1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32	0xa0
77 
78 /* unused opcode to mark special atomic instruction */
79 #define BPF_PROBE_ATOMIC 0xe0
80 
81 /* unused opcode to mark call to interpreter with arguments */
82 #define BPF_CALL_ARGS	0xe0
83 
84 /* unused opcode to mark speculation barrier for mitigating
85  * Speculative Store Bypass
86  */
87 #define BPF_NOSPEC	0xc0
88 
89 /* As per nm, we expose JITed images as text (code) section for
90  * kallsyms. That way, tools like perf can find it to match
91  * addresses.
92  */
93 #define BPF_SYM_ELF_TYPE	't'
94 
95 /* BPF program can access up to 512 bytes of stack space. */
96 #define MAX_BPF_STACK	512
97 
98 /* Helper macros for filter block array initializers. */
99 
100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
101 
102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
103 	((struct bpf_insn) {					\
104 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
105 		.dst_reg = DST,					\
106 		.src_reg = SRC,					\
107 		.off   = OFF,					\
108 		.imm   = 0 })
109 
110 #define BPF_ALU64_REG(OP, DST, SRC)				\
111 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
112 
113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
114 	((struct bpf_insn) {					\
115 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
116 		.dst_reg = DST,					\
117 		.src_reg = SRC,					\
118 		.off   = OFF,					\
119 		.imm   = 0 })
120 
121 #define BPF_ALU32_REG(OP, DST, SRC)				\
122 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
123 
124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
125 
126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
127 	((struct bpf_insn) {					\
128 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
129 		.dst_reg = DST,					\
130 		.src_reg = 0,					\
131 		.off   = OFF,					\
132 		.imm   = IMM })
133 #define BPF_ALU64_IMM(OP, DST, IMM)				\
134 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
135 
136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
137 	((struct bpf_insn) {					\
138 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
139 		.dst_reg = DST,					\
140 		.src_reg = 0,					\
141 		.off   = OFF,					\
142 		.imm   = IMM })
143 #define BPF_ALU32_IMM(OP, DST, IMM)				\
144 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
145 
146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
147 
148 #define BPF_ENDIAN(TYPE, DST, LEN)				\
149 	((struct bpf_insn) {					\
150 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
151 		.dst_reg = DST,					\
152 		.src_reg = 0,					\
153 		.off   = 0,					\
154 		.imm   = LEN })
155 
156 /* Byte Swap, bswap16/32/64 */
157 
158 #define BPF_BSWAP(DST, LEN)					\
159 	((struct bpf_insn) {					\
160 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
161 		.dst_reg = DST,					\
162 		.src_reg = 0,					\
163 		.off   = 0,					\
164 		.imm   = LEN })
165 
166 /* Short form of mov, dst_reg = src_reg */
167 
168 #define BPF_MOV64_REG(DST, SRC)					\
169 	((struct bpf_insn) {					\
170 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
171 		.dst_reg = DST,					\
172 		.src_reg = SRC,					\
173 		.off   = 0,					\
174 		.imm   = 0 })
175 
176 #define BPF_MOV32_REG(DST, SRC)					\
177 	((struct bpf_insn) {					\
178 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
179 		.dst_reg = DST,					\
180 		.src_reg = SRC,					\
181 		.off   = 0,					\
182 		.imm   = 0 })
183 
184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
185  * dst_reg = src_reg + <percpu_base_off>
186  * BPF_ADDR_PERCPU is used as a special insn->off value.
187  */
188 #define BPF_ADDR_PERCPU	(-1)
189 
190 #define BPF_MOV64_PERCPU_REG(DST, SRC)				\
191 	((struct bpf_insn) {					\
192 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
193 		.dst_reg = DST,					\
194 		.src_reg = SRC,					\
195 		.off   = BPF_ADDR_PERCPU,			\
196 		.imm   = 0 })
197 
insn_is_mov_percpu_addr(const struct bpf_insn * insn)198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
199 {
200 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
201 }
202 
203 /* Short form of mov, dst_reg = imm32 */
204 
205 #define BPF_MOV64_IMM(DST, IMM)					\
206 	((struct bpf_insn) {					\
207 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
208 		.dst_reg = DST,					\
209 		.src_reg = 0,					\
210 		.off   = 0,					\
211 		.imm   = IMM })
212 
213 #define BPF_MOV32_IMM(DST, IMM)					\
214 	((struct bpf_insn) {					\
215 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
216 		.dst_reg = DST,					\
217 		.src_reg = 0,					\
218 		.off   = 0,					\
219 		.imm   = IMM })
220 
221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
222 
223 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
224 	((struct bpf_insn) {					\
225 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
226 		.dst_reg = DST,					\
227 		.src_reg = SRC,					\
228 		.off   = OFF,					\
229 		.imm   = 0 })
230 
231 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
232 	((struct bpf_insn) {					\
233 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
234 		.dst_reg = DST,					\
235 		.src_reg = SRC,					\
236 		.off   = OFF,					\
237 		.imm   = 0 })
238 
239 /* Special form of mov32, used for doing explicit zero extension on dst. */
240 #define BPF_ZEXT_REG(DST)					\
241 	((struct bpf_insn) {					\
242 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
243 		.dst_reg = DST,					\
244 		.src_reg = DST,					\
245 		.off   = 0,					\
246 		.imm   = 1 })
247 
insn_is_zext(const struct bpf_insn * insn)248 static inline bool insn_is_zext(const struct bpf_insn *insn)
249 {
250 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
251 }
252 
253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
254  * to pointers in user vma.
255  */
insn_is_cast_user(const struct bpf_insn * insn)256 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
259 			      insn->off == BPF_ADDR_SPACE_CAST &&
260 			      insn->imm == 1U << 16;
261 }
262 
263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
264 #define BPF_LD_IMM64(DST, IMM)					\
265 	BPF_LD_IMM64_RAW(DST, 0, IMM)
266 
267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
268 	((struct bpf_insn) {					\
269 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
270 		.dst_reg = DST,					\
271 		.src_reg = SRC,					\
272 		.off   = 0,					\
273 		.imm   = (__u32) (IMM) }),			\
274 	((struct bpf_insn) {					\
275 		.code  = 0, /* zero is reserved opcode */	\
276 		.dst_reg = 0,					\
277 		.src_reg = 0,					\
278 		.off   = 0,					\
279 		.imm   = ((__u64) (IMM)) >> 32 })
280 
281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
282 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
283 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
284 
285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
286 
287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
288 	((struct bpf_insn) {					\
289 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
290 		.dst_reg = DST,					\
291 		.src_reg = SRC,					\
292 		.off   = 0,					\
293 		.imm   = IMM })
294 
295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
296 	((struct bpf_insn) {					\
297 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
298 		.dst_reg = DST,					\
299 		.src_reg = SRC,					\
300 		.off   = 0,					\
301 		.imm   = IMM })
302 
303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
304 
305 #define BPF_LD_ABS(SIZE, IMM)					\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
308 		.dst_reg = 0,					\
309 		.src_reg = 0,					\
310 		.off   = 0,					\
311 		.imm   = IMM })
312 
313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
314 
315 #define BPF_LD_IND(SIZE, SRC, IMM)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
318 		.dst_reg = 0,					\
319 		.src_reg = SRC,					\
320 		.off   = 0,					\
321 		.imm   = IMM })
322 
323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
324 
325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
328 		.dst_reg = DST,					\
329 		.src_reg = SRC,					\
330 		.off   = OFF,					\
331 		.imm   = 0 })
332 
333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
334 
335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
338 		.dst_reg = DST,					\
339 		.src_reg = SRC,					\
340 		.off   = OFF,					\
341 		.imm   = 0 })
342 
343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
344 
345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
348 		.dst_reg = DST,					\
349 		.src_reg = SRC,					\
350 		.off   = OFF,					\
351 		.imm   = 0 })
352 
353 
354 /*
355  * Atomic operations:
356  *
357  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
358  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
359  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
360  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
361  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
362  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
363  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
364  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
365  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
366  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
367  */
368 
369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
370 	((struct bpf_insn) {					\
371 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
372 		.dst_reg = DST,					\
373 		.src_reg = SRC,					\
374 		.off   = OFF,					\
375 		.imm   = OP })
376 
377 /* Legacy alias */
378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
379 
380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
381 
382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
383 	((struct bpf_insn) {					\
384 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
385 		.dst_reg = DST,					\
386 		.src_reg = 0,					\
387 		.off   = OFF,					\
388 		.imm   = IMM })
389 
390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
391 
392 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
393 	((struct bpf_insn) {					\
394 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
395 		.dst_reg = DST,					\
396 		.src_reg = SRC,					\
397 		.off   = OFF,					\
398 		.imm   = 0 })
399 
400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
401 
402 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
403 	((struct bpf_insn) {					\
404 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
405 		.dst_reg = DST,					\
406 		.src_reg = 0,					\
407 		.off   = OFF,					\
408 		.imm   = IMM })
409 
410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
411 
412 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
413 	((struct bpf_insn) {					\
414 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
415 		.dst_reg = DST,					\
416 		.src_reg = SRC,					\
417 		.off   = OFF,					\
418 		.imm   = 0 })
419 
420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
421 
422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
423 	((struct bpf_insn) {					\
424 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
425 		.dst_reg = DST,					\
426 		.src_reg = 0,					\
427 		.off   = OFF,					\
428 		.imm   = IMM })
429 
430 /* Unconditional jumps, goto pc + off16 */
431 
432 #define BPF_JMP_A(OFF)						\
433 	((struct bpf_insn) {					\
434 		.code  = BPF_JMP | BPF_JA,			\
435 		.dst_reg = 0,					\
436 		.src_reg = 0,					\
437 		.off   = OFF,					\
438 		.imm   = 0 })
439 
440 /* Unconditional jumps, gotol pc + imm32 */
441 
442 #define BPF_JMP32_A(IMM)					\
443 	((struct bpf_insn) {					\
444 		.code  = BPF_JMP32 | BPF_JA,			\
445 		.dst_reg = 0,					\
446 		.src_reg = 0,					\
447 		.off   = 0,					\
448 		.imm   = IMM })
449 
450 /* Relative call */
451 
452 #define BPF_CALL_REL(TGT)					\
453 	((struct bpf_insn) {					\
454 		.code  = BPF_JMP | BPF_CALL,			\
455 		.dst_reg = 0,					\
456 		.src_reg = BPF_PSEUDO_CALL,			\
457 		.off   = 0,					\
458 		.imm   = TGT })
459 
460 /* Convert function address to BPF immediate */
461 
462 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
463 
464 #define BPF_EMIT_CALL(FUNC)					\
465 	((struct bpf_insn) {					\
466 		.code  = BPF_JMP | BPF_CALL,			\
467 		.dst_reg = 0,					\
468 		.src_reg = 0,					\
469 		.off   = 0,					\
470 		.imm   = BPF_CALL_IMM(FUNC) })
471 
472 /* Raw code statement block */
473 
474 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
475 	((struct bpf_insn) {					\
476 		.code  = CODE,					\
477 		.dst_reg = DST,					\
478 		.src_reg = SRC,					\
479 		.off   = OFF,					\
480 		.imm   = IMM })
481 
482 /* Program exit */
483 
484 #define BPF_EXIT_INSN()						\
485 	((struct bpf_insn) {					\
486 		.code  = BPF_JMP | BPF_EXIT,			\
487 		.dst_reg = 0,					\
488 		.src_reg = 0,					\
489 		.off   = 0,					\
490 		.imm   = 0 })
491 
492 /* Speculation barrier */
493 
494 #define BPF_ST_NOSPEC()						\
495 	((struct bpf_insn) {					\
496 		.code  = BPF_ST | BPF_NOSPEC,			\
497 		.dst_reg = 0,					\
498 		.src_reg = 0,					\
499 		.off   = 0,					\
500 		.imm   = 0 })
501 
502 /* Internal classic blocks for direct assignment */
503 
504 #define __BPF_STMT(CODE, K)					\
505 	((struct sock_filter) BPF_STMT(CODE, K))
506 
507 #define __BPF_JUMP(CODE, K, JT, JF)				\
508 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
509 
510 #define bytes_to_bpf_size(bytes)				\
511 ({								\
512 	int bpf_size = -EINVAL;					\
513 								\
514 	if (bytes == sizeof(u8))				\
515 		bpf_size = BPF_B;				\
516 	else if (bytes == sizeof(u16))				\
517 		bpf_size = BPF_H;				\
518 	else if (bytes == sizeof(u32))				\
519 		bpf_size = BPF_W;				\
520 	else if (bytes == sizeof(u64))				\
521 		bpf_size = BPF_DW;				\
522 								\
523 	bpf_size;						\
524 })
525 
526 #define bpf_size_to_bytes(bpf_size)				\
527 ({								\
528 	int bytes = -EINVAL;					\
529 								\
530 	if (bpf_size == BPF_B)					\
531 		bytes = sizeof(u8);				\
532 	else if (bpf_size == BPF_H)				\
533 		bytes = sizeof(u16);				\
534 	else if (bpf_size == BPF_W)				\
535 		bytes = sizeof(u32);				\
536 	else if (bpf_size == BPF_DW)				\
537 		bytes = sizeof(u64);				\
538 								\
539 	bytes;							\
540 })
541 
542 #define BPF_SIZEOF(type)					\
543 	({							\
544 		const int __size = bytes_to_bpf_size(sizeof(type)); \
545 		BUILD_BUG_ON(__size < 0);			\
546 		__size;						\
547 	})
548 
549 #define BPF_FIELD_SIZEOF(type, field)				\
550 	({							\
551 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
552 		BUILD_BUG_ON(__size < 0);			\
553 		__size;						\
554 	})
555 
556 #define BPF_LDST_BYTES(insn)					\
557 	({							\
558 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
559 		WARN_ON(__size < 0);				\
560 		__size;						\
561 	})
562 
563 #define __BPF_MAP_0(m, v, ...) v
564 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
565 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
566 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
567 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
568 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
569 
570 #define __BPF_REG_0(...) __BPF_PAD(5)
571 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
572 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
573 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
574 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
575 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
576 
577 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
578 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
579 
580 #define __BPF_CAST(t, a)						       \
581 	(__force t)							       \
582 	(__force							       \
583 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
584 				      (unsigned long)0, (t)0))) a
585 #define __BPF_V void
586 #define __BPF_N
587 
588 #define __BPF_DECL_ARGS(t, a) t   a
589 #define __BPF_DECL_REGS(t, a) u64 a
590 
591 #define __BPF_PAD(n)							       \
592 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
593 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
594 
595 #define BPF_CALL_x(x, attr, name, ...)					       \
596 	static __always_inline						       \
597 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
598 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
599 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
600 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
601 	{								       \
602 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
603 	}								       \
604 	static __always_inline						       \
605 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
606 
607 #define __NOATTR
608 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
609 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
610 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
611 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
612 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
613 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
614 
615 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
616 
617 #define bpf_ctx_range(TYPE, MEMBER)						\
618 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
619 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
620 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
621 #if BITS_PER_LONG == 64
622 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
623 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
624 #else
625 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
626 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
627 #endif /* BITS_PER_LONG == 64 */
628 
629 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
630 	({									\
631 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
632 		*(PTR_SIZE) = (SIZE);						\
633 		offsetof(TYPE, MEMBER);						\
634 	})
635 
636 /* A struct sock_filter is architecture independent. */
637 struct compat_sock_fprog {
638 	u16		len;
639 	compat_uptr_t	filter;	/* struct sock_filter * */
640 };
641 
642 struct sock_fprog_kern {
643 	u16			len;
644 	struct sock_filter	*filter;
645 };
646 
647 /* Some arches need doubleword alignment for their instructions and/or data */
648 #define BPF_IMAGE_ALIGNMENT 8
649 
650 struct bpf_binary_header {
651 	u32 size;
652 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
653 };
654 
655 struct bpf_prog_stats {
656 	u64_stats_t cnt;
657 	u64_stats_t nsecs;
658 	u64_stats_t misses;
659 	struct u64_stats_sync syncp;
660 } __aligned(2 * sizeof(u64));
661 
662 struct sk_filter {
663 	refcount_t	refcnt;
664 	struct rcu_head	rcu;
665 	struct bpf_prog	*prog;
666 };
667 
668 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
669 
670 extern struct mutex nf_conn_btf_access_lock;
671 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
672 				     const struct bpf_reg_state *reg,
673 				     int off, int size);
674 
675 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
676 					  const struct bpf_insn *insnsi,
677 					  unsigned int (*bpf_func)(const void *,
678 								   const struct bpf_insn *));
679 
__bpf_prog_run(const struct bpf_prog * prog,const void * ctx,bpf_dispatcher_fn dfunc)680 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
681 					  const void *ctx,
682 					  bpf_dispatcher_fn dfunc)
683 {
684 	u32 ret;
685 
686 	cant_migrate();
687 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
688 		struct bpf_prog_stats *stats;
689 		u64 duration, start = sched_clock();
690 		unsigned long flags;
691 
692 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
693 
694 		duration = sched_clock() - start;
695 		stats = this_cpu_ptr(prog->stats);
696 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
697 		u64_stats_inc(&stats->cnt);
698 		u64_stats_add(&stats->nsecs, duration);
699 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
700 	} else {
701 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
702 	}
703 	return ret;
704 }
705 
bpf_prog_run(const struct bpf_prog * prog,const void * ctx)706 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
707 {
708 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
709 }
710 
711 /*
712  * Use in preemptible and therefore migratable context to make sure that
713  * the execution of the BPF program runs on one CPU.
714  *
715  * This uses migrate_disable/enable() explicitly to document that the
716  * invocation of a BPF program does not require reentrancy protection
717  * against a BPF program which is invoked from a preempting task.
718  */
bpf_prog_run_pin_on_cpu(const struct bpf_prog * prog,const void * ctx)719 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
720 					  const void *ctx)
721 {
722 	u32 ret;
723 
724 	migrate_disable();
725 	ret = bpf_prog_run(prog, ctx);
726 	migrate_enable();
727 	return ret;
728 }
729 
730 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
731 
732 struct bpf_skb_data_end {
733 	struct qdisc_skb_cb qdisc_cb;
734 	void *data_meta;
735 	void *data_end;
736 };
737 
738 struct bpf_nh_params {
739 	u32 nh_family;
740 	union {
741 		u32 ipv4_nh;
742 		struct in6_addr ipv6_nh;
743 	};
744 };
745 
746 /* flags for bpf_redirect_info kern_flags */
747 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
748 #define BPF_RI_F_RI_INIT	BIT(1)
749 #define BPF_RI_F_CPU_MAP_INIT	BIT(2)
750 #define BPF_RI_F_DEV_MAP_INIT	BIT(3)
751 #define BPF_RI_F_XSK_MAP_INIT	BIT(4)
752 
753 struct bpf_redirect_info {
754 	u64 tgt_index;
755 	void *tgt_value;
756 	struct bpf_map *map;
757 	u32 flags;
758 	u32 map_id;
759 	enum bpf_map_type map_type;
760 	struct bpf_nh_params nh;
761 	u32 kern_flags;
762 };
763 
764 struct bpf_net_context {
765 	struct bpf_redirect_info ri;
766 	struct list_head cpu_map_flush_list;
767 	struct list_head dev_map_flush_list;
768 	struct list_head xskmap_map_flush_list;
769 };
770 
bpf_net_ctx_set(struct bpf_net_context * bpf_net_ctx)771 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
772 {
773 	struct task_struct *tsk = current;
774 
775 	if (tsk->bpf_net_context != NULL)
776 		return NULL;
777 	bpf_net_ctx->ri.kern_flags = 0;
778 
779 	tsk->bpf_net_context = bpf_net_ctx;
780 	return bpf_net_ctx;
781 }
782 
bpf_net_ctx_clear(struct bpf_net_context * bpf_net_ctx)783 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
784 {
785 	if (bpf_net_ctx)
786 		current->bpf_net_context = NULL;
787 }
788 
bpf_net_ctx_get(void)789 static inline struct bpf_net_context *bpf_net_ctx_get(void)
790 {
791 	return current->bpf_net_context;
792 }
793 
bpf_net_ctx_get_ri(void)794 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
795 {
796 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
797 
798 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
799 		memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh));
800 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
801 	}
802 
803 	return &bpf_net_ctx->ri;
804 }
805 
bpf_net_ctx_get_cpu_map_flush_list(void)806 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void)
807 {
808 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
809 
810 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) {
811 		INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list);
812 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT;
813 	}
814 
815 	return &bpf_net_ctx->cpu_map_flush_list;
816 }
817 
bpf_net_ctx_get_dev_flush_list(void)818 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void)
819 {
820 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
821 
822 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) {
823 		INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list);
824 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT;
825 	}
826 
827 	return &bpf_net_ctx->dev_map_flush_list;
828 }
829 
bpf_net_ctx_get_xskmap_flush_list(void)830 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void)
831 {
832 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
833 
834 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) {
835 		INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list);
836 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT;
837 	}
838 
839 	return &bpf_net_ctx->xskmap_map_flush_list;
840 }
841 
bpf_net_ctx_get_all_used_flush_lists(struct list_head ** lh_map,struct list_head ** lh_dev,struct list_head ** lh_xsk)842 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map,
843 							struct list_head **lh_dev,
844 							struct list_head **lh_xsk)
845 {
846 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
847 	u32 kern_flags = bpf_net_ctx->ri.kern_flags;
848 	struct list_head *lh;
849 
850 	*lh_map = *lh_dev = *lh_xsk = NULL;
851 
852 	if (!IS_ENABLED(CONFIG_BPF_SYSCALL))
853 		return;
854 
855 	lh = &bpf_net_ctx->dev_map_flush_list;
856 	if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh))
857 		*lh_dev = lh;
858 
859 	lh = &bpf_net_ctx->cpu_map_flush_list;
860 	if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh))
861 		*lh_map = lh;
862 
863 	lh = &bpf_net_ctx->xskmap_map_flush_list;
864 	if (IS_ENABLED(CONFIG_XDP_SOCKETS) &&
865 	    kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh))
866 		*lh_xsk = lh;
867 }
868 
869 /* Compute the linear packet data range [data, data_end) which
870  * will be accessed by various program types (cls_bpf, act_bpf,
871  * lwt, ...). Subsystems allowing direct data access must (!)
872  * ensure that cb[] area can be written to when BPF program is
873  * invoked (otherwise cb[] save/restore is necessary).
874  */
bpf_compute_data_pointers(struct sk_buff * skb)875 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
876 {
877 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
878 
879 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
880 	cb->data_meta = skb->data - skb_metadata_len(skb);
881 	cb->data_end  = skb->data + skb_headlen(skb);
882 }
883 
884 /* Similar to bpf_compute_data_pointers(), except that save orginal
885  * data in cb->data and cb->meta_data for restore.
886  */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)887 static inline void bpf_compute_and_save_data_end(
888 	struct sk_buff *skb, void **saved_data_end)
889 {
890 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
891 
892 	*saved_data_end = cb->data_end;
893 	cb->data_end  = skb->data + skb_headlen(skb);
894 }
895 
896 /* Restore data saved by bpf_compute_and_save_data_end(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)897 static inline void bpf_restore_data_end(
898 	struct sk_buff *skb, void *saved_data_end)
899 {
900 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
901 
902 	cb->data_end = saved_data_end;
903 }
904 
bpf_skb_cb(const struct sk_buff * skb)905 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
906 {
907 	/* eBPF programs may read/write skb->cb[] area to transfer meta
908 	 * data between tail calls. Since this also needs to work with
909 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
910 	 *
911 	 * In some socket filter cases, the cb unfortunately needs to be
912 	 * saved/restored so that protocol specific skb->cb[] data won't
913 	 * be lost. In any case, due to unpriviledged eBPF programs
914 	 * attached to sockets, we need to clear the bpf_skb_cb() area
915 	 * to not leak previous contents to user space.
916 	 */
917 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
918 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
919 		     sizeof_field(struct qdisc_skb_cb, data));
920 
921 	return qdisc_skb_cb(skb)->data;
922 }
923 
924 /* Must be invoked with migration disabled */
__bpf_prog_run_save_cb(const struct bpf_prog * prog,const void * ctx)925 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
926 					 const void *ctx)
927 {
928 	const struct sk_buff *skb = ctx;
929 	u8 *cb_data = bpf_skb_cb(skb);
930 	u8 cb_saved[BPF_SKB_CB_LEN];
931 	u32 res;
932 
933 	if (unlikely(prog->cb_access)) {
934 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
935 		memset(cb_data, 0, sizeof(cb_saved));
936 	}
937 
938 	res = bpf_prog_run(prog, skb);
939 
940 	if (unlikely(prog->cb_access))
941 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
942 
943 	return res;
944 }
945 
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)946 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
947 				       struct sk_buff *skb)
948 {
949 	u32 res;
950 
951 	migrate_disable();
952 	res = __bpf_prog_run_save_cb(prog, skb);
953 	migrate_enable();
954 	return res;
955 }
956 
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)957 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
958 					struct sk_buff *skb)
959 {
960 	u8 *cb_data = bpf_skb_cb(skb);
961 	u32 res;
962 
963 	if (unlikely(prog->cb_access))
964 		memset(cb_data, 0, BPF_SKB_CB_LEN);
965 
966 	res = bpf_prog_run_pin_on_cpu(prog, skb);
967 	return res;
968 }
969 
970 DECLARE_BPF_DISPATCHER(xdp)
971 
972 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
973 
974 u32 xdp_master_redirect(struct xdp_buff *xdp);
975 
976 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
977 
bpf_prog_insn_size(const struct bpf_prog * prog)978 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
979 {
980 	return prog->len * sizeof(struct bpf_insn);
981 }
982 
bpf_prog_tag_scratch_size(const struct bpf_prog * prog)983 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
984 {
985 	return round_up(bpf_prog_insn_size(prog) +
986 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
987 }
988 
bpf_prog_size(unsigned int proglen)989 static inline unsigned int bpf_prog_size(unsigned int proglen)
990 {
991 	return max(sizeof(struct bpf_prog),
992 		   offsetof(struct bpf_prog, insns[proglen]));
993 }
994 
bpf_prog_was_classic(const struct bpf_prog * prog)995 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
996 {
997 	/* When classic BPF programs have been loaded and the arch
998 	 * does not have a classic BPF JIT (anymore), they have been
999 	 * converted via bpf_migrate_filter() to eBPF and thus always
1000 	 * have an unspec program type.
1001 	 */
1002 	return prog->type == BPF_PROG_TYPE_UNSPEC;
1003 }
1004 
bpf_ctx_off_adjust_machine(u32 size)1005 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
1006 {
1007 	const u32 size_machine = sizeof(unsigned long);
1008 
1009 	if (size > size_machine && size % size_machine == 0)
1010 		size = size_machine;
1011 
1012 	return size;
1013 }
1014 
1015 static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)1016 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
1017 {
1018 	return size <= size_default && (size & (size - 1)) == 0;
1019 }
1020 
1021 static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)1022 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
1023 {
1024 	u8 access_off = off & (size_default - 1);
1025 
1026 #ifdef __LITTLE_ENDIAN
1027 	return access_off;
1028 #else
1029 	return size_default - (access_off + size);
1030 #endif
1031 }
1032 
1033 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
1034 	(size == sizeof(__u64) &&					\
1035 	off >= offsetof(type, field) &&					\
1036 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
1037 	off % sizeof(__u64) == 0)
1038 
1039 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
1040 
bpf_prog_lock_ro(struct bpf_prog * fp)1041 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
1042 {
1043 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1044 	if (!fp->jited) {
1045 		set_vm_flush_reset_perms(fp);
1046 		return set_memory_ro((unsigned long)fp, fp->pages);
1047 	}
1048 #endif
1049 	return 0;
1050 }
1051 
1052 static inline int __must_check
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)1053 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
1054 {
1055 	set_vm_flush_reset_perms(hdr);
1056 	return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
1057 }
1058 
1059 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
sk_filter(struct sock * sk,struct sk_buff * skb)1060 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
1061 {
1062 	return sk_filter_trim_cap(sk, skb, 1);
1063 }
1064 
1065 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
1066 void bpf_prog_free(struct bpf_prog *fp);
1067 
1068 bool bpf_opcode_in_insntable(u8 code);
1069 
1070 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
1071 			       const u32 *insn_to_jit_off);
1072 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
1073 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
1074 
1075 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
1076 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
1077 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
1078 				  gfp_t gfp_extra_flags);
1079 void __bpf_prog_free(struct bpf_prog *fp);
1080 
bpf_prog_unlock_free(struct bpf_prog * fp)1081 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1082 {
1083 	__bpf_prog_free(fp);
1084 }
1085 
1086 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1087 				       unsigned int flen);
1088 
1089 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1090 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1091 			      bpf_aux_classic_check_t trans, bool save_orig);
1092 void bpf_prog_destroy(struct bpf_prog *fp);
1093 
1094 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1095 int sk_attach_bpf(u32 ufd, struct sock *sk);
1096 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1097 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1098 void sk_reuseport_prog_free(struct bpf_prog *prog);
1099 int sk_detach_filter(struct sock *sk);
1100 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1101 
1102 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1103 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1104 
1105 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1106 #define __bpf_call_base_args \
1107 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1108 	 (void *)__bpf_call_base)
1109 
1110 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1111 void bpf_jit_compile(struct bpf_prog *prog);
1112 bool bpf_jit_needs_zext(void);
1113 bool bpf_jit_inlines_helper_call(s32 imm);
1114 bool bpf_jit_supports_subprog_tailcalls(void);
1115 bool bpf_jit_supports_percpu_insn(void);
1116 bool bpf_jit_supports_kfunc_call(void);
1117 bool bpf_jit_supports_far_kfunc_call(void);
1118 bool bpf_jit_supports_exceptions(void);
1119 bool bpf_jit_supports_ptr_xchg(void);
1120 bool bpf_jit_supports_arena(void);
1121 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1122 u64 bpf_arch_uaddress_limit(void);
1123 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1124 bool bpf_helper_changes_pkt_data(void *func);
1125 
bpf_dump_raw_ok(const struct cred * cred)1126 static inline bool bpf_dump_raw_ok(const struct cred *cred)
1127 {
1128 	/* Reconstruction of call-sites is dependent on kallsyms,
1129 	 * thus make dump the same restriction.
1130 	 */
1131 	return kallsyms_show_value(cred);
1132 }
1133 
1134 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1135 				       const struct bpf_insn *patch, u32 len);
1136 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1137 
xdp_return_frame_no_direct(void)1138 static inline bool xdp_return_frame_no_direct(void)
1139 {
1140 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1141 
1142 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1143 }
1144 
xdp_set_return_frame_no_direct(void)1145 static inline void xdp_set_return_frame_no_direct(void)
1146 {
1147 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1148 
1149 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1150 }
1151 
xdp_clear_return_frame_no_direct(void)1152 static inline void xdp_clear_return_frame_no_direct(void)
1153 {
1154 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1155 
1156 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1157 }
1158 
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)1159 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1160 				 unsigned int pktlen)
1161 {
1162 	unsigned int len;
1163 
1164 	if (unlikely(!(fwd->flags & IFF_UP)))
1165 		return -ENETDOWN;
1166 
1167 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1168 	if (pktlen > len)
1169 		return -EMSGSIZE;
1170 
1171 	return 0;
1172 }
1173 
1174 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1175  * same cpu context. Further for best results no more than a single map
1176  * for the do_redirect/do_flush pair should be used. This limitation is
1177  * because we only track one map and force a flush when the map changes.
1178  * This does not appear to be a real limitation for existing software.
1179  */
1180 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1181 			    struct xdp_buff *xdp, struct bpf_prog *prog);
1182 int xdp_do_redirect(struct net_device *dev,
1183 		    struct xdp_buff *xdp,
1184 		    struct bpf_prog *prog);
1185 int xdp_do_redirect_frame(struct net_device *dev,
1186 			  struct xdp_buff *xdp,
1187 			  struct xdp_frame *xdpf,
1188 			  struct bpf_prog *prog);
1189 void xdp_do_flush(void);
1190 
1191 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1192 
1193 #ifdef CONFIG_INET
1194 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1195 				  struct bpf_prog *prog, struct sk_buff *skb,
1196 				  struct sock *migrating_sk,
1197 				  u32 hash);
1198 #else
1199 static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)1200 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1201 		     struct bpf_prog *prog, struct sk_buff *skb,
1202 		     struct sock *migrating_sk,
1203 		     u32 hash)
1204 {
1205 	return NULL;
1206 }
1207 #endif
1208 
1209 #ifdef CONFIG_BPF_JIT
1210 extern int bpf_jit_enable;
1211 extern int bpf_jit_harden;
1212 extern int bpf_jit_kallsyms;
1213 extern long bpf_jit_limit;
1214 extern long bpf_jit_limit_max;
1215 
1216 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1217 
1218 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1219 
1220 struct bpf_binary_header *
1221 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1222 		     unsigned int alignment,
1223 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1224 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1225 u64 bpf_jit_alloc_exec_limit(void);
1226 void *bpf_jit_alloc_exec(unsigned long size);
1227 void bpf_jit_free_exec(void *addr);
1228 void bpf_jit_free(struct bpf_prog *fp);
1229 struct bpf_binary_header *
1230 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1231 
1232 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1233 void bpf_prog_pack_free(void *ptr, u32 size);
1234 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)1235 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1236 {
1237 	return list_empty(&fp->aux->ksym.lnode) ||
1238 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1239 }
1240 
1241 struct bpf_binary_header *
1242 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1243 			  unsigned int alignment,
1244 			  struct bpf_binary_header **rw_hdr,
1245 			  u8 **rw_image,
1246 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1247 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1248 				 struct bpf_binary_header *rw_header);
1249 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1250 			      struct bpf_binary_header *rw_header);
1251 
1252 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1253 				struct bpf_jit_poke_descriptor *poke);
1254 
1255 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1256 			  const struct bpf_insn *insn, bool extra_pass,
1257 			  u64 *func_addr, bool *func_addr_fixed);
1258 
1259 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1260 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1261 
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)1262 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1263 				u32 pass, void *image)
1264 {
1265 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1266 	       proglen, pass, image, current->comm, task_pid_nr(current));
1267 
1268 	if (image)
1269 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1270 			       16, 1, image, proglen, false);
1271 }
1272 
bpf_jit_is_ebpf(void)1273 static inline bool bpf_jit_is_ebpf(void)
1274 {
1275 # ifdef CONFIG_HAVE_EBPF_JIT
1276 	return true;
1277 # else
1278 	return false;
1279 # endif
1280 }
1281 
ebpf_jit_enabled(void)1282 static inline bool ebpf_jit_enabled(void)
1283 {
1284 	return bpf_jit_enable && bpf_jit_is_ebpf();
1285 }
1286 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1287 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1288 {
1289 	return fp->jited && bpf_jit_is_ebpf();
1290 }
1291 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1292 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1293 {
1294 	/* These are the prerequisites, should someone ever have the
1295 	 * idea to call blinding outside of them, we make sure to
1296 	 * bail out.
1297 	 */
1298 	if (!bpf_jit_is_ebpf())
1299 		return false;
1300 	if (!prog->jit_requested)
1301 		return false;
1302 	if (!bpf_jit_harden)
1303 		return false;
1304 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1305 		return false;
1306 
1307 	return true;
1308 }
1309 
bpf_jit_kallsyms_enabled(void)1310 static inline bool bpf_jit_kallsyms_enabled(void)
1311 {
1312 	/* There are a couple of corner cases where kallsyms should
1313 	 * not be enabled f.e. on hardening.
1314 	 */
1315 	if (bpf_jit_harden)
1316 		return false;
1317 	if (!bpf_jit_kallsyms)
1318 		return false;
1319 	if (bpf_jit_kallsyms == 1)
1320 		return true;
1321 
1322 	return false;
1323 }
1324 
1325 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
1326 				 unsigned long *off, char *sym);
1327 bool is_bpf_text_address(unsigned long addr);
1328 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1329 		    char *sym);
1330 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1331 
1332 static inline int
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1333 bpf_address_lookup(unsigned long addr, unsigned long *size,
1334 		   unsigned long *off, char **modname, char *sym)
1335 {
1336 	int ret = __bpf_address_lookup(addr, size, off, sym);
1337 
1338 	if (ret && modname)
1339 		*modname = NULL;
1340 	return ret;
1341 }
1342 
1343 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1344 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1345 
1346 #else /* CONFIG_BPF_JIT */
1347 
ebpf_jit_enabled(void)1348 static inline bool ebpf_jit_enabled(void)
1349 {
1350 	return false;
1351 }
1352 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1353 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1354 {
1355 	return false;
1356 }
1357 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1358 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1359 {
1360 	return false;
1361 }
1362 
1363 static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)1364 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1365 			    struct bpf_jit_poke_descriptor *poke)
1366 {
1367 	return -ENOTSUPP;
1368 }
1369 
bpf_jit_free(struct bpf_prog * fp)1370 static inline void bpf_jit_free(struct bpf_prog *fp)
1371 {
1372 	bpf_prog_unlock_free(fp);
1373 }
1374 
bpf_jit_kallsyms_enabled(void)1375 static inline bool bpf_jit_kallsyms_enabled(void)
1376 {
1377 	return false;
1378 }
1379 
1380 static inline int
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1381 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1382 		     unsigned long *off, char *sym)
1383 {
1384 	return 0;
1385 }
1386 
is_bpf_text_address(unsigned long addr)1387 static inline bool is_bpf_text_address(unsigned long addr)
1388 {
1389 	return false;
1390 }
1391 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1392 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1393 				  char *type, char *sym)
1394 {
1395 	return -ERANGE;
1396 }
1397 
bpf_prog_ksym_find(unsigned long addr)1398 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1399 {
1400 	return NULL;
1401 }
1402 
1403 static inline int
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1404 bpf_address_lookup(unsigned long addr, unsigned long *size,
1405 		   unsigned long *off, char **modname, char *sym)
1406 {
1407 	return 0;
1408 }
1409 
bpf_prog_kallsyms_add(struct bpf_prog * fp)1410 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1411 {
1412 }
1413 
bpf_prog_kallsyms_del(struct bpf_prog * fp)1414 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1415 {
1416 }
1417 
1418 #endif /* CONFIG_BPF_JIT */
1419 
1420 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1421 
1422 #define BPF_ANC		BIT(15)
1423 
bpf_needs_clear_a(const struct sock_filter * first)1424 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1425 {
1426 	switch (first->code) {
1427 	case BPF_RET | BPF_K:
1428 	case BPF_LD | BPF_W | BPF_LEN:
1429 		return false;
1430 
1431 	case BPF_LD | BPF_W | BPF_ABS:
1432 	case BPF_LD | BPF_H | BPF_ABS:
1433 	case BPF_LD | BPF_B | BPF_ABS:
1434 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1435 			return true;
1436 		return false;
1437 
1438 	default:
1439 		return true;
1440 	}
1441 }
1442 
bpf_anc_helper(const struct sock_filter * ftest)1443 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1444 {
1445 	BUG_ON(ftest->code & BPF_ANC);
1446 
1447 	switch (ftest->code) {
1448 	case BPF_LD | BPF_W | BPF_ABS:
1449 	case BPF_LD | BPF_H | BPF_ABS:
1450 	case BPF_LD | BPF_B | BPF_ABS:
1451 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1452 				return BPF_ANC | SKF_AD_##CODE
1453 		switch (ftest->k) {
1454 		BPF_ANCILLARY(PROTOCOL);
1455 		BPF_ANCILLARY(PKTTYPE);
1456 		BPF_ANCILLARY(IFINDEX);
1457 		BPF_ANCILLARY(NLATTR);
1458 		BPF_ANCILLARY(NLATTR_NEST);
1459 		BPF_ANCILLARY(MARK);
1460 		BPF_ANCILLARY(QUEUE);
1461 		BPF_ANCILLARY(HATYPE);
1462 		BPF_ANCILLARY(RXHASH);
1463 		BPF_ANCILLARY(CPU);
1464 		BPF_ANCILLARY(ALU_XOR_X);
1465 		BPF_ANCILLARY(VLAN_TAG);
1466 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1467 		BPF_ANCILLARY(PAY_OFFSET);
1468 		BPF_ANCILLARY(RANDOM);
1469 		BPF_ANCILLARY(VLAN_TPID);
1470 		}
1471 		fallthrough;
1472 	default:
1473 		return ftest->code;
1474 	}
1475 }
1476 
1477 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1478 					   int k, unsigned int size);
1479 
bpf_tell_extensions(void)1480 static inline int bpf_tell_extensions(void)
1481 {
1482 	return SKF_AD_MAX;
1483 }
1484 
1485 struct bpf_sock_addr_kern {
1486 	struct sock *sk;
1487 	struct sockaddr *uaddr;
1488 	/* Temporary "register" to make indirect stores to nested structures
1489 	 * defined above. We need three registers to make such a store, but
1490 	 * only two (src and dst) are available at convert_ctx_access time
1491 	 */
1492 	u64 tmp_reg;
1493 	void *t_ctx;	/* Attach type specific context. */
1494 	u32 uaddrlen;
1495 };
1496 
1497 struct bpf_sock_ops_kern {
1498 	struct	sock *sk;
1499 	union {
1500 		u32 args[4];
1501 		u32 reply;
1502 		u32 replylong[4];
1503 	};
1504 	struct sk_buff	*syn_skb;
1505 	struct sk_buff	*skb;
1506 	void	*skb_data_end;
1507 	u8	op;
1508 	u8	is_fullsock;
1509 	u8	remaining_opt_len;
1510 	u64	temp;			/* temp and everything after is not
1511 					 * initialized to 0 before calling
1512 					 * the BPF program. New fields that
1513 					 * should be initialized to 0 should
1514 					 * be inserted before temp.
1515 					 * temp is scratch storage used by
1516 					 * sock_ops_convert_ctx_access
1517 					 * as temporary storage of a register.
1518 					 */
1519 };
1520 
1521 struct bpf_sysctl_kern {
1522 	struct ctl_table_header *head;
1523 	const struct ctl_table *table;
1524 	void *cur_val;
1525 	size_t cur_len;
1526 	void *new_val;
1527 	size_t new_len;
1528 	int new_updated;
1529 	int write;
1530 	loff_t *ppos;
1531 	/* Temporary "register" for indirect stores to ppos. */
1532 	u64 tmp_reg;
1533 };
1534 
1535 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1536 struct bpf_sockopt_buf {
1537 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1538 };
1539 
1540 struct bpf_sockopt_kern {
1541 	struct sock	*sk;
1542 	u8		*optval;
1543 	u8		*optval_end;
1544 	s32		level;
1545 	s32		optname;
1546 	s32		optlen;
1547 	/* for retval in struct bpf_cg_run_ctx */
1548 	struct task_struct *current_task;
1549 	/* Temporary "register" for indirect stores to ppos. */
1550 	u64		tmp_reg;
1551 };
1552 
1553 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1554 
1555 struct bpf_sk_lookup_kern {
1556 	u16		family;
1557 	u16		protocol;
1558 	__be16		sport;
1559 	u16		dport;
1560 	struct {
1561 		__be32 saddr;
1562 		__be32 daddr;
1563 	} v4;
1564 	struct {
1565 		const struct in6_addr *saddr;
1566 		const struct in6_addr *daddr;
1567 	} v6;
1568 	struct sock	*selected_sk;
1569 	u32		ingress_ifindex;
1570 	bool		no_reuseport;
1571 };
1572 
1573 extern struct static_key_false bpf_sk_lookup_enabled;
1574 
1575 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1576  *
1577  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1578  * SK_DROP. Their meaning is as follows:
1579  *
1580  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1581  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1582  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1583  *
1584  * This macro aggregates return values and selected sockets from
1585  * multiple BPF programs according to following rules in order:
1586  *
1587  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1588  *     macro result is SK_PASS and last ctx.selected_sk is used.
1589  *  2. If any program returned SK_DROP return value,
1590  *     macro result is SK_DROP.
1591  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1592  *
1593  * Caller must ensure that the prog array is non-NULL, and that the
1594  * array as well as the programs it contains remain valid.
1595  */
1596 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1597 	({								\
1598 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1599 		struct bpf_prog_array_item *_item;			\
1600 		struct sock *_selected_sk = NULL;			\
1601 		bool _no_reuseport = false;				\
1602 		struct bpf_prog *_prog;					\
1603 		bool _all_pass = true;					\
1604 		u32 _ret;						\
1605 									\
1606 		migrate_disable();					\
1607 		_item = &(array)->items[0];				\
1608 		while ((_prog = READ_ONCE(_item->prog))) {		\
1609 			/* restore most recent selection */		\
1610 			_ctx->selected_sk = _selected_sk;		\
1611 			_ctx->no_reuseport = _no_reuseport;		\
1612 									\
1613 			_ret = func(_prog, _ctx);			\
1614 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1615 				/* remember last non-NULL socket */	\
1616 				_selected_sk = _ctx->selected_sk;	\
1617 				_no_reuseport = _ctx->no_reuseport;	\
1618 			} else if (_ret == SK_DROP && _all_pass) {	\
1619 				_all_pass = false;			\
1620 			}						\
1621 			_item++;					\
1622 		}							\
1623 		_ctx->selected_sk = _selected_sk;			\
1624 		_ctx->no_reuseport = _no_reuseport;			\
1625 		migrate_enable();					\
1626 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1627 	 })
1628 
bpf_sk_lookup_run_v4(const struct net * net,int protocol,const __be32 saddr,const __be16 sport,const __be32 daddr,const u16 dport,const int ifindex,struct sock ** psk)1629 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol,
1630 					const __be32 saddr, const __be16 sport,
1631 					const __be32 daddr, const u16 dport,
1632 					const int ifindex, struct sock **psk)
1633 {
1634 	struct bpf_prog_array *run_array;
1635 	struct sock *selected_sk = NULL;
1636 	bool no_reuseport = false;
1637 
1638 	rcu_read_lock();
1639 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1640 	if (run_array) {
1641 		struct bpf_sk_lookup_kern ctx = {
1642 			.family		= AF_INET,
1643 			.protocol	= protocol,
1644 			.v4.saddr	= saddr,
1645 			.v4.daddr	= daddr,
1646 			.sport		= sport,
1647 			.dport		= dport,
1648 			.ingress_ifindex	= ifindex,
1649 		};
1650 		u32 act;
1651 
1652 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1653 		if (act == SK_PASS) {
1654 			selected_sk = ctx.selected_sk;
1655 			no_reuseport = ctx.no_reuseport;
1656 		} else {
1657 			selected_sk = ERR_PTR(-ECONNREFUSED);
1658 		}
1659 	}
1660 	rcu_read_unlock();
1661 	*psk = selected_sk;
1662 	return no_reuseport;
1663 }
1664 
1665 #if IS_ENABLED(CONFIG_IPV6)
bpf_sk_lookup_run_v6(const struct net * net,int protocol,const struct in6_addr * saddr,const __be16 sport,const struct in6_addr * daddr,const u16 dport,const int ifindex,struct sock ** psk)1666 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol,
1667 					const struct in6_addr *saddr,
1668 					const __be16 sport,
1669 					const struct in6_addr *daddr,
1670 					const u16 dport,
1671 					const int ifindex, struct sock **psk)
1672 {
1673 	struct bpf_prog_array *run_array;
1674 	struct sock *selected_sk = NULL;
1675 	bool no_reuseport = false;
1676 
1677 	rcu_read_lock();
1678 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1679 	if (run_array) {
1680 		struct bpf_sk_lookup_kern ctx = {
1681 			.family		= AF_INET6,
1682 			.protocol	= protocol,
1683 			.v6.saddr	= saddr,
1684 			.v6.daddr	= daddr,
1685 			.sport		= sport,
1686 			.dport		= dport,
1687 			.ingress_ifindex	= ifindex,
1688 		};
1689 		u32 act;
1690 
1691 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1692 		if (act == SK_PASS) {
1693 			selected_sk = ctx.selected_sk;
1694 			no_reuseport = ctx.no_reuseport;
1695 		} else {
1696 			selected_sk = ERR_PTR(-ECONNREFUSED);
1697 		}
1698 	}
1699 	rcu_read_unlock();
1700 	*psk = selected_sk;
1701 	return no_reuseport;
1702 }
1703 #endif /* IS_ENABLED(CONFIG_IPV6) */
1704 
__bpf_xdp_redirect_map(struct bpf_map * map,u64 index,u64 flags,const u64 flag_mask,void * lookup_elem (struct bpf_map * map,u32 key))1705 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1706 						   u64 flags, const u64 flag_mask,
1707 						   void *lookup_elem(struct bpf_map *map, u32 key))
1708 {
1709 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1710 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1711 
1712 	/* Lower bits of the flags are used as return code on lookup failure */
1713 	if (unlikely(flags & ~(action_mask | flag_mask)))
1714 		return XDP_ABORTED;
1715 
1716 	ri->tgt_value = lookup_elem(map, index);
1717 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1718 		/* If the lookup fails we want to clear out the state in the
1719 		 * redirect_info struct completely, so that if an eBPF program
1720 		 * performs multiple lookups, the last one always takes
1721 		 * precedence.
1722 		 */
1723 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1724 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1725 		return flags & action_mask;
1726 	}
1727 
1728 	ri->tgt_index = index;
1729 	ri->map_id = map->id;
1730 	ri->map_type = map->map_type;
1731 
1732 	if (flags & BPF_F_BROADCAST) {
1733 		WRITE_ONCE(ri->map, map);
1734 		ri->flags = flags;
1735 	} else {
1736 		WRITE_ONCE(ri->map, NULL);
1737 		ri->flags = 0;
1738 	}
1739 
1740 	return XDP_REDIRECT;
1741 }
1742 
1743 #ifdef CONFIG_NET
1744 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1745 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1746 			  u32 len, u64 flags);
1747 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1748 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1749 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1750 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1751 		      void *buf, unsigned long len, bool flush);
1752 #else /* CONFIG_NET */
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1753 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1754 				       void *to, u32 len)
1755 {
1756 	return -EOPNOTSUPP;
1757 }
1758 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1759 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1760 					const void *from, u32 len, u64 flags)
1761 {
1762 	return -EOPNOTSUPP;
1763 }
1764 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1765 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1766 				       void *buf, u32 len)
1767 {
1768 	return -EOPNOTSUPP;
1769 }
1770 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1771 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1772 					void *buf, u32 len)
1773 {
1774 	return -EOPNOTSUPP;
1775 }
1776 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)1777 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1778 {
1779 	return NULL;
1780 }
1781 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)1782 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1783 				    unsigned long len, bool flush)
1784 {
1785 }
1786 #endif /* CONFIG_NET */
1787 
1788 #endif /* __LINUX_FILTER_H__ */
1789