
442 source "arch/arm/mach-s5pv210/Kconfig"
443 
444 source "arch/arm/mach-sa1100/Kconfig"
445 
446 source "arch/arm/mach-shmobile/Kconfig"
447 
448 source "arch/arm/mach-socfpga/Kconfig"
449 
450 source "arch/arm/mach-spear/Kconfig"
451 
452 source "arch/arm/mach-sti/Kconfig"
453 
454 source "arch/arm/mach-stm32/Kconfig"
455 
456 source "arch/arm/mach-sunxi/Kconfig"
457 
458 source "arch/arm/mach-tegra/Kconfig"
459 
460 source "arch/arm/mach-ux500/Kconfig"
461 
462 source "arch/arm/mach-versatile/Kconfig"
463 
464 source "arch/arm/mach-vt8500/Kconfig"
465 
466 source "arch/arm/mach-zynq/Kconfig"
467 
468 # ARMv7-M architecture
469 config ARCH_LPC18XX
470 	bool "NXP LPC18xx/LPC43xx"
471 	depends on ARM_SINGLE_ARMV7M
472 	select ARCH_HAS_RESET_CONTROLLER
473 	select ARM_AMBA
474 	select CLKSRC_LPC32XX
475 	select PINCTRL
476 	help
477 	  Support for NXP's LPC18xx Cortex-M3 and LPC43xx Cortex-M4
478 	  high performance microcontrollers.
479 
480 config ARCH_MPS2
481 	bool "ARM MPS2 platform"
482 	depends on ARM_SINGLE_ARMV7M
483 	select ARM_AMBA
484 	select CLKSRC_MPS2
485 	help
486 	  Support for Cortex-M Prototyping System (or V2M-MPS2) which comes
487 	  with a range of available cores like Cortex-M3/M4/M7.
488 
489 	  Please, note that depends which Application Note is used memory map
490 	  for the platform may vary, so adjustment of RAM base might be needed.
491 
492 # Definitions to make life easier
493 config ARCH_ACORN
494 	bool
495 
496 config PLAT_ORION
497 	bool
498 	select CLKSRC_MMIO
499 	select GENERIC_IRQ_CHIP
500 	select IRQ_DOMAIN
501 
502 config PLAT_ORION_LEGACY
503 	bool
504 	select PLAT_ORION
505 
506 config PLAT_VERSATILE
507 	bool
508 
509 source "arch/arm/mm/Kconfig"
510 
511 config IWMMXT
512 	bool "Enable iWMMXt support"
513 	depends on CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK
514 	default y if PXA27x || PXA3xx || ARCH_MMP
515 	help
516 	  Enable support for iWMMXt context switching at run time if
517 	  running on a CPU that supports it.
518 
519 if !MMU
520 source "arch/arm/Kconfig-nommu"
521 endif
522 
523 config PJ4B_ERRATA_4742
524 	bool "PJ4B Errata 4742: IDLE Wake Up Commands can Cause the CPU Core to Cease Operation"
525 	depends on CPU_PJ4B && MACH_ARMADA_370
526 	default y
527 	help
528 	  When coming out of either a Wait for Interrupt (WFI) or a Wait for
529 	  Event (WFE) IDLE states, a specific timing sensitivity exists between
530 	  the retiring WFI/WFE instructions and the newly issued subsequent
531 	  instructions.  This sensitivity can result in a CPU hang scenario.
532 	  Workaround:
533 	  The software must insert either a Data Synchronization Barrier (DSB)
534 	  or Data Memory Barrier (DMB) command immediately after the WFI/WFE
535 	  instruction
536 
537 config ARM_ERRATA_326103
538 	bool "ARM errata: FSR write bit incorrect on a SWP to read-only memory"
539 	depends on CPU_V6
540 	help
541 	  Executing a SWP instruction to read-only memory does not set bit 11
542 	  of the FSR on the ARM 1136 prior to r1p0. This causes the kernel to
543 	  treat the access as a read, preventing a COW from occurring and
544 	  causing the faulting task to livelock.
545 
546 config ARM_ERRATA_411920
547 	bool "ARM errata: Invalidation of the Instruction Cache operation can fail"
548 	depends on CPU_V6 || CPU_V6K
549 	help
550 	  Invalidation of the Instruction Cache operation can
551 	  fail. This erratum is present in 1136 (before r1p4), 1156 and 1176.
552 	  It does not affect the MPCore. This option enables the ARM Ltd.
553 	  recommended workaround.
554 
555 config ARM_ERRATA_430973
556 	bool "ARM errata: Stale prediction on replaced interworking branch"
557 	depends on CPU_V7
558 	help
559 	  This option enables the workaround for the 430973 Cortex-A8
560 	  r1p* erratum. If a code sequence containing an ARM/Thumb
561 	  interworking branch is replaced with another code sequence at the
562 	  same virtual address, whether due to self-modifying code or virtual
563 	  to physical address re-mapping, Cortex-A8 does not recover from the
564 	  stale interworking branch prediction. This results in Cortex-A8
565 	  executing the new code sequence in the incorrect ARM or Thumb state.
566 	  The workaround enables the BTB/BTAC operations by setting ACTLR.IBE
567 	  and also flushes the branch target cache at every context switch.
568 	  Note that setting specific bits in the ACTLR register may not be
569 	  available in non-secure mode.
570 
571 config ARM_ERRATA_458693
572 	bool "ARM errata: Processor deadlock when a false hazard is created"
573 	depends on CPU_V7
574 	depends on !ARCH_MULTIPLATFORM
575 	help
576 	  This option enables the workaround for the 458693 Cortex-A8 (r2p0)
577 	  erratum. For very specific sequences of memory operations, it is
578 	  possible for a hazard condition intended for a cache line to instead
579 	  be incorrectly associated with a different cache line. This false
580 	  hazard might then cause a processor deadlock. The workaround enables
581 	  the L1 caching of the NEON accesses and disables the PLD instruction
582 	  in the ACTLR register. Note that setting specific bits in the ACTLR
583 	  register may not be available in non-secure mode and thus is not
584 	  available on a multiplatform kernel. This should be applied by the
585 	  bootloader instead.
586 
587 config ARM_ERRATA_460075
588 	bool "ARM errata: Data written to the L2 cache can be overwritten with stale data"
589 	depends on CPU_V7
590 	depends on !ARCH_MULTIPLATFORM
591 	help
592 	  This option enables the workaround for the 460075 Cortex-A8 (r2p0)
593 	  erratum. Any asynchronous access to the L2 cache may encounter a
594 	  situation in which recent store transactions to the L2 cache are lost
595 	  and overwritten with stale memory contents from external memory. The
596 	  workaround disables the write-allocate mode for the L2 cache via the
597 	  ACTLR register. Note that setting specific bits in the ACTLR register
598 	  may not be available in non-secure mode and thus is not available on
599 	  a multiplatform kernel. This should be applied by the bootloader
600 	  instead.
601 
602 config ARM_ERRATA_742230
603 	bool "ARM errata: DMB operation may be faulty"
604 	depends on CPU_V7 && SMP
605 	depends on !ARCH_MULTIPLATFORM
606 	help
607 	  This option enables the workaround for the 742230 Cortex-A9
608 	  (r1p0..r2p2) erratum. Under rare circumstances, a DMB instruction
609 	  between two write operations may not ensure the correct visibility
610 	  ordering of the two writes. This workaround sets a specific bit in
611 	  the diagnostic register of the Cortex-A9 which causes the DMB
612 	  instruction to behave as a DSB, ensuring the correct behaviour of
613 	  the two writes. Note that setting specific bits in the diagnostics
614 	  register may not be available in non-secure mode and thus is not
615 	  available on a multiplatform kernel. This should be applied by the
616 	  bootloader instead.
617 
618 config ARM_ERRATA_742231
619 	bool "ARM errata: Incorrect hazard handling in the SCU may lead to data corruption"
620 	depends on CPU_V7 && SMP
621 	depends on !ARCH_MULTIPLATFORM
622 	help
623 	  This option enables the workaround for the 742231 Cortex-A9
624 	  (r2p0..r2p2) erratum. Under certain conditions, specific to the
625 	  Cortex-A9 MPCore micro-architecture, two CPUs working in SMP mode,
626 	  accessing some data located in the same cache line, may get corrupted
627 	  data due to bad handling of the address hazard when the line gets
628 	  replaced from one of the CPUs at the same time as another CPU is
629 	  accessing it. This workaround sets specific bits in the diagnostic
630 	  register of the Cortex-A9 which reduces the linefill issuing
631 	  capabilities of the processor. Note that setting specific bits in the
632 	  diagnostics register may not be available in non-secure mode and thus
633 	  is not available on a multiplatform kernel. This should be applied by
634 	  the bootloader instead.
635 
636 config ARM_ERRATA_643719
637 	bool "ARM errata: LoUIS bit field in CLIDR register is incorrect"
638 	depends on CPU_V7 && SMP
639 	default y
640 	help
641 	  This option enables the workaround for the 643719 Cortex-A9 (prior to
642 	  r1p0) erratum. On affected cores the LoUIS bit field of the CLIDR
643 	  register returns zero when it should return one. The workaround
644 	  corrects this value, ensuring cache maintenance operations which use
645 	  it behave as intended and avoiding data corruption.
646 
647 config ARM_ERRATA_720789
648 	bool "ARM errata: TLBIASIDIS and TLBIMVAIS operations can broadcast a faulty ASID"
649 	depends on CPU_V7
650 	help
651 	  This option enables the workaround for the 720789 Cortex-A9 (prior to
652 	  r2p0) erratum. A faulty ASID can be sent to the other CPUs for the
653 	  broadcasted CP15 TLB maintenance operations TLBIASIDIS and TLBIMVAIS.
654 	  As a consequence of this erratum, some TLB entries which should be
655 	  invalidated are not, resulting in an incoherency in the system page
656 	  tables. The workaround changes the TLB flushing routines to invalidate
657 	  entries regardless of the ASID.
658 
659 config ARM_ERRATA_743622
660 	bool "ARM errata: Faulty hazard checking in the Store Buffer may lead to data corruption"
661 	depends on CPU_V7
662 	depends on !ARCH_MULTIPLATFORM
663 	help
664 	  This option enables the workaround for the 743622 Cortex-A9
665 	  (r2p*) erratum. Under very rare conditions, a faulty
666 	  optimisation in the Cortex-A9 Store Buffer may lead to data
667 	  corruption. This workaround sets a specific bit in the diagnostic
668 	  register of the Cortex-A9 which disables the Store Buffer
669 	  optimisation, preventing the defect from occurring. This has no
670 	  visible impact on the overall performance or power consumption of the
671 	  processor. Note that setting specific bits in the diagnostics register
672 	  may not be available in non-secure mode and thus is not available on a
673 	  multiplatform kernel. This should be applied by the bootloader instead.
674 
675 config ARM_ERRATA_751472
676 	bool "ARM errata: Interrupted ICIALLUIS may prevent completion of broadcasted operation"
677 	depends on CPU_V7
678 	depends on !ARCH_MULTIPLATFORM
679 	help
680 	  This option enables the workaround for the 751472 Cortex-A9 (prior
681 	  to r3p0) erratum. An interrupted ICIALLUIS operation may prevent the
682 	  completion of a following broadcasted operation if the second
683 	  operation is received by a CPU before the ICIALLUIS has completed,
684 	  potentially leading to corrupted entries in the cache or TLB.
685 	  Note that setting specific bits in the diagnostics register may
686 	  not be available in non-secure mode and thus is not available on
687 	  a multiplatform kernel. This should be applied by the bootloader
688 	  instead.
689 
690 config ARM_ERRATA_754322
691 	bool "ARM errata: possible faulty MMU translations following an ASID switch"
692 	depends on CPU_V7
693 	help
694 	  This option enables the workaround for the 754322 Cortex-A9 (r2p*,
695 	  r3p*) erratum. A speculative memory access may cause a page table walk
696 	  which starts prior to an ASID switch but completes afterwards. This
697 	  can populate the micro-TLB with a stale entry which may be hit with
698 	  the new ASID. This workaround places two dsb instructions in the mm
699 	  switching code so that no page table walks can cross the ASID switch.
700 
701 config ARM_ERRATA_754327
702 	bool "ARM errata: no automatic Store Buffer drain"
703 	depends on CPU_V7 && SMP
704 	help
705 	  This option enables the workaround for the 754327 Cortex-A9 (prior to
706 	  r2p0) erratum. The Store Buffer does not have any automatic draining
707 	  mechanism and therefore a livelock may occur if an external agent
708 	  continuously polls a memory location waiting to observe an update.
709 	  This workaround defines cpu_relax() as smp_mb(), preventing correctly
710 	  written polling loops from denying visibility of updates to memory.
711 
712 config ARM_ERRATA_364296
713 	bool "ARM errata: Possible cache data corruption with hit-under-miss enabled"
714 	depends on CPU_V6
715 	help
716 	  This options enables the workaround for the 364296 ARM1136
717 	  r0p2 erratum (possible cache data corruption with
718 	  hit-under-miss enabled). It sets the undocumented bit 31 in
719 	  the auxiliary control register and the FI bit in the control
720 	  register, thus disabling hit-under-miss without putting the
721 	  processor into full low interrupt latency mode. ARM11MPCore
722 	  is not affected.
723 
724 config ARM_ERRATA_764369
725 	bool "ARM errata: Data cache line maintenance operation by MVA may not succeed"
726 	depends on CPU_V7 && SMP
727 	help
728 	  This option enables the workaround for erratum 764369
729 	  affecting Cortex-A9 MPCore with two or more processors (all
730 	  current revisions). Under certain timing circumstances, a data
731 	  cache line maintenance operation by MVA targeting an Inner
732 	  Shareable memory region may fail to proceed up to either the
733 	  Point of Coherency or to the Point of Unification of the
734 	  system. This workaround adds a DSB instruction before the
735 	  relevant cache maintenance functions and sets a specific bit
736 	  in the diagnostic control register of the SCU.
737 
738 config ARM_ERRATA_764319
739 	bool "ARM errata: Read to DBGPRSR and DBGOSLSR may generate Undefined instruction"
740 	depends on CPU_V7
741 	help
742 	  This option enables the workaround for the 764319 Cortex-A9 erratum.
743 	  CP14 read accesses to the DBGPRSR and DBGOSLSR registers generate an
744 	  unexpected Undefined Instruction exception when the DBGSWENABLE
745 	  external pin is set to 0, even when the CP14 accesses are performed
746 	  from a privileged mode. This work around catches the exception in a
747 	  way the kernel does not stop execution.
748 
749 config ARM_ERRATA_775420
750        bool "ARM errata: A data cache maintenance operation which aborts, might lead to deadlock"
751        depends on CPU_V7
752        help
753 	 This option enables the workaround for the 775420 Cortex-A9 (r2p2,
754 	 r2p6,r2p8,r2p10,r3p0) erratum. In case a data cache maintenance
755 	 operation aborts with MMU exception, it might cause the processor
756 	 to deadlock. This workaround puts DSB before executing ISB if
757 	 an abort may occur on cache maintenance.
758 
759 config ARM_ERRATA_798181
760 	bool "ARM errata: TLBI/DSB failure on Cortex-A15"
761 	depends on CPU_V7 && SMP
762 	help
763 	  On Cortex-A15 (r0p0..r3p2) the TLBI*IS/DSB operations are not
764 	  adequately shooting down all use of the old entries. This
765 	  option enables the Linux kernel workaround for this erratum
766 	  which sends an IPI to the CPUs that are running the same ASID
767 	  as the one being invalidated.
768 
769 config ARM_ERRATA_773022
770 	bool "ARM errata: incorrect instructions may be executed from loop buffer"
771 	depends on CPU_V7
772 	help
773 	  This option enables the workaround for the 773022 Cortex-A15
774 	  (up to r0p4) erratum. In certain rare sequences of code, the
775 	  loop buffer may deliver incorrect instructions. This
776 	  workaround disables the loop buffer to avoid the erratum.
777 
778 config ARM_ERRATA_818325_852422
779 	bool "ARM errata: A12: some seqs of opposed cond code instrs => deadlock or corruption"
780 	depends on CPU_V7
781 	help
782 	  This option enables the workaround for:
783 	  - Cortex-A12 818325: Execution of an UNPREDICTABLE STR or STM
784 	    instruction might deadlock.  Fixed in r0p1.
785 	  - Cortex-A12 852422: Execution of a sequence of instructions might
786 	    lead to either a data corruption or a CPU deadlock.  Not fixed in
787 	    any Cortex-A12 cores yet.
788 	  This workaround for all both errata involves setting bit[12] of the
789 	  Feature Register. This bit disables an optimisation applied to a
790 	  sequence of 2 instructions that use opposing condition codes.
791 
792 config ARM_ERRATA_821420
793 	bool "ARM errata: A12: sequence of VMOV to core registers might lead to a dead lock"
794 	depends on CPU_V7
795 	help
796 	  This option enables the workaround for the 821420 Cortex-A12
797 	  (all revs) erratum. In very rare timing conditions, a sequence
798 	  of VMOV to Core registers instructions, for which the second
799 	  one is in the shadow of a branch or abort, can lead to a
800 	  deadlock when the VMOV instructions are issued out-of-order.
801 
802 config ARM_ERRATA_825619
803 	bool "ARM errata: A12: DMB NSHST/ISHST mixed ... might cause deadlock"
804 	depends on CPU_V7
805 	help
806 	  This option enables the workaround for the 825619 Cortex-A12
807 	  (all revs) erratum. Within rare timing constraints, executing a
808 	  DMB NSHST or DMB ISHST instruction followed by a mix of Cacheable
809 	  and Device/Strongly-Ordered loads and stores might cause deadlock
810 
811 config ARM_ERRATA_857271
812 	bool "ARM errata: A12: CPU might deadlock under some very rare internal conditions"
813 	depends on CPU_V7
814 	help
815 	  This option enables the workaround for the 857271 Cortex-A12
816 	  (all revs) erratum. Under very rare timing conditions, the CPU might
817 	  hang. The workaround is expected to have a < 1% performance impact.
818 
819 config ARM_ERRATA_852421
820 	bool "ARM errata: A17: DMB ST might fail to create order between stores"
821 	depends on CPU_V7
822 	help
823 	  This option enables the workaround for the 852421 Cortex-A17
824 	  (r1p0, r1p1, r1p2) erratum. Under very rare timing conditions,
825 	  execution of a DMB ST instruction might fail to properly order
826 	  stores from GroupA and stores from GroupB.
827 
828 config ARM_ERRATA_852423
829 	bool "ARM errata: A17: some seqs of opposed cond code instrs => deadlock or corruption"
830 	depends on CPU_V7
831 	help
832 	  This option enables the workaround for:
833 	  - Cortex-A17 852423: Execution of a sequence of instructions might
834 	    lead to either a data corruption or a CPU deadlock.  Not fixed in
835 	    any Cortex-A17 cores yet.
836 	  This is identical to Cortex-A12 erratum 852422.  It is a separate
837 	  config option from the A12 erratum due to the way errata are checked
838 	  for and handled.
839 
840 config ARM_ERRATA_857272
841 	bool "ARM errata: A17: CPU might deadlock under some very rare internal conditions"
842 	depends on CPU_V7
843 	help
844 	  This option enables the workaround for the 857272 Cortex-A17 erratum.
845 	  This erratum is not known to be fixed in any A17 revision.
846 	  This is identical to Cortex-A12 erratum 857271.  It is a separate
847 	  config option from the A12 erratum due to the way errata are checked
848 	  for and handled.
849 
850 endmenu
851 
852 source "arch/arm/common/Kconfig"
853 
854 menu "Bus support"
855 
856 config ISA
857 	bool
858 	help
859 	  Find out whether you have ISA slots on your motherboard.  ISA is the
860 	  name of a bus system, i.e. the way the CPU talks to the other stuff
861 	  inside your box.  Other bus systems are PCI, EISA, MicroChannel
862 	  (MCA) or VESA.  ISA is an older system, now being displaced by PCI;
863 	  newer boards don't support it.  If you have ISA, say Y, otherwise N.
864 
865 # Select ISA DMA interface
866 config ISA_DMA_API
867 	bool
868 
869 config ARM_ERRATA_814220
870 	bool "ARM errata: Cache maintenance by set/way operations can execute out of order"
871 	depends on CPU_V7
872 	help
873 	  The v7 ARM states that all cache and branch predictor maintenance
874 	  operations that do not specify an address execute, relative to
875 	  each other, in program order.
876 	  However, because of this erratum, an L2 set/way cache maintenance
877 	  operation can overtake an L1 set/way cache maintenance operation.
878 	  This ERRATA only affected the Cortex-A7 and present in r0p2, r0p3,
879 	  r0p4, r0p5.
880 
881 endmenu
882 
883 menu "Kernel Features"
884 
885 config HAVE_SMP
886 	bool
887 	help
888 	  This option should be selected by machines which have an SMP-
889 	  capable CPU.
890 
891 	  The only effect of this option is to make the SMP-related
892 	  options available to the user for configuration.
893 
894 config SMP
895 	bool "Symmetric Multi-Processing"
896 	depends on CPU_V6K || CPU_V7
897 	depends on HAVE_SMP
898 	depends on MMU || ARM_MPU
899 	select IRQ_WORK
900 	help
901 	  This enables support for systems with more than one CPU. If you have
902 	  a system with only one CPU, say N. If you have a system with more
903 	  than one CPU, say Y.
904 
905 	  If you say N here, the kernel will run on uni- and multiprocessor
906 	  machines, but will use only one CPU of a multiprocessor machine. If
907 	  you say Y here, the kernel will run on many, but not all,
908 	  uniprocessor machines. On a uniprocessor machine, the kernel
909 	  will run faster if you say N here.
910 
911 	  See also <file:Documentation/arch/x86/i386/IO-APIC.rst>,
912 	  <file:Documentation/admin-guide/lockup-watchdogs.rst> and the SMP-HOWTO available at
913 	  <http://tldp.org/HOWTO/SMP-HOWTO.html>.
914 
915 	  If you don't know what to do here, say N.
916 
917 config SMP_ON_UP
918 	bool "Allow booting SMP kernel on uniprocessor systems"
919 	depends on SMP && MMU
920 	default y
921 	help
922 	  SMP kernels contain instructions which fail on non-SMP processors.
923 	  Enabling this option allows the kernel to modify itself to make
924 	  these instructions safe.  Disabling it allows about 1K of space
925 	  savings.
926 
927 	  If you don't know what to do here, say Y.
928 
929 
930 config CURRENT_POINTER_IN_TPIDRURO
931 	def_bool y
932 	depends on CPU_32v6K && !CPU_V6
933 
934 config IRQSTACKS
935 	def_bool y
936 	select HAVE_IRQ_EXIT_ON_IRQ_STACK
937 	select HAVE_SOFTIRQ_ON_OWN_STACK
938 
939 config ARM_CPU_TOPOLOGY
940 	bool "Support cpu topology definition"
941 	depends on SMP && CPU_V7
942 	default y
943 	help
944 	  Support ARM cpu topology definition. The MPIDR register defines
945 	  affinity between processors which is then used to describe the cpu
946 	  topology of an ARM System.
947 
948 config SCHED_MC
949 	bool "Multi-core scheduler support"
950 	depends on ARM_CPU_TOPOLOGY
951 	help
952 	  Multi-core scheduler support improves the CPU scheduler's decision
953 	  making when dealing with multi-core CPU chips at a cost of slightly
954 	  increased overhead in some places. If unsure say N here.
955 
956 config SCHED_SMT
957 	bool "SMT scheduler support"
958 	depends on ARM_CPU_TOPOLOGY
959 	help
960 	  Improves the CPU scheduler's decision making when dealing with
961 	  MultiThreading at a cost of slightly increased overhead in some
962 	  places. If unsure say N here.
963 
964 config HAVE_ARM_SCU
965 	bool
966 	help
967 	  This option enables support for the ARM snoop control unit
968 
969 config HAVE_ARM_ARCH_TIMER
970 	bool "Architected timer support"
971 	depends on CPU_V7
972 	select ARM_ARCH_TIMER
973 	help
974 	  This option enables support for the ARM architected timer
975 
976 config HAVE_ARM_TWD
977 	bool
978 	help
979 	  This options enables support for the ARM timer and watchdog unit
980 
981 config MCPM
982 	bool "Multi-Cluster Power Management"
983 	depends on CPU_V7 && SMP
984 	help
985 	  This option provides the common power management infrastructure
986 	  for (multi-)cluster based systems, such as big.LITTLE based
987 	  systems.
988 
989 config MCPM_QUAD_CLUSTER
990 	bool
991 	depends on MCPM
992 	help
993 	  To avoid wasting resources unnecessarily, MCPM only supports up
994 	  to 2 clusters by default.
995 	  Platforms with 3 or 4 clusters that use MCPM must select this
996 	  option to allow the additional clusters to be managed.
997 
998 config BIG_LITTLE
999 	bool "big.LITTLE support (Experimental)"
1000 	depends on CPU_V7 && SMP
1001 	select MCPM
1002 	help
1003 	  This option enables support selections for the big.LITTLE
1004 	  system architecture.
1005 
1006 config BL_SWITCHER
1007 	bool "big.LITTLE switcher support"
1008 	depends on BIG_LITTLE && MCPM && HOTPLUG_CPU && ARM_GIC
1009 	select CPU_PM
1010 	help
1011 	  The big.LITTLE "switcher" provides the core functionality to
1012 	  transparently handle transition between a cluster of A15's
1013 	  and a cluster of A7's in a big.LITTLE system.
1014 
1015 config BL_SWITCHER_DUMMY_IF
1016 	tristate "Simple big.LITTLE switcher user interface"
1017 	depends on BL_SWITCHER && DEBUG_KERNEL
1018 	help
1019 	  This is a simple and dummy char dev interface to control
1020 	  the big.LITTLE switcher core code.  It is meant for
1021 	  debugging purposes only.
1022 
1023 choice
1024 	prompt "Memory split"
1025 	depends on MMU
1026 	default VMSPLIT_3G
1027 	help
1028 	  Select the desired split between kernel and user memory.
1029 
1030 	  If you are not absolutely sure what you are doing, leave this
1031 	  option alone!
1032 
1033 	config VMSPLIT_3G
1034 		bool "3G/1G user/kernel split"
1035 	config VMSPLIT_3G_OPT
1036 		depends on !ARM_LPAE
1037 		bool "3G/1G user/kernel split (for full 1G low memory)"
1038 	config VMSPLIT_2G
1039 		bool "2G/2G user/kernel split"
1040 	config VMSPLIT_1G
1041 		bool "1G/3G user/kernel split"
1042 endchoice
1043 
1044 config PAGE_OFFSET
1045 	hex
1046 	default PHYS_OFFSET if !MMU
1047 	default 0x40000000 if VMSPLIT_1G
1048 	default 0x80000000 if VMSPLIT_2G
1049 	default 0xB0000000 if VMSPLIT_3G_OPT
1050 	default 0xC0000000
1051 
1052 config KASAN_SHADOW_OFFSET
1053 	hex
1054 	depends on KASAN
1055 	default 0x1f000000 if PAGE_OFFSET=0x40000000
1056 	default 0x5f000000 if PAGE_OFFSET=0x80000000
1057 	default 0x9f000000 if PAGE_OFFSET=0xC0000000
1058 	default 0x8f000000 if PAGE_OFFSET=0xB0000000
1059 	default 0xffffffff
1060 
1061 config NR_CPUS
1062 	int "Maximum number of CPUs (2-32)"
1063 	range 2 16 if DEBUG_KMAP_LOCAL
1064 	range 2 32 if !DEBUG_KMAP_LOCAL
1065 	depends on SMP
1066 	default "4"
1067 	help
1068 	  The maximum number of CPUs that the kernel can support.
1069 	  Up to 32 CPUs can be supported, or up to 16 if kmap_local()
1070 	  debugging is enabled, which uses half of the per-CPU fixmap
1071 	  slots as guard regions.
1072 
1073 config HOTPLUG_CPU
1074 	bool "Support for hot-pluggable CPUs"
1075 	depends on SMP
1076 	select GENERIC_IRQ_MIGRATION
1077 	help
1078 	  Say Y here to experiment with turning CPUs off and on.  CPUs
1079 	  can be controlled through /sys/devices/system/cpu.
1080 
1081 config ARM_PSCI
1082 	bool "Support for the ARM Power State Coordination Interface (PSCI)"
1083 	depends on HAVE_ARM_SMCCC
1084 	select ARM_PSCI_FW
1085 	help
1086 	  Say Y here if you want Linux to communicate with system firmware
1087 	  implementing the PSCI specification for CPU-centric power
1088 	  management operations described in ARM document number ARM DEN
1089 	  0022A ("Power State Coordination Interface System Software on
1090 	  ARM processors").
1091 
1092 config HZ_FIXED
1093 	int
1094 	default 128 if SOC_AT91RM9200
1095 	default 0
1096 
1097 choice
1098 	depends on HZ_FIXED = 0
1099 	prompt "Timer frequency"
1100 
1101 config HZ_100
1102 	bool "100 Hz"
1103 
1104 config HZ_200
1105 	bool "200 Hz"
1106 
1107 config HZ_250
1108 	bool "250 Hz"
1109 
1110 config HZ_300
1111 	bool "300 Hz"
1112 
1113 config HZ_500
1114 	bool "500 Hz"
1115 
1116 config HZ_1000
1117 	bool "1000 Hz"
1118 
1119 endchoice
1120 
1121 config HZ
1122 	int
1123 	default HZ_FIXED if HZ_FIXED != 0
1124 	default 100 if HZ_100
1125 	default 200 if HZ_200
1126 	default 250 if HZ_250
1127 	default 300 if HZ_300
1128 	default 500 if HZ_500
1129 	default 1000
1130 
1131 config SCHED_HRTICK
1132 	def_bool HIGH_RES_TIMERS
1133 
1134 config THUMB2_KERNEL
1135 	bool "Compile the kernel in Thumb-2 mode" if !CPU_THUMBONLY
1136 	depends on (CPU_V7 || CPU_V7M) && !CPU_V6 && !CPU_V6K
1137 	default y if CPU_THUMBONLY
1138 	select ARM_UNWIND
1139 	help
1140 	  By enabling this option, the kernel will be compiled in
1141 	  Thumb-2 mode.
1142 
1143 	  If unsure, say N.
1144 
1145 config ARM_PATCH_IDIV
1146 	bool "Runtime patch udiv/sdiv instructions into __aeabi_{u}idiv()"
1147 	depends on CPU_32v7
1148 	default y
1149 	help
1150 	  The ARM compiler inserts calls to __aeabi_idiv() and
1151 	  __aeabi_uidiv() when it needs to perform division on signed
1152 	  and unsigned integers. Some v7 CPUs have support for the sdiv
1153 	  and udiv instructions that can be used to implement those
1154 	  functions.
1155 
1156 	  Enabling this option allows the kernel to modify itself to
1157 	  replace the first two instructions of these library functions
1158 	  with the sdiv or udiv plus "bx lr" instructions when the CPU
1159 	  it is running on supports them. Typically this will be faster
1160 	  and less power intensive than running the original library
1161 	  code to do integer division.
1162 
1163 config AEABI
1164 	bool "Use the ARM EABI to compile the kernel" if !CPU_V7 && \
1165 		!CPU_V7M && !CPU_V6 && !CPU_V6K && !CC_IS_CLANG
1166 	default CPU_V7 || CPU_V7M || CPU_V6 || CPU_V6K || CC_IS_CLANG
1167 	help
1168 	  This option allows for the kernel to be compiled using the latest
1169 	  ARM ABI (aka EABI).  This is only useful if you are using a user
1170 	  space environment that is also compiled with EABI.
1171 
1172 	  Since there are major incompatibilities between the legacy ABI and
1173 	  EABI, especially with regard to structure member alignment, this
1174 	  option also changes the kernel syscall calling convention to
1175 	  disambiguate both ABIs and allow for backward compatibility support
1176 	  (selected with CONFIG_OABI_COMPAT).
1177 
1178 	  To use this you need GCC version 4.0.0 or later.
1179 
1180 config OABI_COMPAT
1181 	bool "Allow old ABI binaries to run with this kernel (EXPERIMENTAL)"
1182 	depends on AEABI && !THUMB2_KERNEL
1183 	help
1184 	  This option preserves the old syscall interface along with the
1185 	  new (ARM EABI) one. It also provides a compatibility layer to
1186 	  intercept syscalls that have structure arguments which layout
1187 	  in memory differs between the legacy ABI and the new ARM EABI
1188 	  (only for non "thumb" binaries). This option adds a tiny
1189 	  overhead to all syscalls and produces a slightly larger kernel.
1190 
1191 	  The seccomp filter system will not be available when this is
1192 	  selected, since there is no way yet to sensibly distinguish
1193 	  between calling conventions during filtering.
1194 
1195 	  If you know you'll be using only pure EABI user space then you
1196 	  can say N here. If this option is not selected and you attempt
1197 	  to execute a legacy ABI binary then the result will be
1198 	  UNPREDICTABLE (in fact it can be predicted that it won't work
1199 	  at all). If in doubt say N.
1200 
1201 config ARCH_SELECT_MEMORY_MODEL
1202 	def_bool y
1203 
1204 config ARCH_FLATMEM_ENABLE
1205 	def_bool !(ARCH_RPC || ARCH_SA1100)
1206 
1207 config ARCH_SPARSEMEM_ENABLE
1208 	def_bool !ARCH_FOOTBRIDGE
1209 	select SPARSEMEM_STATIC if SPARSEMEM
1210 
1211 config HIGHMEM
1212 	bool "High Memory Support"
1213 	depends on MMU
1214 	select KMAP_LOCAL
1215 	select KMAP_LOCAL_NON_LINEAR_PTE_ARRAY
1216 	help
1217 	  The address space of ARM processors is only 4 Gigabytes large
1218 	  and it has to accommodate user address space, kernel address
1219 	  space as well as some memory mapped IO. That means that, if you
1220 	  have a large amount of physical memory and/or IO, not all of the
1221 	  memory can be "permanently mapped" by the kernel. The physical
1222 	  memory that is not permanently mapped is called "high memory".
1223 
1224 	  Depending on the selected kernel/user memory split, minimum
1225 	  vmalloc space and actual amount of RAM, you may not need this
1226 	  option which should result in a slightly faster kernel.
1227 
1228 	  If unsure, say n.
1229 
1230 config HIGHPTE
1231 	bool "Allocate 2nd-level pagetables from highmem" if EXPERT
1232 	depends on HIGHMEM
1233 	default y
1234 	help
1235 	  The VM uses one page of physical memory for each page table.
1236 	  For systems with a lot of processes, this can use a lot of
1237 	  precious low memory, eventually leading to low memory being
1238 	  consumed by page tables.  Setting this option will allow
1239 	  user-space 2nd level page tables to reside in high memory.
1240 
1241 config ARM_PAN
1242 	bool "Enable privileged no-access"
1243 	depends on MMU
1244 	default y
1245 	help
1246 	  Increase kernel security by ensuring that normal kernel accesses
1247 	  are unable to access userspace addresses.  This can help prevent
1248 	  use-after-free bugs becoming an exploitable privilege escalation
1249 	  by ensuring that magic values (such as LIST_POISON) will always
1250 	  fault when dereferenced.
1251 
1252 	  The implementation uses CPU domains when !CONFIG_ARM_LPAE and
1253 	  disabling of TTBR0 page table walks with CONFIG_ARM_LPAE.
1254 
1255 config CPU_SW_DOMAIN_PAN
1256 	def_bool y
1257 	depends on ARM_PAN && !ARM_LPAE
1258 	help
1259 	  Enable use of CPU domains to implement privileged no-access.
1260 
1261 	  CPUs with low-vector mappings use a best-efforts implementation.
1262 	  Their lower 1MB needs to remain accessible for the vectors, but
1263 	  the remainder of userspace will become appropriately inaccessible.
1264 
1265 config CPU_TTBR0_PAN
1266 	def_bool y
1267 	depends on ARM_PAN && ARM_LPAE
1268 	help
1269 	  Enable privileged no-access by disabling TTBR0 page table walks when
1270 	  running in kernel mode.
1271 
1272 config HW_PERF_EVENTS
1273 	def_bool y
1274 	depends on ARM_PMU
1275 
1276 config ARM_MODULE_PLTS
1277 	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1278 	depends on MODULES
1279 	select KASAN_VMALLOC if KASAN
1280 	default y
1281 	help
1282 	  Allocate PLTs when loading modules so that jumps and calls whose
1283 	  targets are too far away for their relative offsets to be encoded
1284 	  in the instructions themselves can be bounced via veneers in the
1285 	  module's PLT. This allows modules to be allocated in the generic
1286 	  vmalloc area after the dedicated module memory area has been
1287 	  exhausted. The modules will use slightly more memory, but after
1288 	  rounding up to page size, the actual memory footprint is usually
1289 	  the same.
1290 
1291 	  Disabling this is usually safe for small single-platform
1292 	  configurations. If unsure, say y.
1293 
1294 config ARCH_FORCE_MAX_ORDER
1295 	int "Order of maximal physically contiguous allocations"
1296 	default "11" if SOC_AM33XX
1297 	default "8" if SA1111
1298 	default "10"
1299 	help
1300 	  The kernel page allocator limits the size of maximal physically
1301 	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1302 	  defines the maximal power of two of number of pages that can be
1303 	  allocated as a single contiguous block. This option allows
1304 	  overriding the default setting when ability to allocate very
1305 	  large blocks of physically contiguous memory is required.
1306 
1307 	  Don't change if unsure.
1308 
1309 config ALIGNMENT_TRAP
1310 	def_bool CPU_CP15_MMU
1311 	select HAVE_PROC_CPU if PROC_FS
1312 	help
1313 	  ARM processors cannot fetch/store information which is not
1314 	  naturally aligned on the bus, i.e., a 4 byte fetch must start at an
1315 	  address divisible by 4. On 32-bit ARM processors, these non-aligned
1316 	  fetch/store instructions will be emulated in software if you say
1317 	  here, which has a severe performance impact. This is necessary for
1318 	  correct operation of some network protocols. With an IP-only
1319 	  configuration it is safe to say N, otherwise say Y.
1320 
1321 config UACCESS_WITH_MEMCPY
1322 	bool "Use kernel mem{cpy,set}() for {copy_to,clear}_user()"
1323 	depends on MMU
1324 	default y if CPU_FEROCEON
1325 	help
1326 	  Implement faster copy_to_user and clear_user methods for CPU
1327 	  cores where a 8-word STM instruction give significantly higher
1328 	  memory write throughput than a sequence of individual 32bit stores.
1329 
1330 	  A possible side effect is a slight increase in scheduling latency
1331 	  between threads sharing the same address space if they invoke
1332 	  such copy operations with large buffers.
1333 
1334 	  However, if the CPU data cache is using a write-allocate mode,
1335 	  this option is unlikely to provide any performance gain.
1336 
1337 config PARAVIRT
1338 	bool "Enable paravirtualization code"
1339 	help
1340 	  This changes the kernel so it can modify itself when it is run
1341 	  under a hypervisor, potentially improving performance significantly
1342 	  over full virtualization.
1343 
1344 config PARAVIRT_TIME_ACCOUNTING
1345 	bool "Paravirtual steal time accounting"
1346 	select PARAVIRT
1347 	help
1348 	  Select this option to enable fine granularity task steal time
1349 	  accounting. Time spent executing other tasks in parallel with
1350 	  the current vCPU is discounted from the vCPU power. To account for
1351 	  that, there can be a small performance impact.
1352 
1353 	  If in doubt, say N here.
1354 
1355 config XEN_DOM0
1356 	def_bool y
1357 	depends on XEN
1358 
1359 config XEN
1360 	bool "Xen guest support on ARM"
1361 	depends on ARM && AEABI && OF
1362 	depends on CPU_V7 && !CPU_V6
1363 	depends on !GENERIC_ATOMIC64
1364 	depends on MMU
1365 	select ARCH_DMA_ADDR_T_64BIT
1366 	select ARM_PSCI
1367 	select SWIOTLB
1368 	select SWIOTLB_XEN
1369 	select PARAVIRT
1370 	help
1371 	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM.
1372 
1373 config CC_HAVE_STACKPROTECTOR_TLS
1374 	def_bool $(cc-option,-mtp=cp15 -mstack-protector-guard=tls -mstack-protector-guard-offset=0)
1375 
1376 config STACKPROTECTOR_PER_TASK
1377 	bool "Use a unique stack canary value for each task"
1378 	depends on STACKPROTECTOR && CURRENT_POINTER_IN_TPIDRURO && !XIP_DEFLATED_DATA
1379 	depends on GCC_PLUGINS || CC_HAVE_STACKPROTECTOR_TLS
1380 	select GCC_PLUGIN_ARM_SSP_PER_TASK if !CC_HAVE_STACKPROTECTOR_TLS
1381 	default y
1382 	help
1383 	  Due to the fact that GCC uses an ordinary symbol reference from
1384 	  which to load the value of the stack canary, this value can only
1385 	  change at reboot time on SMP systems, and all tasks running in the
1386 	  kernel's address space are forced to use the same canary value for
1387 	  the entire duration that the system is up.
1388 
1389 	  Enable this option to switch to a different method that uses a
1390 	  different canary value for each task.
1391 
1392 endmenu
1393 
1394 menu "Boot options"
1395 
1396 config USE_OF
1397 	bool "Flattened Device Tree support"
1398 	select IRQ_DOMAIN
1399 	select OF
1400 	help
1401 	  Include support for flattened device tree machine descriptions.
1402 
1403 config ARCH_WANT_FLAT_DTB_INSTALL
1404 	def_bool y
1405 
1406 config ATAGS
1407 	bool "Support for the traditional ATAGS boot data passing"
1408 	default y
1409 	help
1410 	  This is the traditional way of passing data to the kernel at boot
1411 	  time. If you are solely relying on the flattened device tree (or
1412 	  the ARM_ATAG_DTB_COMPAT option) then you may unselect this option
1413 	  to remove ATAGS support from your kernel binary.
1414 
1415 config DEPRECATED_PARAM_STRUCT
1416 	bool "Provide old way to pass kernel parameters"
1417 	depends on ATAGS
1418 	help
1419 	  This was deprecated in 2001 and announced to live on for 5 years.
1420 	  Some old boot loaders still use this way.
1421 
1422 # Compressed boot loader in ROM.  Yes, we really want to ask about
1423 # TEXT and BSS so we preserve their values in the config files.
1424 config ZBOOT_ROM_TEXT
1425 	hex "Compressed ROM boot loader base address"
1426 	default 0x0
1427 	help
1428 	  The physical address at which the ROM-able zImage is to be
1429 	  placed in the target.  Platforms which normally make use of
1430 	  ROM-able zImage formats normally set this to a suitable
1431 	  value in their defconfig file.
1432 
1433 	  If ZBOOT_ROM is not enabled, this has no effect.
1434 
1435 config ZBOOT_ROM_BSS
1436 	hex "Compressed ROM boot loader BSS address"
1437 	default 0x0
1438 	help
1439 	  The base address of an area of read/write memory in the target
1440 	  for the ROM-able zImage which must be available while the
1441 	  decompressor is running. It must be large enough to hold the
1442 	  entire decompressed kernel plus an additional 128 KiB.
1443 	  Platforms which normally make use of ROM-able zImage formats
1444 	  normally set this to a suitable value in their defconfig file.
1445 
1446 	  If ZBOOT_ROM is not enabled, this has no effect.
1447 
1448 config ZBOOT_ROM
1449 	bool "Compressed boot loader in ROM/flash"
1450 	depends on ZBOOT_ROM_TEXT != ZBOOT_ROM_BSS
1451 	depends on !ARM_APPENDED_DTB && !XIP_KERNEL && !AUTO_ZRELADDR
1452 	help
1453 	  Say Y here if you intend to execute your compressed kernel image
1454 	  (zImage) directly from ROM or flash.  If unsure, say N.
1455 
1456 config ARM_APPENDED_DTB
1457 	bool "Use appended device tree blob to zImage (EXPERIMENTAL)"
1458 	depends on OF
1459 	help
1460 	  With this option, the boot code will look for a device tree binary
1461 	  (DTB) appended to zImage
1462 	  (e.g. cat zImage <filename>.dtb > zImage_w_dtb).
1463 
1464 	  This is meant as a backward compatibility convenience for those
1465 	  systems with a bootloader that can't be upgraded to accommodate
1466 	  the documented boot protocol using a device tree.
1467 
1468 	  Beware that there is very little in terms of protection against
1469 	  this option being confused by leftover garbage in memory that might
1470 	  look like a DTB header after a reboot if no actual DTB is appended
1471 	  to zImage.  Do not leave this option active in a production kernel
1472 	  if you don't intend to always append a DTB.  Proper passing of the
1473 	  location into r2 of a bootloader provided DTB is always preferable
1474 	  to this option.
1475 
1476 config ARM_ATAG_DTB_COMPAT
1477 	bool "Supplement the appended DTB with traditional ATAG information"
1478 	depends on ARM_APPENDED_DTB
1479 	help
1480 	  Some old bootloaders can't be updated to a DTB capable one, yet
1481 	  they provide ATAGs with memory configuration, the ramdisk address,
1482 	  the kernel cmdline string, etc.  Such information is dynamically
1483 	  provided by the bootloader and can't always be stored in a static
1484 	  DTB.  To allow a device tree enabled kernel to be used with such
1485 	  bootloaders, this option allows zImage to extract the information
1486 	  from the ATAG list and store it at run time into the appended DTB.
1487 
1488 choice
1489 	prompt "Kernel command line type"
1490 	depends on ARM_ATAG_DTB_COMPAT
1491 	default ARM_ATAG_DTB_COMPAT_CMDLINE_FROM_BOOTLOADER
1492 
1493 config ARM_ATAG_DTB_COMPAT_CMDLINE_FROM_BOOTLOADER
1494 	bool "Use bootloader kernel arguments if available"
1495 	help
1496 	  Uses the command-line options passed by the boot loader instead of
1497 	  the device tree bootargs property. If the boot loader doesn't provide
1498 	  any, the device tree bootargs property will be used.
1499 
1500 config ARM_ATAG_DTB_COMPAT_CMDLINE_EXTEND
1501 	bool "Extend with bootloader kernel arguments"
1502 	help
1503 	  The command-line arguments provided by the boot loader will be
1504 	  appended to the the device tree bootargs property.
1505 
1506 endchoice
1507 
1508 config CMDLINE
1509 	string "Default kernel command string"
1510 	default ""
1511 	help
1512 	  On some architectures (e.g. CATS), there is currently no way
1513 	  for the boot loader to pass arguments to the kernel. For these
1514 	  architectures, you should supply some command-line options at build
1515 	  time by entering them here. As a minimum, you should specify the
1516 	  memory size and the root device (e.g., mem=64M root=/dev/nfs).
1517 
1518 choice
1519 	prompt "Kernel command line type"
1520 	depends on CMDLINE != ""
1521 	default CMDLINE_FROM_BOOTLOADER
1522 
1523 config CMDLINE_FROM_BOOTLOADER
1524 	bool "Use bootloader kernel arguments if available"
1525 	help
1526 	  Uses the command-line options passed by the boot loader. If
1527 	  the boot loader doesn't provide any, the default kernel command
1528 	  string provided in CMDLINE will be used.
1529 
1530 config CMDLINE_EXTEND
1531 	bool "Extend bootloader kernel arguments"
1532 	help
1533 	  The command-line arguments provided by the boot loader will be
1534 	  appended to the default kernel command string.
1535 
1536 config CMDLINE_FORCE
1537 	bool "Always use the default kernel command string"
1538 	help
1539 	  Always use the default kernel command string, even if the boot
1540 	  loader passes other arguments to the kernel.
1541 	  This is useful if you cannot or don't want to change the
1542 	  command-line options your boot loader passes to the kernel.
1543 endchoice
1544 
1545 config XIP_KERNEL
1546 	bool "Kernel Execute-In-Place from ROM"
1547 	depends on !ARM_LPAE && !ARCH_MULTIPLATFORM
1548 	depends on !ARM_PATCH_IDIV && !ARM_PATCH_PHYS_VIRT && !SMP_ON_UP
1549 	help
1550 	  Execute-In-Place allows the kernel to run from non-volatile storage
1551 	  directly addressable by the CPU, such as NOR flash. This saves RAM
1552 	  space since the text section of the kernel is not loaded from flash
1553 	  to RAM.  Read-write sections, such as the data section and stack,
1554 	  are still copied to RAM.  The XIP kernel is not compressed since
1555 	  it has to run directly from flash, so it will take more space to
1556 	  store it.  The flash address used to link the kernel object files,
1557 	  and for storing it, is configuration dependent. Therefore, if you
1558 	  say Y here, you must know the proper physical address where to
1559 	  store the kernel image depending on your own flash memory usage.
1560 
1561 	  Also note that the make target becomes "make xipImage" rather than
1562 	  "make zImage" or "make Image".  The final kernel binary to put in
1563 	  ROM memory will be arch/arm/boot/xipImage.
1564 
1565 	  If unsure, say N.
1566 
1567 config XIP_PHYS_ADDR
1568 	hex "XIP Kernel Physical Location"
1569 	depends on XIP_KERNEL
1570 	default "0x00080000"
1571 	help
1572 	  This is the physical address in your flash memory the kernel will
1573 	  be linked for and stored to.  This address is dependent on your
1574 	  own flash usage.
1575 
1576 config XIP_DEFLATED_DATA
1577 	bool "Store kernel .data section compressed in ROM"
1578 	depends on XIP_KERNEL
1579 	select ZLIB_INFLATE
1580 	help
1581 	  Before the kernel is actually executed, its .data section has to be
1582 	  copied to RAM from ROM. This option allows for storing that data
1583 	  in compressed form and decompressed to RAM rather than merely being
1584 	  copied, saving some precious ROM space. A possible drawback is a
1585 	  slightly longer boot delay.
1586 
1587 config ARCH_SUPPORTS_KEXEC
1588 	def_bool (!SMP || PM_SLEEP_SMP) && MMU
1589 
1590 config ATAGS_PROC
1591 	bool "Export atags in procfs"
1592 	depends on ATAGS && KEXEC
1593 	default y
1594 	help
1595 	  Should the atags used to boot the kernel be exported in an "atags"
1596 	  file in procfs. Useful with kexec.
1597 
1598 config ARCH_SUPPORTS_CRASH_DUMP
1599 	def_bool y
1600 
1601 config ARCH_DEFAULT_CRASH_DUMP
1602 	def_bool y
1603 
1604 config AUTO_ZRELADDR
1605 	bool "Auto calculation of the decompressed kernel image address" if !ARCH_MULTIPLATFORM
1606 	default !(ARCH_FOOTBRIDGE || ARCH_RPC || ARCH_SA1100)
1607 	help
1608 	  ZRELADDR is the physical address where the decompressed kernel
1609 	  image will be placed. If AUTO_ZRELADDR is selected, the address
1610 	  will be determined at run-time, either by masking the current IP
1611 	  with 0xf8000000, or, if invalid, from the DTB passed in r2.
1612 	  This assumes the zImage being placed in the first 128MB from
1613 	  start of memory.
1614 
1615 config EFI_STUB
1616 	bool
1617 
1618 config EFI
1619 	bool "UEFI runtime support"
1620 	depends on OF && !CPU_BIG_ENDIAN && MMU && AUTO_ZRELADDR && !XIP_KERNEL
1621 	select UCS2_STRING
1622 	select EFI_PARAMS_FROM_FDT
1623 	select EFI_STUB
1624 	select EFI_GENERIC_STUB
1625 	select EFI_RUNTIME_WRAPPERS
1626 	help
1627 	  This option provides support for runtime services provided
1628 	  by UEFI firmware (such as non-volatile variables, realtime
1629 	  clock, and platform reset). A UEFI stub is also provided to
1630 	  allow the kernel to be booted as an EFI application. This
1631 	  is only useful for kernels that may run on systems that have
1632 	  UEFI firmware.
1633 
1634 config DMI
1635 	bool "Enable support for SMBIOS (DMI) tables"
1636 	depends on EFI
1637 	default y
1638 	help
1639 	  This enables SMBIOS/DMI feature for systems.
1640 
1641 	  This option is only useful on systems that have UEFI firmware.
1642 	  However, even with this option, the resultant kernel should
1643 	  continue to boot on existing non-UEFI platforms.
1644 
1645 	  NOTE: This does *NOT* enable or encourage the use of DMI quirks,
1646 	  i.e., the the practice of identifying the platform via DMI to
1647 	  decide whether certain workarounds for buggy hardware and/or
1648 	  firmware need to be enabled. This would require the DMI subsystem
1649 	  to be enabled much earlier than we do on ARM, which is non-trivial.
1650 
1651 endmenu
1652 
1653 menu "CPU Power Management"
1654 
1655 source "drivers/cpufreq/Kconfig"
1656 
1657 source "drivers/cpuidle/Kconfig"
1658 
1659 endmenu
1660 
1661 menu "Floating point emulation"
1662 
1663 comment "At least one emulation must be selected"
1664 
1665 config FPE_NWFPE
1666 	bool "NWFPE math emulation"
1667 	depends on (!AEABI || OABI_COMPAT) && !THUMB2_KERNEL
1668 	help
1669 	  Say Y to include the NWFPE floating point emulator in the kernel.
1670 	  This is necessary to run most binaries. Linux does not currently
1671 	  support floating point hardware so you need to say Y here even if
1672 	  your machine has an FPA or floating point co-processor podule.
1673 
1674 	  You may say N here if you are going to load the Acorn FPEmulator
1675 	  early in the bootup.
1676 
1677 config FPE_NWFPE_XP
1678 	bool "Support extended precision"
1679 	depends on FPE_NWFPE
1680 	help
1681 	  Say Y to include 80-bit support in the kernel floating-point
1682 	  emulator.  Otherwise, only 32 and 64-bit support is compiled in.
1683 	  Note that gcc does not generate 80-bit operations by default,
1684 	  so in most cases this option only enlarges the size of the
1685 	  floating point emulator without any good reason.
1686 
1687 	  You almost surely want to say N here.
1688 
1689 config FPE_FASTFPE
1690 	bool "FastFPE math emulation (EXPERIMENTAL)"
1691 	depends on (!AEABI || OABI_COMPAT) && !CPU_32v3
1692 	help
1693 	  Say Y here to include the FAST floating point emulator in the kernel.
1694 	  This is an experimental much faster emulator which now also has full
1695 	  precision for the mantissa.  It does not support any exceptions.
1696 	  It is very simple, and approximately 3-6 times faster than NWFPE.
1697 
1698 	  It should be sufficient for most programs.  It may be not suitable
1699 	  for scientific calculations, but you have to check this for yourself.
1700 	  If you do not feel you need a faster FP emulation you should better
1701 	  choose NWFPE.
1702 
1703 config VFP
1704 	bool "VFP-format floating point maths"
1705 	depends on CPU_V6 || CPU_V6K || CPU_ARM926T || CPU_V7 || CPU_FEROCEON
1706 	help
1707 	  Say Y to include VFP support code in the kernel. This is needed
1708 	  if your hardware includes a VFP unit.
1709 
1710 	  Please see <file:Documentation/arch/arm/vfp/release-notes.rst> for
1711 	  release notes and additional status information.
1712 
1713 	  Say N if your target does not have VFP hardware.
1714 
1715 config VFPv3
1716 	bool
1717 	depends on VFP
1718 	default y if CPU_V7
1719 
1720 config NEON
1721 	bool "Advanced SIMD (NEON) Extension support"
1722 	depends on VFPv3 && CPU_V7
1723 	help
1724 	  Say Y to include support code for NEON, the ARMv7 Advanced SIMD
1725 	  Extension.
1726 
1727 config KERNEL_MODE_NEON
1728 	bool "Support for NEON in kernel mode"
1729 	depends on NEON && AEABI
1730 	help
1731 	  Say Y to include support for NEON in kernel mode.
1732 
1733 endmenu
1734 
1735 menu "Power management options"
1736 
1737 source "kernel/power/Kconfig"
1738 
1739 config ARCH_SUSPEND_POSSIBLE
1740 	depends on CPU_ARM920T || CPU_ARM926T || CPU_FEROCEON || CPU_SA1100 || \
1741 		CPU_V6 || CPU_V6K || CPU_V7 || CPU_V7M || CPU_XSC3 || CPU_XSCALE || CPU_MOHAWK
1742 	def_bool y
1743 
1744 config ARM_CPU_SUSPEND
1745 	def_bool PM_SLEEP || BL_SWITCHER || ARM_PSCI_FW
1746 	depends on ARCH_SUSPEND_POSSIBLE
1747 
1748 config ARCH_HIBERNATION_POSSIBLE
1749 	bool
1750 	depends on MMU
1751 	default y if ARCH_SUSPEND_POSSIBLE
1752 
1753 endmenu
1754 
1755 source "arch/arm/Kconfig.assembler"
1756