1  /* bnx2x_init.h: Qlogic Everest network driver.
2   *               Structures and macroes needed during the initialization.
3   *
4   * Copyright (c) 2007-2013 Broadcom Corporation
5   * Copyright (c) 2014 QLogic Corporation
6   All rights reserved
7   *
8   * This program is free software; you can redistribute it and/or modify
9   * it under the terms of the GNU General Public License as published by
10   * the Free Software Foundation.
11   *
12   * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
13   * Written by: Eliezer Tamir
14   * Modified by: Vladislav Zolotarov
15   */
16  
17  #ifndef BNX2X_INIT_H
18  #define BNX2X_INIT_H
19  
20  /* Init operation types and structures */
21  enum {
22  	OP_RD = 0x1,	/* read a single register */
23  	OP_WR,		/* write a single register */
24  	OP_SW,		/* copy a string to the device */
25  	OP_ZR,		/* clear memory */
26  	OP_ZP,		/* unzip then copy with DMAE */
27  	OP_WR_64,	/* write 64 bit pattern */
28  	OP_WB,		/* copy a string using DMAE */
29  	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
30  	/* Skip the following ops if all of the init modes don't match */
31  	OP_IF_MODE_OR,
32  	/* Skip the following ops if any of the init modes don't match */
33  	OP_IF_MODE_AND,
34  	OP_MAX
35  };
36  
37  enum {
38  	STAGE_START,
39  	STAGE_END,
40  };
41  
42  /* Returns the index of start or end of a specific block stage in ops array*/
43  #define BLOCK_OPS_IDX(block, stage, end) \
44  	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
45  
46  
47  /* structs for the various opcodes */
48  struct raw_op {
49  	u32 op:8;
50  	u32 offset:24;
51  	u32 raw_data;
52  };
53  
54  struct op_read {
55  	u32 op:8;
56  	u32 offset:24;
57  	u32 val;
58  };
59  
60  struct op_write {
61  	u32 op:8;
62  	u32 offset:24;
63  	u32 val;
64  };
65  
66  struct op_arr_write {
67  	u32 op:8;
68  	u32 offset:24;
69  #ifdef __BIG_ENDIAN
70  	u16 data_len;
71  	u16 data_off;
72  #else /* __LITTLE_ENDIAN */
73  	u16 data_off;
74  	u16 data_len;
75  #endif
76  };
77  
78  struct op_zero {
79  	u32 op:8;
80  	u32 offset:24;
81  	u32 len;
82  };
83  
84  struct op_if_mode {
85  	u32 op:8;
86  	u32 cmd_offset:24;
87  	u32 mode_bit_map;
88  };
89  
90  
91  union init_op {
92  	struct op_read		read;
93  	struct op_write		write;
94  	struct op_arr_write	arr_wr;
95  	struct op_zero		zero;
96  	struct raw_op		raw;
97  	struct op_if_mode	if_mode;
98  };
99  
100  
101  /* Init Phases */
102  enum {
103  	PHASE_COMMON,
104  	PHASE_PORT0,
105  	PHASE_PORT1,
106  	PHASE_PF0,
107  	PHASE_PF1,
108  	PHASE_PF2,
109  	PHASE_PF3,
110  	PHASE_PF4,
111  	PHASE_PF5,
112  	PHASE_PF6,
113  	PHASE_PF7,
114  	NUM_OF_INIT_PHASES
115  };
116  
117  /* Init Modes */
118  enum {
119  	MODE_ASIC                      = 0x00000001,
120  	MODE_FPGA                      = 0x00000002,
121  	MODE_EMUL                      = 0x00000004,
122  	MODE_E2                        = 0x00000008,
123  	MODE_E3                        = 0x00000010,
124  	MODE_PORT2                     = 0x00000020,
125  	MODE_PORT4                     = 0x00000040,
126  	MODE_SF                        = 0x00000080,
127  	MODE_MF                        = 0x00000100,
128  	MODE_MF_SD                     = 0x00000200,
129  	MODE_MF_SI                     = 0x00000400,
130  	MODE_MF_AFEX                   = 0x00000800,
131  	MODE_E3_A0                     = 0x00001000,
132  	MODE_E3_B0                     = 0x00002000,
133  	MODE_COS3                      = 0x00004000,
134  	MODE_COS6                      = 0x00008000,
135  	MODE_LITTLE_ENDIAN             = 0x00010000,
136  	MODE_BIG_ENDIAN                = 0x00020000,
137  };
138  
139  /* Init Blocks */
140  enum {
141  	BLOCK_ATC,
142  	BLOCK_BRB1,
143  	BLOCK_CCM,
144  	BLOCK_CDU,
145  	BLOCK_CFC,
146  	BLOCK_CSDM,
147  	BLOCK_CSEM,
148  	BLOCK_DBG,
149  	BLOCK_DMAE,
150  	BLOCK_DORQ,
151  	BLOCK_HC,
152  	BLOCK_IGU,
153  	BLOCK_MISC,
154  	BLOCK_NIG,
155  	BLOCK_PBF,
156  	BLOCK_PGLUE_B,
157  	BLOCK_PRS,
158  	BLOCK_PXP2,
159  	BLOCK_PXP,
160  	BLOCK_QM,
161  	BLOCK_SRC,
162  	BLOCK_TCM,
163  	BLOCK_TM,
164  	BLOCK_TSDM,
165  	BLOCK_TSEM,
166  	BLOCK_UCM,
167  	BLOCK_UPB,
168  	BLOCK_USDM,
169  	BLOCK_USEM,
170  	BLOCK_XCM,
171  	BLOCK_XPB,
172  	BLOCK_XSDM,
173  	BLOCK_XSEM,
174  	BLOCK_MISC_AEU,
175  	NUM_OF_INIT_BLOCKS
176  };
177  
178  /* QM queue numbers */
179  #define BNX2X_ETH_Q		0
180  #define BNX2X_TOE_Q		3
181  #define BNX2X_TOE_ACK_Q		6
182  #define BNX2X_ISCSI_Q		9
183  #define BNX2X_ISCSI_ACK_Q	11
184  #define BNX2X_FCOE_Q		10
185  
186  /* Vnics per mode */
187  #define BNX2X_PORT2_MODE_NUM_VNICS 4
188  #define BNX2X_PORT4_MODE_NUM_VNICS 2
189  
190  /* COS offset for port1 in E3 B0 4port mode */
191  #define BNX2X_E3B0_PORT1_COS_OFFSET 3
192  
193  /* QM Register addresses */
194  #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
195  	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
196  #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
197  	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
198  #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
199  	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
200  
201  /* extracts the QM queue number for the specified port and vnic */
202  #define BNX2X_PF_Q_NUM(q_num, port, vnic)\
203  	((((port) << 1) | (vnic)) * 16 + (q_num))
204  
205  
206  /* Maps the specified queue to the specified COS */
bnx2x_map_q_cos(struct bnx2x * bp,u32 q_num,u32 new_cos)207  static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
208  {
209  	/* find current COS mapping */
210  	u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
211  
212  	/* check if queue->COS mapping has changed */
213  	if (curr_cos != new_cos) {
214  		u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
215  		u32 reg_addr, reg_bit_map, vnic;
216  
217  		/* update parameters for 4port mode */
218  		if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
219  			num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
220  			if (BP_PORT(bp)) {
221  				curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
222  				new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
223  			}
224  		}
225  
226  		/* change queue mapping for each VNIC */
227  		for (vnic = 0; vnic < num_vnics; vnic++) {
228  			u32 pf_q_num =
229  				BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
230  			u32 q_bit_map = 1 << (pf_q_num & 0x1f);
231  
232  			/* overwrite queue->VOQ mapping */
233  			REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
234  
235  			/* clear queue bit from current COS bit map */
236  			reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
237  			reg_bit_map = REG_RD(bp, reg_addr);
238  			REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
239  
240  			/* set queue bit in new COS bit map */
241  			reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
242  			reg_bit_map = REG_RD(bp, reg_addr);
243  			REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
244  
245  			/* set/clear queue bit in command-queue bit map
246  			 * (E2/E3A0 only, valid COS values are 0/1)
247  			 */
248  			if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
249  				reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
250  				reg_bit_map = REG_RD(bp, reg_addr);
251  				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
252  				reg_bit_map = new_cos ?
253  					      (reg_bit_map | q_bit_map) :
254  					      (reg_bit_map & (~q_bit_map));
255  				REG_WR(bp, reg_addr, reg_bit_map);
256  			}
257  		}
258  	}
259  }
260  
261  /* Configures the QM according to the specified per-traffic-type COSes */
bnx2x_dcb_config_qm(struct bnx2x * bp,enum cos_mode mode,struct priority_cos * traffic_cos)262  static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
263  				       struct priority_cos *traffic_cos)
264  {
265  	bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
266  			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
267  	bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
268  			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
269  	bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
270  		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
271  	if (mode != STATIC_COS) {
272  		/* required only in backward compatible COS mode */
273  		bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
274  				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
275  		bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
276  				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
277  		bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
278  				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
279  	}
280  }
281  
282  
283  /* congestion management port init api description
284   * the api works as follows:
285   * the driver should pass the cmng_init_input struct, the port_init function
286   * will prepare the required internal ram structure which will be passed back
287   * to the driver (cmng_init) that will write it into the internal ram.
288   *
289   * IMPORTANT REMARKS:
290   * 1. the cmng_init struct does not represent the contiguous internal ram
291   *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
292   *    offset in order to write the port sub struct and the
293   *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
294   *    words - don't use memcpy!).
295   * 2. although the cmng_init struct is filled for the maximal vnic number
296   *    possible, the driver should only write the valid vnics into the internal
297   *    ram according to the appropriate port mode.
298   */
299  
300  /* CMNG constants, as derived from system spec calculations */
301  
302  /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
303  #define DEF_MIN_RATE 100
304  
305  /* resolution of the rate shaping timer - 400 usec */
306  #define RS_PERIODIC_TIMEOUT_USEC 400
307  
308  /* number of bytes in single QM arbitration cycle -
309   * coefficient for calculating the fairness timer
310   */
311  #define QM_ARB_BYTES 160000
312  
313  /* resolution of Min algorithm 1:100 */
314  #define MIN_RES 100
315  
316  /* how many bytes above threshold for
317   * the minimal credit of Min algorithm
318   */
319  #define MIN_ABOVE_THRESH 32768
320  
321  /* Fairness algorithm integration time coefficient -
322   * for calculating the actual Tfair
323   */
324  #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
325  
326  /* Memory of fairness algorithm - 2 cycles */
327  #define FAIR_MEM 2
328  #define SAFC_TIMEOUT_USEC 52
329  
330  #define SDM_TICKS 4
331  
332  
bnx2x_init_max(const struct cmng_init_input * input_data,u32 r_param,struct cmng_init * ram_data)333  static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
334  				  u32 r_param, struct cmng_init *ram_data)
335  {
336  	u32 vnic;
337  	struct cmng_vnic *vdata = &ram_data->vnic;
338  	struct cmng_struct_per_port *pdata = &ram_data->port;
339  	/* rate shaping per-port variables
340  	 * 100 micro seconds in SDM ticks = 25
341  	 * since each tick is 4 microSeconds
342  	 */
343  
344  	pdata->rs_vars.rs_periodic_timeout =
345  	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
346  
347  	/* this is the threshold below which no timer arming will occur.
348  	 * 1.25 coefficient is for the threshold to be a little bigger
349  	 * then the real time to compensate for timer in-accuracy
350  	 */
351  	pdata->rs_vars.rs_threshold =
352  	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
353  
354  	/* rate shaping per-vnic variables */
355  	for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
356  		/* global vnic counter */
357  		vdata->vnic_max_rate[vnic].vn_counter.rate =
358  		input_data->vnic_max_rate[vnic];
359  		/* maximal Mbps for this vnic
360  		 * the quota in each timer period - number of bytes
361  		 * transmitted in this period
362  		 */
363  		vdata->vnic_max_rate[vnic].vn_counter.quota =
364  			RS_PERIODIC_TIMEOUT_USEC *
365  			(u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
366  	}
367  
368  }
369  
bnx2x_init_min(const struct cmng_init_input * input_data,u32 r_param,struct cmng_init * ram_data)370  static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
371  				  u32 r_param, struct cmng_init *ram_data)
372  {
373  	u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
374  	struct cmng_vnic *vdata = &ram_data->vnic;
375  	struct cmng_struct_per_port *pdata = &ram_data->port;
376  
377  	/* this is the resolution of the fairness timer */
378  	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
379  
380  	/* fairness per-port variables
381  	 * for 10G it is 1000usec. for 1G it is 10000usec.
382  	 */
383  	tFair = T_FAIR_COEF / input_data->port_rate;
384  
385  	/* this is the threshold below which we won't arm the timer anymore */
386  	pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
387  
388  	/* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
389  	 * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
390  	 */
391  	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
392  
393  	/* since each tick is 4 microSeconds */
394  	pdata->fair_vars.fairness_timeout =
395  				fair_periodic_timeout_usec / SDM_TICKS;
396  
397  	/* calculate sum of weights */
398  	vnicWeightSum = 0;
399  
400  	for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
401  		vnicWeightSum += input_data->vnic_min_rate[vnic];
402  
403  	/* global vnic counter */
404  	if (vnicWeightSum > 0) {
405  		/* fairness per-vnic variables */
406  		for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
407  			/* this is the credit for each period of the fairness
408  			 * algorithm - number of bytes in T_FAIR (this vnic
409  			 * share of the port rate)
410  			 */
411  			vdata->vnic_min_rate[vnic].vn_credit_delta =
412  				(u32)input_data->vnic_min_rate[vnic] * 100 *
413  				(T_FAIR_COEF / (8 * 100 * vnicWeightSum));
414  			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
415  			    pdata->fair_vars.fair_threshold +
416  			    MIN_ABOVE_THRESH) {
417  				vdata->vnic_min_rate[vnic].vn_credit_delta =
418  					pdata->fair_vars.fair_threshold +
419  					MIN_ABOVE_THRESH;
420  			}
421  		}
422  	}
423  }
424  
bnx2x_init_fw_wrr(const struct cmng_init_input * input_data,u32 r_param,struct cmng_init * ram_data)425  static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
426  				     u32 r_param, struct cmng_init *ram_data)
427  {
428  	u32 vnic, cos;
429  	u32 cosWeightSum = 0;
430  	struct cmng_vnic *vdata = &ram_data->vnic;
431  	struct cmng_struct_per_port *pdata = &ram_data->port;
432  
433  	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
434  		cosWeightSum += input_data->cos_min_rate[cos];
435  
436  	if (cosWeightSum > 0) {
437  
438  		for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
439  			/* Since cos and vnic shouldn't work together the rate
440  			 * to divide between the coses is the port rate.
441  			 */
442  			u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
443  			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
444  				/* this is the credit for each period of
445  				 * the fairness algorithm - number of bytes
446  				 * in T_FAIR (this cos share of the vnic rate)
447  				 */
448  				ccd[cos] =
449  				    (u32)input_data->cos_min_rate[cos] * 100 *
450  				    (T_FAIR_COEF / (8 * 100 * cosWeightSum));
451  				if (ccd[cos] < pdata->fair_vars.fair_threshold
452  						+ MIN_ABOVE_THRESH) {
453  					ccd[cos] =
454  					    pdata->fair_vars.fair_threshold +
455  					    MIN_ABOVE_THRESH;
456  				}
457  			}
458  		}
459  	}
460  }
461  
bnx2x_init_safc(const struct cmng_init_input * input_data,struct cmng_init * ram_data)462  static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
463  				   struct cmng_init *ram_data)
464  {
465  	/* in microSeconds */
466  	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
467  }
468  
469  /* Congestion management port init */
bnx2x_init_cmng(const struct cmng_init_input * input_data,struct cmng_init * ram_data)470  static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
471  				   struct cmng_init *ram_data)
472  {
473  	u32 r_param;
474  	memset(ram_data, 0, sizeof(struct cmng_init));
475  
476  	ram_data->port.flags = input_data->flags;
477  
478  	/* number of bytes transmitted in a rate of 10Gbps
479  	 * in one usec = 1.25KB.
480  	 */
481  	r_param = BITS_TO_BYTES(input_data->port_rate);
482  	bnx2x_init_max(input_data, r_param, ram_data);
483  	bnx2x_init_min(input_data, r_param, ram_data);
484  	bnx2x_init_fw_wrr(input_data, r_param, ram_data);
485  	bnx2x_init_safc(input_data, ram_data);
486  }
487  
488  
489  
490  /* Returns the index of start or end of a specific block stage in ops array */
491  #define BLOCK_OPS_IDX(block, stage, end) \
492  			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
493  
494  
495  #define INITOP_SET		0	/* set the HW directly */
496  #define INITOP_CLEAR		1	/* clear the HW directly */
497  #define INITOP_INIT		2	/* set the init-value array */
498  
499  /****************************************************************************
500  * ILT management
501  ****************************************************************************/
502  struct ilt_line {
503  	dma_addr_t page_mapping;
504  	void *page;
505  	u32 size;
506  };
507  
508  struct ilt_client_info {
509  	u32 page_size;
510  	u16 start;
511  	u16 end;
512  	u16 client_num;
513  	u16 flags;
514  #define ILT_CLIENT_SKIP_INIT	0x1
515  #define ILT_CLIENT_SKIP_MEM	0x2
516  };
517  
518  struct bnx2x_ilt {
519  	u32 start_line;
520  	struct ilt_line		*lines;
521  	struct ilt_client_info	clients[4];
522  #define ILT_CLIENT_CDU	0
523  #define ILT_CLIENT_QM	1
524  #define ILT_CLIENT_SRC	2
525  #define ILT_CLIENT_TM	3
526  };
527  
528  /****************************************************************************
529  * SRC configuration
530  ****************************************************************************/
531  struct src_ent {
532  	u8 opaque[56];
533  	u64 next;
534  };
535  
536  /****************************************************************************
537  * Parity configuration
538  ****************************************************************************/
539  #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
540  { \
541  	block##_REG_##block##_PRTY_MASK, \
542  	block##_REG_##block##_PRTY_STS_CLR, \
543  	en_mask, {m1, m1h, m2, m3}, #block \
544  }
545  
546  #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
547  { \
548  	block##_REG_##block##_PRTY_MASK_0, \
549  	block##_REG_##block##_PRTY_STS_CLR_0, \
550  	en_mask, {m1, m1h, m2, m3}, #block"_0" \
551  }
552  
553  #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
554  { \
555  	block##_REG_##block##_PRTY_MASK_1, \
556  	block##_REG_##block##_PRTY_STS_CLR_1, \
557  	en_mask, {m1, m1h, m2, m3}, #block"_1" \
558  }
559  
560  static const struct {
561  	u32 mask_addr;
562  	u32 sts_clr_addr;
563  	u32 en_mask;		/* Mask to enable parity attentions */
564  	struct {
565  		u32 e1;		/* 57710 */
566  		u32 e1h;	/* 57711 */
567  		u32 e2;		/* 57712 */
568  		u32 e3;		/* 578xx */
569  	} reg_mask;		/* Register mask (all valid bits) */
570  	char name[8];		/* Block's longest name is 7 characters long
571  				 * (name + suffix)
572  				 */
573  } bnx2x_blocks_parity_data[] = {
574  	/* bit 19 masked */
575  	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
576  	/* bit 5,18,20-31 */
577  	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
578  	/* bit 5 */
579  	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
580  	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
581  	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
582  
583  	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
584  	 * want to handle "system kill" flow at the moment.
585  	 */
586  	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
587  			0x7ffffff),
588  	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
589  			  0xffffffff),
590  	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
591  	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
592  	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
593  	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
594  	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
595  	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
596  	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
597  	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
598  	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
599  	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
600  	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
601  	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
602  		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
603  		{0xf, 0xf, 0xf, 0xf}, "UPB"},
604  	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
605  		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
606  		{0xf, 0xf, 0xf, 0xf}, "XPB"},
607  	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
608  	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
609  	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
610  	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
611  	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
612  	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
613  	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
614  	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
615  	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
616  	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
617  	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
618  	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
619  	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
620  	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
621  	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
622  	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
623  	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
624  	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
625  			  0xffffffff),
626  	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
627  	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
628  			  0xffffffff),
629  	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
630  	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
631  			  0xffffffff),
632  	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
633  	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
634  			  0xffffffff),
635  	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
636  };
637  
638  
639  /* [28] MCP Latched rom_parity
640   * [29] MCP Latched ump_rx_parity
641   * [30] MCP Latched ump_tx_parity
642   * [31] MCP Latched scpad_parity
643   */
644  #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS	\
645  	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
646  	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
647  	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
648  
649  #define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
650  	(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
651  	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
652  
653  /* Below registers control the MCP parity attention output. When
654   * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
655   * enabled, when cleared - disabled.
656   */
657  static const struct {
658  	u32 addr;
659  	u32 bits;
660  } mcp_attn_ctl_regs[] = {
661  	{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
662  		MISC_AEU_ENABLE_MCP_PRTY_BITS },
663  	{ MISC_REG_AEU_ENABLE4_NIG_0,
664  		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
665  	{ MISC_REG_AEU_ENABLE4_PXP_0,
666  		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
667  	{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
668  		MISC_AEU_ENABLE_MCP_PRTY_BITS },
669  	{ MISC_REG_AEU_ENABLE4_NIG_1,
670  		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
671  	{ MISC_REG_AEU_ENABLE4_PXP_1,
672  		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
673  };
674  
bnx2x_set_mcp_parity(struct bnx2x * bp,u8 enable)675  static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
676  {
677  	int i;
678  	u32 reg_val;
679  
680  	for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
681  		reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
682  
683  		if (enable)
684  			reg_val |= mcp_attn_ctl_regs[i].bits;
685  		else
686  			reg_val &= ~mcp_attn_ctl_regs[i].bits;
687  
688  		REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
689  	}
690  }
691  
bnx2x_parity_reg_mask(struct bnx2x * bp,int idx)692  static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
693  {
694  	if (CHIP_IS_E1(bp))
695  		return bnx2x_blocks_parity_data[idx].reg_mask.e1;
696  	else if (CHIP_IS_E1H(bp))
697  		return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
698  	else if (CHIP_IS_E2(bp))
699  		return bnx2x_blocks_parity_data[idx].reg_mask.e2;
700  	else /* CHIP_IS_E3 */
701  		return bnx2x_blocks_parity_data[idx].reg_mask.e3;
702  }
703  
bnx2x_disable_blocks_parity(struct bnx2x * bp)704  static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
705  {
706  	int i;
707  
708  	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
709  		u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
710  
711  		if (dis_mask) {
712  			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
713  			       dis_mask);
714  			DP(NETIF_MSG_HW, "Setting parity mask "
715  						 "for %s to\t\t0x%x\n",
716  				    bnx2x_blocks_parity_data[i].name, dis_mask);
717  		}
718  	}
719  
720  	/* Disable MCP parity attentions */
721  	bnx2x_set_mcp_parity(bp, false);
722  }
723  
724  /* Clear the parity error status registers. */
bnx2x_clear_blocks_parity(struct bnx2x * bp)725  static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
726  {
727  	int i;
728  	u32 reg_val, mcp_aeu_bits =
729  		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
730  		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
731  		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
732  		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
733  
734  	/* Clear SEM_FAST parities */
735  	REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
736  	REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
737  	REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
738  	REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
739  
740  	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
741  		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
742  
743  		if (reg_mask) {
744  			reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
745  					 sts_clr_addr);
746  			if (reg_val & reg_mask)
747  				DP(NETIF_MSG_HW,
748  					    "Parity errors in %s: 0x%x\n",
749  					    bnx2x_blocks_parity_data[i].name,
750  					    reg_val & reg_mask);
751  		}
752  	}
753  
754  	/* Check if there were parity attentions in MCP */
755  	reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
756  	if (reg_val & mcp_aeu_bits)
757  		DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
758  		   reg_val & mcp_aeu_bits);
759  
760  	/* Clear parity attentions in MCP:
761  	 * [7]  clears Latched rom_parity
762  	 * [8]  clears Latched ump_rx_parity
763  	 * [9]  clears Latched ump_tx_parity
764  	 * [10] clears Latched scpad_parity (both ports)
765  	 */
766  	REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
767  }
768  
bnx2x_enable_blocks_parity(struct bnx2x * bp)769  static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
770  {
771  	int i;
772  
773  	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
774  		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
775  
776  		if (reg_mask)
777  			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
778  				bnx2x_blocks_parity_data[i].en_mask & reg_mask);
779  	}
780  
781  	/* Enable MCP parity attentions */
782  	bnx2x_set_mcp_parity(bp, true);
783  }
784  
785  
786  #endif /* BNX2X_INIT_H */
787  
788