/* * Copyright (c) 2014-2020 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: qdf_mem * QCA driver framework (QDF) memory management APIs */ #if !defined(__QDF_MEMORY_H) #define __QDF_MEMORY_H /* Include Files */ #include #include #include #define QDF_CACHE_LINE_SZ __qdf_cache_line_sz /** * qdf_align() - align to the given size. * @a: input that needs to be aligned. * @align_size: boundary on which 'a' has to be alinged. * * Return: aligned value. */ #define qdf_align(a, align_size) __qdf_align(a, align_size) #define qdf_page_size __page_size /** * struct qdf_mem_dma_page_t - Allocated dmaable page * @page_v_addr_start: Page start virtual address * @page_v_addr_end: Page end virtual address * @page_p_addr: Page start physical address */ struct qdf_mem_dma_page_t { char *page_v_addr_start; char *page_v_addr_end; qdf_dma_addr_t page_p_addr; }; /** * struct qdf_mem_multi_page_t - multiple page allocation information storage * @num_element_per_page: Number of element in single page * @num_pages: Number of allocation needed pages * @dma_pages: page information storage in case of coherent memory * @cacheable_pages: page information storage in case of cacheable memory */ struct qdf_mem_multi_page_t { uint16_t num_element_per_page; uint16_t num_pages; struct qdf_mem_dma_page_t *dma_pages; void **cacheable_pages; qdf_size_t page_size; }; /* Preprocessor definitions and constants */ typedef __qdf_mempool_t qdf_mempool_t; /** * qdf_mem_init() - Initialize QDF memory module * * Return: None * */ void qdf_mem_init(void); /** * qdf_mem_exit() - Exit QDF memory module * * Return: None * */ void qdf_mem_exit(void); #define QDF_MEM_FUNC_NAME_SIZE 48 #ifdef MEMORY_DEBUG /** * qdf_mem_debug_config_get() - Get the user configuration of mem_debug_disabled * * Return: value of mem_debug_disabled qdf module argument */ bool qdf_mem_debug_config_get(void); /** * qdf_mem_malloc_debug() - debug version of QDF memory allocation API * @size: Number of bytes of memory to allocate. * @func: Function name of the call site * @line: Line number of the call site * @caller: Address of the caller function * @flag: GFP flag * * This function will dynamicallly allocate the specified number of bytes of * memory and add it to the qdf tracking list to check for memory leaks and * corruptions * * Return: A valid memory location on success, or NULL on failure */ void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line, void *caller, uint32_t flag); #define qdf_mem_malloc(size) \ qdf_mem_malloc_debug(size, __func__, __LINE__, QDF_RET_IP, 0) #define qdf_mem_malloc_fl(size, func, line) \ qdf_mem_malloc_debug(size, func, line, QDF_RET_IP, 0) #define qdf_mem_malloc_atomic(size) \ qdf_mem_malloc_debug(size, __func__, __LINE__, QDF_RET_IP, GFP_ATOMIC) /** * qdf_mem_free_debug() - debug version of qdf_mem_free * @ptr: Pointer to the starting address of the memory to be freed. * * This function will free the memory pointed to by 'ptr'. It also checks for * memory corruption, underrun, overrun, double free, domain mismatch, etc. * * Return: none */ void qdf_mem_free_debug(void *ptr, const char *file, uint32_t line); #define qdf_mem_free(ptr) \ qdf_mem_free_debug(ptr, __func__, __LINE__) void qdf_mem_multi_pages_alloc_debug(qdf_device_t osdev, struct qdf_mem_multi_page_t *pages, size_t element_size, uint16_t element_num, qdf_dma_context_t memctxt, bool cacheable, const char *func, uint32_t line, void *caller); #define qdf_mem_multi_pages_alloc(osdev, pages, element_size, element_num,\ memctxt, cacheable) \ qdf_mem_multi_pages_alloc_debug(osdev, pages, element_size, \ element_num, memctxt, cacheable, \ __func__, __LINE__, QDF_RET_IP) void qdf_mem_multi_pages_free_debug(qdf_device_t osdev, struct qdf_mem_multi_page_t *pages, qdf_dma_context_t memctxt, bool cacheable, const char *func, uint32_t line); #define qdf_mem_multi_pages_free(osdev, pages, memctxt, cacheable) \ qdf_mem_multi_pages_free_debug(osdev, pages, memctxt, cacheable, \ __func__, __LINE__) /** * qdf_mem_check_for_leaks() - Assert that the current memory domain is empty * * Call this to ensure there are no active memory allocations being tracked * against the current debug domain. For example, one should call this function * immediately before a call to qdf_debug_domain_set() as a memory leak * detection mechanism. * * e.g. * qdf_debug_domain_set(QDF_DEBUG_DOMAIN_ACTIVE); * * ... * * // memory is allocated and freed * * ... * * // before transitioning back to inactive state, * // make sure all active memory has been freed * qdf_mem_check_for_leaks(); * qdf_debug_domain_set(QDF_DEBUG_DOMAIN_INIT); * * ... * * // also, before program exit, make sure init time memory is freed * qdf_mem_check_for_leaks(); * exit(); * * Return: None */ void qdf_mem_check_for_leaks(void); /** * qdf_mem_alloc_consistent_debug() - allocates consistent qdf memory * @osdev: OS device handle * @dev: Pointer to device handle * @size: Size to be allocated * @paddr: Physical address * @func: Function name of the call site * @line: line numbe rof the call site * @caller: Address of the caller function * * Return: pointer of allocated memory or null if memory alloc fails */ void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev, qdf_size_t size, qdf_dma_addr_t *paddr, const char *func, uint32_t line, void *caller); #define qdf_mem_alloc_consistent(osdev, dev, size, paddr) \ qdf_mem_alloc_consistent_debug(osdev, dev, size, paddr, \ __func__, __LINE__, QDF_RET_IP) /** * qdf_mem_free_consistent_debug() - free consistent qdf memory * @osdev: OS device handle * @size: Size to be allocated * @vaddr: virtual address * @paddr: Physical address * @memctx: Pointer to DMA context * @func: Function name of the call site * @line: line numbe rof the call site * * Return: none */ void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr, qdf_dma_context_t memctx, const char *func, uint32_t line); #define qdf_mem_free_consistent(osdev, dev, size, vaddr, paddr, memctx) \ qdf_mem_free_consistent_debug(osdev, dev, size, vaddr, paddr, memctx, \ __func__, __LINE__) #else static inline bool qdf_mem_debug_config_get(void) { return false; } /** * qdf_mem_malloc() - allocation QDF memory * @size: Number of bytes of memory to allocate. * * This function will dynamicallly allocate the specified number of bytes of * memory. * * Return: * Upon successful allocate, returns a non-NULL pointer to the allocated * memory. If this function is unable to allocate the amount of memory * specified (for any reason) it returns NULL. */ #define qdf_mem_malloc(size) \ __qdf_mem_malloc(size, __func__, __LINE__) #define qdf_mem_malloc_fl(size, func, line) \ __qdf_mem_malloc(size, func, line) /** * qdf_mem_malloc_atomic() - allocation QDF memory atomically * @size: Number of bytes of memory to allocate. * * This function will dynamicallly allocate the specified number of bytes of * memory. * * Return: * Upon successful allocate, returns a non-NULL pointer to the allocated * memory. If this function is unable to allocate the amount of memory * specified (for any reason) it returns NULL. */ #define qdf_mem_malloc_atomic(size) \ qdf_mem_malloc_atomic_fl(size, __func__, __LINE__) void *qdf_mem_malloc_atomic_fl(qdf_size_t size, const char *func, uint32_t line); #define qdf_mem_free(ptr) \ __qdf_mem_free(ptr) static inline void qdf_mem_check_for_leaks(void) { } #define qdf_mem_alloc_consistent(osdev, dev, size, paddr) \ __qdf_mem_alloc_consistent(osdev, dev, size, paddr, __func__, __LINE__) #define qdf_mem_free_consistent(osdev, dev, size, vaddr, paddr, memctx) \ __qdf_mem_free_consistent(osdev, dev, size, vaddr, paddr, memctx) void qdf_mem_multi_pages_alloc(qdf_device_t osdev, struct qdf_mem_multi_page_t *pages, size_t element_size, uint16_t element_num, qdf_dma_context_t memctxt, bool cacheable); void qdf_mem_multi_pages_free(qdf_device_t osdev, struct qdf_mem_multi_page_t *pages, qdf_dma_context_t memctxt, bool cacheable); #endif /* MEMORY_DEBUG */ /** * qdf_aligned_malloc() - allocates aligned QDF memory. * @size: Size to be allocated * @vaddr_unaligned: Unaligned virtual address. * @paddr_unaligned: Unaligned physical address. * @paddr_aligned: Aligned physical address. * @align: Base address alignment. * @func: Function name of the call site. * @line: Line number of the call site. * * This function will dynamically allocate the specified number of bytes of * memory. Checks if the allocated base address is aligned with base_align. * If not, it frees the allocated memory, adds base_align to alloc size and * re-allocates the memory. * * Return: * Upon successful allocate, returns an aligned base address of the allocated * memory. If this function is unable to allocate the amount of memory * specified (for any reason) it returns NULL. */ #define qdf_aligned_malloc(size, vaddr_unaligned, paddr_unaligned, \ paddr_aligned, align) \ qdf_aligned_malloc_fl(size, vaddr_unaligned, paddr_unaligned, \ paddr_aligned, align, __func__, __LINE__) void *qdf_aligned_malloc_fl(uint32_t *size, void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned, qdf_dma_addr_t *paddr_aligned, uint32_t align, const char *func, uint32_t line); /** * qdf_aligned_mem_alloc_consistent() - allocates consistent qdf memory * @osdev: OS device handle * @size: Size to be allocated * @vaddr_unaligned: Unaligned virtual address. * @paddr_unaligned: Unaligned physical address. * @paddr_aligned: Aligned physical address. * @align: Base address alignment. * @func: Function name of the call site. * @line: Line number of the call site. * * Return: pointer of allocated memory or null if memory alloc fails. */ #define qdf_aligned_mem_alloc_consistent(osdev, size, vaddr_unaligned, \ paddr_unaligned, paddr_aligned, \ align) \ qdf_aligned_mem_alloc_consistent_fl(osdev, size, vaddr_unaligned, \ paddr_unaligned, paddr_aligned, \ align, __func__, __LINE__) void *qdf_aligned_mem_alloc_consistent_fl(qdf_device_t osdev, uint32_t *size, void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned, qdf_dma_addr_t *paddr_aligned, uint32_t align, const char *func, uint32_t line); #define qdf_mem_virt_to_phys(vaddr) virt_to_phys(vaddr) void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value); void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes); /** * qdf_mem_set() - set (fill) memory with a specified byte value. * @ptr: Pointer to memory that will be set * @num_bytes: Number of bytes to be set * @value: Byte set in memory * * WARNING: parameter @num_bytes and @value are swapped comparing with * standard C function "memset", please ensure correct usage of this function! * * Return: None */ void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value); /** * qdf_mem_zero() - zero out memory * @ptr: pointer to memory that will be set to zero * @num_bytes: number of bytes zero * * This function sets the memory location to all zeros, essentially clearing * the memory. * * Return: None */ static inline void qdf_mem_zero(void *ptr, uint32_t num_bytes) { qdf_mem_set(ptr, num_bytes, 0); } /** * qdf_mem_copy() - copy memory * @dst_addr: Pointer to destination memory location (to copy to) * @src_addr: Pointer to source memory location (to copy from) * @num_bytes: Number of bytes to copy. * * Copy host memory from one location to another, similar to memcpy in * standard C. Note this function does not specifically handle overlapping * source and destination memory locations. Calling this function with * overlapping source and destination memory locations will result in * unpredictable results. Use qdf_mem_move() if the memory locations * for the source and destination are overlapping (or could be overlapping!) * * Return: none */ void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes); /** * qdf_mem_move() - move memory * @dst_addr: pointer to destination memory location (to move to) * @src_addr: pointer to source memory location (to move from) * @num_bytes: number of bytes to move. * * Move host memory from one location to another, similar to memmove in * standard C. Note this function *does* handle overlapping * source and destination memory locations. * Return: None */ void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes); /** * qdf_mem_cmp() - memory compare * @left: pointer to one location in memory to compare * @right: pointer to second location in memory to compare * @size: the number of bytes to compare * * Function to compare two pieces of memory, similar to memcmp function * in standard C. * * Return: * 0 -- equal * < 0 -- *memory1 is less than *memory2 * > 0 -- *memory1 is bigger than *memory2 */ int qdf_mem_cmp(const void *left, const void *right, size_t size); void qdf_ether_addr_copy(void *dst_addr, const void *src_addr); /** * qdf_mem_map_nbytes_single - Map memory for DMA * @osdev: pomter OS device context * @buf: pointer to memory to be dma mapped * @dir: DMA map direction * @nbytes: number of bytes to be mapped. * @phy_addr: ponter to recive physical address. * * Return: success/failure */ static inline uint32_t qdf_mem_map_nbytes_single(qdf_device_t osdev, void *buf, qdf_dma_dir_t dir, int nbytes, qdf_dma_addr_t *phy_addr) { #if defined(HIF_PCI) || defined(HIF_IPCI) return __qdf_mem_map_nbytes_single(osdev, buf, dir, nbytes, phy_addr); #else return 0; #endif } static inline void qdf_mem_dma_cache_sync(qdf_device_t osdev, qdf_dma_addr_t buf, qdf_dma_dir_t dir, int nbytes) { __qdf_mem_dma_cache_sync(osdev, buf, dir, nbytes); } /** * qdf_mem_unmap_nbytes_single() - un_map memory for DMA * @osdev: pomter OS device context * @phy_addr: physical address of memory to be dma unmapped * @dir: DMA unmap direction * @nbytes: number of bytes to be unmapped. * * Return: none */ static inline void qdf_mem_unmap_nbytes_single(qdf_device_t osdev, qdf_dma_addr_t phy_addr, qdf_dma_dir_t dir, int nbytes) { #if defined(HIF_PCI) || defined(HIF_IPCI) __qdf_mem_unmap_nbytes_single(osdev, phy_addr, dir, nbytes); #endif } /** * qdf_mempool_init - Create and initialize memory pool * @osdev: platform device object * @pool_addr: address of the pool created * @elem_cnt: no. of elements in pool * @elem_size: size of each pool element in bytes * @flags: flags * Return: Handle to memory pool or NULL if allocation failed */ static inline int qdf_mempool_init(qdf_device_t osdev, qdf_mempool_t *pool_addr, int elem_cnt, size_t elem_size, uint32_t flags) { return __qdf_mempool_init(osdev, pool_addr, elem_cnt, elem_size, flags); } /** * qdf_mempool_destroy - Destroy memory pool * @osdev: platform device object * @Handle: to memory pool * Return: none */ static inline void qdf_mempool_destroy(qdf_device_t osdev, qdf_mempool_t pool) { __qdf_mempool_destroy(osdev, pool); } /** * qdf_mempool_alloc - Allocate an element memory pool * @osdev: platform device object * @Handle: to memory pool * Return: Pointer to the allocated element or NULL if the pool is empty */ static inline void *qdf_mempool_alloc(qdf_device_t osdev, qdf_mempool_t pool) { return (void *)__qdf_mempool_alloc(osdev, pool); } /** * qdf_mempool_free - Free a memory pool element * @osdev: Platform device object * @pool: Handle to memory pool * @buf: Element to be freed * Return: none */ static inline void qdf_mempool_free(qdf_device_t osdev, qdf_mempool_t pool, void *buf) { __qdf_mempool_free(osdev, pool, buf); } void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev, qdf_dma_addr_t bus_addr, qdf_size_t size, __dma_data_direction direction); void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev, qdf_dma_addr_t bus_addr, qdf_size_t size, __dma_data_direction direction); int qdf_mem_multi_page_link(qdf_device_t osdev, struct qdf_mem_multi_page_t *pages, uint32_t elem_size, uint32_t elem_count, uint8_t cacheable); /** * qdf_mem_kmalloc_inc() - increment kmalloc allocated bytes count * @size: number of bytes to increment by * * Return: None */ void qdf_mem_kmalloc_inc(qdf_size_t size); /** * qdf_mem_kmalloc_dec() - decrement kmalloc allocated bytes count * @size: number of bytes to decrement by * * Return: None */ void qdf_mem_kmalloc_dec(qdf_size_t size); #ifdef CONFIG_WLAN_SYSFS_MEM_STATS /** * qdf_mem_skb_inc() - increment total skb allocation size * @size: size to be added * * Return: none */ void qdf_mem_skb_inc(qdf_size_t size); /** * qdf_mem_skb_dec() - decrement total skb allocation size * @size: size to be decremented * * Return: none */ void qdf_mem_skb_dec(qdf_size_t size); #else static inline void qdf_mem_skb_inc(qdf_size_t size) { } static inline void qdf_mem_skb_dec(qdf_size_t size) { } #endif /* CONFIG_WLAN_SYSFS_MEM_STATS */ /** * qdf_mem_map_table_alloc() - Allocate shared memory info structure * @num: number of required storage * * Allocate mapping table for DMA memory allocation. This is needed for * IPA-WLAN buffer sharing when SMMU Stage1 Translation is enabled. * * Return: shared memory info storage table pointer */ static inline qdf_mem_info_t *qdf_mem_map_table_alloc(uint32_t num) { qdf_mem_info_t *mem_info_arr; mem_info_arr = qdf_mem_malloc(num * sizeof(mem_info_arr[0])); return mem_info_arr; } /** * qdf_update_mem_map_table() - Update DMA memory map info * @osdev: Parent device instance * @mem_info: Pointer to shared memory information * @dma_addr: dma address * @mem_size: memory size allocated * * Store DMA shared memory information * * Return: none */ static inline void qdf_update_mem_map_table(qdf_device_t osdev, qdf_mem_info_t *mem_info, qdf_dma_addr_t dma_addr, uint32_t mem_size) { if (!mem_info) { qdf_nofl_err("%s: NULL mem_info", __func__); return; } __qdf_update_mem_map_table(osdev, mem_info, dma_addr, mem_size); } /** * qdf_mem_smmu_s1_enabled() - Return SMMU stage 1 translation enable status * @osdev parent device instance * * Return: true if smmu s1 enabled, false if smmu s1 is bypassed */ static inline bool qdf_mem_smmu_s1_enabled(qdf_device_t osdev) { return __qdf_mem_smmu_s1_enabled(osdev); } /** * qdf_mem_paddr_from_dmaaddr() - get actual physical address from dma address * @osdev: Parent device instance * @dma_addr: DMA/IOVA address * * Get actual physical address from dma_addr based on SMMU enablement status. * IF SMMU Stage 1 tranlation is enabled, DMA APIs return IO virtual address * (IOVA) otherwise returns physical address. So get SMMU physical address * mapping from IOVA. * * Return: dmaable physical address */ static inline qdf_dma_addr_t qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev, qdf_dma_addr_t dma_addr) { return __qdf_mem_paddr_from_dmaaddr(osdev, dma_addr); } /** * qdf_mem_dma_get_sgtable() - Returns DMA memory scatter gather table * @dev: device instace * @sgt: scatter gather table pointer * @cpu_addr: HLOS virtual address * @dma_addr: dma address * @size: allocated memory size * * Return: physical address */ static inline int qdf_mem_dma_get_sgtable(struct device *dev, void *sgt, void *cpu_addr, qdf_dma_addr_t dma_addr, size_t size) { return __qdf_os_mem_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr, size); } /** * qdf_mem_free_sgtable() - Free a previously allocated sg table * @sgt: the mapped sg table header * * Return: None */ static inline void qdf_mem_free_sgtable(struct sg_table *sgt) { __qdf_os_mem_free_sgtable(sgt); } /** * qdf_dma_get_sgtable_dma_addr() - Assigns DMA address to scatterlist elements * @sgt: scatter gather table pointer * * Return: None */ static inline void qdf_dma_get_sgtable_dma_addr(struct sg_table *sgt) { __qdf_dma_get_sgtable_dma_addr(sgt); } /** * qdf_mem_get_dma_addr() - Return dma address based on SMMU translation status. * @osdev: Parent device instance * @mem_info: Pointer to allocated memory information * * Get dma address based on SMMU enablement status. If SMMU Stage 1 * tranlation is enabled, DMA APIs return IO virtual address otherwise * returns physical address. * * Return: dma address */ static inline qdf_dma_addr_t qdf_mem_get_dma_addr(qdf_device_t osdev, qdf_mem_info_t *mem_info) { return __qdf_mem_get_dma_addr(osdev, mem_info); } /** * qdf_mem_get_dma_addr_ptr() - Return DMA address pointer from mem info struct * @osdev: Parent device instance * @mem_info: Pointer to allocated memory information * * Based on smmu stage 1 translation enablement, return corresponding dma * address storage pointer. * * Return: dma address storage pointer */ static inline qdf_dma_addr_t *qdf_mem_get_dma_addr_ptr(qdf_device_t osdev, qdf_mem_info_t *mem_info) { return __qdf_mem_get_dma_addr_ptr(osdev, mem_info); } /** * qdf_mem_get_dma_size() - Return DMA memory size * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * * Return: DMA memory size */ static inline uint32_t qdf_mem_get_dma_size(qdf_device_t osdev, qdf_mem_info_t *mem_info) { return __qdf_mem_get_dma_size(osdev, mem_info); } /** * qdf_mem_set_dma_size() - Set DMA memory size * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * @mem_size: memory size allocated * * Return: none */ static inline void qdf_mem_set_dma_size(qdf_device_t osdev, qdf_mem_info_t *mem_info, uint32_t mem_size) { __qdf_mem_set_dma_size(osdev, mem_info, mem_size); } /** * qdf_mem_get_dma_size() - Return DMA physical address * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * * Return: DMA physical address */ static inline qdf_dma_addr_t qdf_mem_get_dma_pa(qdf_device_t osdev, qdf_mem_info_t *mem_info) { return __qdf_mem_get_dma_pa(osdev, mem_info); } /** * qdf_mem_set_dma_size() - Set DMA physical address * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * @dma_pa: DMA phsical address * * Return: none */ static inline void qdf_mem_set_dma_pa(qdf_device_t osdev, qdf_mem_info_t *mem_info, qdf_dma_addr_t dma_pa) { __qdf_mem_set_dma_pa(osdev, mem_info, dma_pa); } /** * qdf_mem_shared_mem_alloc() - Allocate DMA memory for shared resource * @osdev: parent device instance * @mem_info: Pointer to allocated memory information * @size: size to be allocated * * Allocate DMA memory which will be shared with external kernel module. This * information is needed for SMMU mapping. * * Return: 0 success */ qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size); /** * qdf_mem_shared_mem_free() - Free shared memory * @osdev: parent device instance * @shared_mem: shared memory information storage * * Free DMA shared memory resource * * Return: None */ static inline void qdf_mem_shared_mem_free(qdf_device_t osdev, qdf_shared_mem_t *shared_mem) { if (!shared_mem) { qdf_nofl_err("%s: NULL shared mem struct passed", __func__); return; } if (shared_mem->vaddr) { qdf_mem_free_consistent(osdev, osdev->dev, qdf_mem_get_dma_size(osdev, &shared_mem->mem_info), shared_mem->vaddr, qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info), qdf_get_dma_mem_context(shared_mem, memctx)); } qdf_mem_free_sgtable(&shared_mem->sgtable); qdf_mem_free(shared_mem); } /** * qdf_dma_mem_stats_read() - Return the DMA memory allocated in * host driver * * Return: None */ int32_t qdf_dma_mem_stats_read(void); /** * qdf_heap_mem_stats_read() - Return the heap memory allocated * in host driver * * Return: None */ int32_t qdf_heap_mem_stats_read(void); /** * qdf_skb_mem_stats_read() - Return the SKB memory allocated in * host driver * * Return: None */ int32_t qdf_skb_mem_stats_read(void); #endif /* __QDF_MEMORY_H */