/* * Copyright (c) 2015-2019 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: hif_napi.c * * HIF NAPI interface implementation */ #include /* memset */ /* Linux headers */ #include #include #include #include #include #include #ifdef CONFIG_SCHED_CORE_CTL #include #endif #include #include /* Driver headers */ #include #include #include #include #include #include #include "qdf_cpuhp.h" #include "qdf_module.h" #include "qdf_net_if.h" #include "qdf_dev.h" enum napi_decision_vector { HIF_NAPI_NOEVENT = 0, HIF_NAPI_INITED = 1, HIF_NAPI_CONF_UP = 2 }; #define ENABLE_NAPI_MASK (HIF_NAPI_INITED | HIF_NAPI_CONF_UP) #ifdef RECEIVE_OFFLOAD /** * hif_rxthread_napi_poll() - dummy napi poll for rx_thread NAPI * @napi: Rx_thread NAPI * @budget: NAPI BUDGET * * Return: 0 as it is not supposed to be polled at all as it is not scheduled. */ static int hif_rxthread_napi_poll(struct napi_struct *napi, int budget) { HIF_ERROR("This napi_poll should not be polled as we don't schedule it"); QDF_ASSERT(0); return 0; } /** * hif_init_rx_thread_napi() - Initialize dummy Rx_thread NAPI * @napii: Handle to napi_info holding rx_thread napi * * Return: None */ static void hif_init_rx_thread_napi(struct qca_napi_info *napii) { init_dummy_netdev(&napii->rx_thread_netdev); netif_napi_add(&napii->rx_thread_netdev, &napii->rx_thread_napi, hif_rxthread_napi_poll, 64); napi_enable(&napii->rx_thread_napi); } /** * hif_deinit_rx_thread_napi() - Deinitialize dummy Rx_thread NAPI * @napii: Handle to napi_info holding rx_thread napi * * Return: None */ static void hif_deinit_rx_thread_napi(struct qca_napi_info *napii) { netif_napi_del(&napii->rx_thread_napi); } #else /* RECEIVE_OFFLOAD */ static void hif_init_rx_thread_napi(struct qca_napi_info *napii) { } static void hif_deinit_rx_thread_napi(struct qca_napi_info *napii) { } #endif /** * hif_napi_create() - creates the NAPI structures for a given CE * @hif : pointer to hif context * @pipe_id: the CE id on which the instance will be created * @poll : poll function to be used for this NAPI instance * @budget : budget to be registered with the NAPI instance * @scale : scale factor on the weight (to scaler budget to 1000) * @flags : feature flags * * Description: * Creates NAPI instances. This function is called * unconditionally during initialization. It creates * napi structures through the proper HTC/HIF calls. * The structures are disabled on creation. * Note that for each NAPI instance a separate dummy netdev is used * * Return: * < 0: error * = 0: * > 0: id of the created object (for multi-NAPI, number of objects created) */ int hif_napi_create(struct hif_opaque_softc *hif_ctx, int (*poll)(struct napi_struct *, int), int budget, int scale, uint8_t flags) { int i; struct qca_napi_data *napid; struct qca_napi_info *napii; struct CE_state *ce_state; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); int rc = 0; NAPI_DEBUG("-->(budget=%d, scale=%d)", budget, scale); NAPI_DEBUG("hif->napi_data.state = 0x%08x", hif->napi_data.state); NAPI_DEBUG("hif->napi_data.ce_map = 0x%08x", hif->napi_data.ce_map); napid = &(hif->napi_data); if (0 == (napid->state & HIF_NAPI_INITED)) { memset(napid, 0, sizeof(struct qca_napi_data)); qdf_spinlock_create(&(napid->lock)); napid->state |= HIF_NAPI_INITED; napid->flags = flags; rc = hif_napi_cpu_init(hif_ctx); if (rc != 0 && rc != -EALREADY) { HIF_ERROR("NAPI_initialization failed,. %d", rc); rc = napid->ce_map; goto hnc_err; } else rc = 0; HIF_DBG("%s: NAPI structures initialized, rc=%d", __func__, rc); } for (i = 0; i < hif->ce_count; i++) { ce_state = hif->ce_id_to_state[i]; NAPI_DEBUG("ce %d: htt_rx=%d htt_tx=%d", i, ce_state->htt_rx_data, ce_state->htt_tx_data); if (ce_srng_based(hif)) continue; if (!ce_state->htt_rx_data) continue; /* Now this is a CE where we need NAPI on */ NAPI_DEBUG("Creating NAPI on pipe %d", i); napii = qdf_mem_malloc(sizeof(*napii)); napid->napis[i] = napii; if (!napii) { NAPI_DEBUG("NAPI alloc failure %d", i); rc = -ENOMEM; goto napii_free; } } for (i = 0; i < hif->ce_count; i++) { napii = napid->napis[i]; if (!napii) continue; NAPI_DEBUG("initializing NAPI for pipe %d", i); memset(napii, 0, sizeof(struct qca_napi_info)); napii->scale = scale; napii->id = NAPI_PIPE2ID(i); napii->hif_ctx = hif_ctx; napii->irq = pld_get_irq(hif->qdf_dev->dev, i); if (napii->irq < 0) HIF_WARN("%s: bad IRQ value for CE %d: %d", __func__, i, napii->irq); init_dummy_netdev(&(napii->netdev)); NAPI_DEBUG("adding napi=%pK to netdev=%pK (poll=%pK, bdgt=%d)", &(napii->napi), &(napii->netdev), poll, budget); netif_napi_add(&(napii->netdev), &(napii->napi), poll, budget); NAPI_DEBUG("after napi_add"); NAPI_DEBUG("napi=0x%pK, netdev=0x%pK", &(napii->napi), &(napii->netdev)); NAPI_DEBUG("napi.dev_list.prev=0x%pK, next=0x%pK", napii->napi.dev_list.prev, napii->napi.dev_list.next); NAPI_DEBUG("dev.napi_list.prev=0x%pK, next=0x%pK", napii->netdev.napi_list.prev, napii->netdev.napi_list.next); hif_init_rx_thread_napi(napii); napii->lro_ctx = qdf_lro_init(); NAPI_DEBUG("Registering LRO for ce_id %d NAPI callback for %d lro_ctx %pK\n", i, napii->id, napii->lro_ctx); /* It is OK to change the state variable below without * protection as there should be no-one around yet */ napid->ce_map |= (0x01 << i); HIF_DBG("%s: NAPI id %d created for pipe %d", __func__, napii->id, i); } /* no ces registered with the napi */ if (!ce_srng_based(hif) && napid->ce_map == 0) { HIF_WARN("%s: no napis created for copy engines", __func__); rc = -EFAULT; goto napii_free; } NAPI_DEBUG("napi map = %x", napid->ce_map); NAPI_DEBUG("NAPI ids created for all applicable pipes"); return napid->ce_map; napii_free: for (i = 0; i < hif->ce_count; i++) { napii = napid->napis[i]; napid->napis[i] = NULL; if (napii) qdf_mem_free(napii); } hnc_err: NAPI_DEBUG("<--napi_instances_map=%x]", napid->ce_map); return rc; } qdf_export_symbol(hif_napi_create); #ifdef RECEIVE_OFFLOAD void hif_napi_rx_offld_flush_cb_register(struct hif_opaque_softc *hif_hdl, void (offld_flush_handler)(void *)) { int i; struct CE_state *ce_state; struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl); struct qca_napi_data *napid; struct qca_napi_info *napii; if (!scn) { HIF_ERROR("%s: hif_state NULL!", __func__); QDF_ASSERT(0); return; } napid = hif_napi_get_all(hif_hdl); for (i = 0; i < scn->ce_count; i++) { ce_state = scn->ce_id_to_state[i]; if (ce_state && (ce_state->htt_rx_data)) { napii = napid->napis[i]; napii->offld_flush_cb = offld_flush_handler; HIF_DBG("Registering offload for ce_id %d NAPI callback for %d flush_cb %pK\n", i, napii->id, napii->offld_flush_cb); } } } void hif_napi_rx_offld_flush_cb_deregister(struct hif_opaque_softc *hif_hdl) { int i; struct CE_state *ce_state; struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl); struct qca_napi_data *napid; struct qca_napi_info *napii; if (!scn) { HIF_ERROR("%s: hif_state NULL!", __func__); QDF_ASSERT(0); return; } napid = hif_napi_get_all(hif_hdl); for (i = 0; i < scn->ce_count; i++) { ce_state = scn->ce_id_to_state[i]; if (ce_state && (ce_state->htt_rx_data)) { napii = napid->napis[i]; HIF_DBG("deRegistering offld for ce_id %d NAPI callback for %d flush_cb %pK\n", i, napii->id, napii->offld_flush_cb); /* Not required */ napii->offld_flush_cb = NULL; } } } #endif /* RECEIVE_OFFLOAD */ /** * * hif_napi_destroy() - destroys the NAPI structures for a given instance * @hif : pointer to hif context * @ce_id : the CE id whose napi instance will be destroyed * @force : if set, will destroy even if entry is active (de-activates) * * Description: * Destroy a given NAPI instance. This function is called * unconditionally during cleanup. * Refuses to destroy an entry of it is still enabled (unless force=1) * Marks the whole napi_data invalid if all instances are destroyed. * * Return: * -EINVAL: specific entry has not been created * -EPERM : specific entry is still active * 0 < : error * 0 = : success */ int hif_napi_destroy(struct hif_opaque_softc *hif_ctx, uint8_t id, int force) { uint8_t ce = NAPI_ID2PIPE(id); int rc = 0; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); NAPI_DEBUG("-->(id=%d, force=%d)", id, force); if (0 == (hif->napi_data.state & HIF_NAPI_INITED)) { HIF_ERROR("%s: NAPI not initialized or entry %d not created", __func__, id); rc = -EINVAL; } else if (0 == (hif->napi_data.ce_map & (0x01 << ce))) { HIF_ERROR("%s: NAPI instance %d (pipe %d) not created", __func__, id, ce); if (hif->napi_data.napis[ce]) HIF_ERROR("%s: memory allocated but ce_map not set %d (pipe %d)", __func__, id, ce); rc = -EINVAL; } else { struct qca_napi_data *napid; struct qca_napi_info *napii; napid = &(hif->napi_data); napii = napid->napis[ce]; if (!napii) { if (napid->ce_map & (0x01 << ce)) HIF_ERROR("%s: napii & ce_map out of sync(ce %d)", __func__, ce); return -EINVAL; } if (hif->napi_data.state == HIF_NAPI_CONF_UP) { if (force) { napi_disable(&(napii->napi)); HIF_DBG("%s: NAPI entry %d force disabled", __func__, id); NAPI_DEBUG("NAPI %d force disabled", id); } else { HIF_ERROR("%s: Cannot destroy active NAPI %d", __func__, id); rc = -EPERM; } } if (0 == rc) { NAPI_DEBUG("before napi_del"); NAPI_DEBUG("napi.dlist.prv=0x%pK, next=0x%pK", napii->napi.dev_list.prev, napii->napi.dev_list.next); NAPI_DEBUG("dev.napi_l.prv=0x%pK, next=0x%pK", napii->netdev.napi_list.prev, napii->netdev.napi_list.next); qdf_lro_deinit(napii->lro_ctx); netif_napi_del(&(napii->napi)); hif_deinit_rx_thread_napi(napii); napid->ce_map &= ~(0x01 << ce); napid->napis[ce] = NULL; napii->scale = 0; qdf_mem_free(napii); HIF_DBG("%s: NAPI %d destroyed\n", __func__, id); /* if there are no active instances and * if they are all destroyed, * set the whole structure to uninitialized state */ if (napid->ce_map == 0) { rc = hif_napi_cpu_deinit(hif_ctx); /* caller is tolerant to receiving !=0 rc */ qdf_spinlock_destroy(&(napid->lock)); memset(napid, 0, sizeof(struct qca_napi_data)); HIF_DBG("%s: no NAPI instances. Zapped.", __func__); } } } return rc; } qdf_export_symbol(hif_napi_destroy); #ifdef FEATURE_LRO void *hif_napi_get_lro_info(struct hif_opaque_softc *hif_hdl, int napi_id) { struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl); struct qca_napi_data *napid; struct qca_napi_info *napii; napid = &(scn->napi_data); napii = napid->napis[NAPI_ID2PIPE(napi_id)]; if (napii) return napii->lro_ctx; return 0; } #endif /** * * hif_napi_get_all() - returns the address of the whole HIF NAPI structure * @hif: pointer to hif context * * Description: * Returns the address of the whole structure * * Return: * : address of the whole HIF NAPI structure */ inline struct qca_napi_data *hif_napi_get_all(struct hif_opaque_softc *hif_ctx) { struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); return &(hif->napi_data); } struct qca_napi_info *hif_get_napi(int napi_id, struct qca_napi_data *napid) { int id = NAPI_ID2PIPE(napi_id); return napid->napis[id]; } /** * * hif_napi_event() - reacts to events that impact NAPI * @hif : pointer to hif context * @evnt: event that has been detected * @data: more data regarding the event * * Description: * This function handles two types of events: * 1- Events that change the state of NAPI (enabled/disabled): * {NAPI_EVT_INI_FILE, NAPI_EVT_CMD_STATE} * The state is retrievable by "hdd_napi_enabled(-1)" * - NAPI will be on if either INI file is on and it has not been disabled * by a subsequent vendor CMD, * or it has been enabled by a vendor CMD. * 2- Events that change the CPU affinity of a NAPI instance/IRQ: * {NAPI_EVT_TPUT_STATE, NAPI_EVT_CPU_STATE} * - NAPI will support a throughput mode (HI/LO), kept at napid->napi_mode * - NAPI will switch throughput mode based on hdd_napi_throughput_policy() * - In LO tput mode, NAPI will yield control if its interrupts to the system * management functions. However in HI throughput mode, NAPI will actively * manage its interrupts/instances (by trying to disperse them out to * separate performance cores). * - CPU eligibility is kept up-to-date by NAPI_EVT_CPU_STATE events. * * + In some cases (roaming peer management is the only case so far), a * a client can trigger a "SERIALIZE" event. Basically, this means that the * users is asking NAPI to go into a truly single execution context state. * So, NAPI indicates to msm-irqbalancer that it wants to be blacklisted, * (if called for the first time) and then moves all IRQs (for NAPI * instances) to be collapsed to a single core. If called multiple times, * it will just re-collapse the CPUs. This is because blacklist-on() API * is reference-counted, and because the API has already been called. * * Such a user, should call "DESERIALIZE" (NORMAL) event, to set NAPI to go * to its "normal" operation. Optionally, they can give a timeout value (in * multiples of BusBandwidthCheckPeriod -- 100 msecs by default). In this * case, NAPI will just set the current throughput state to uninitialized * and set the delay period. Once policy handler is called, it would skip * applying the policy delay period times, and otherwise apply the policy. * * Return: * < 0: some error * = 0: event handled successfully */ int hif_napi_event(struct hif_opaque_softc *hif_ctx, enum qca_napi_event event, void *data) { int rc = 0; uint32_t prev_state; int i; bool state_changed; struct napi_struct *napi; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); struct qca_napi_data *napid = &(hif->napi_data); enum qca_napi_tput_state tput_mode = QCA_NAPI_TPUT_UNINITIALIZED; enum { BLACKLIST_NOT_PENDING, BLACKLIST_ON_PENDING, BLACKLIST_OFF_PENDING } blacklist_pending = BLACKLIST_NOT_PENDING; NAPI_DEBUG("%s: -->(event=%d, aux=%pK)", __func__, event, data); if (ce_srng_based(hif)) return hif_exec_event(hif_ctx, event, data); if ((napid->state & HIF_NAPI_INITED) == 0) { NAPI_DEBUG("%s: got event when NAPI not initialized", __func__); return -EINVAL; } qdf_spin_lock_bh(&(napid->lock)); prev_state = napid->state; switch (event) { case NAPI_EVT_INI_FILE: case NAPI_EVT_CMD_STATE: case NAPI_EVT_INT_STATE: { int on = (data != ((void *)0)); HIF_DBG("%s: recved evnt: STATE_CMD %d; v = %d (state=0x%0x)", __func__, event, on, prev_state); if (on) if (prev_state & HIF_NAPI_CONF_UP) { HIF_DBG("%s: duplicate NAPI conf ON msg", __func__); } else { HIF_DBG("%s: setting state to ON", __func__); napid->state |= HIF_NAPI_CONF_UP; } else /* off request */ if (prev_state & HIF_NAPI_CONF_UP) { HIF_DBG("%s: setting state to OFF", __func__); napid->state &= ~HIF_NAPI_CONF_UP; } else { HIF_DBG("%s: duplicate NAPI conf OFF msg", __func__); } break; } /* case NAPI_INIT_FILE/CMD_STATE */ case NAPI_EVT_CPU_STATE: { int cpu = ((unsigned long int)data >> 16); int val = ((unsigned long int)data & 0x0ff); NAPI_DEBUG("%s: evt=CPU_STATE on CPU %d value=%d", __func__, cpu, val); /* state has already been set by hnc_cpu_notify_cb */ if ((val == QCA_NAPI_CPU_DOWN) && (napid->napi_mode == QCA_NAPI_TPUT_HI) && /* we manage */ (napid->napi_cpu[cpu].napis != 0)) { NAPI_DEBUG("%s: Migrating NAPIs out of cpu %d", __func__, cpu); rc = hif_napi_cpu_migrate(napid, cpu, HNC_ACT_RELOCATE); napid->napi_cpu[cpu].napis = 0; } /* in QCA_NAPI_TPUT_LO case, napis MUST == 0 */ break; } case NAPI_EVT_TPUT_STATE: { tput_mode = (enum qca_napi_tput_state)data; if (tput_mode == QCA_NAPI_TPUT_LO) { /* from TPUT_HI -> TPUT_LO */ NAPI_DEBUG("%s: Moving to napi_tput_LO state", __func__); blacklist_pending = BLACKLIST_OFF_PENDING; /* * Ideally we should "collapse" interrupts here, since * we are "dispersing" interrupts in the "else" case. * This allows the possibility that our interrupts may * still be on the perf cluster the next time we enter * high tput mode. However, the irq_balancer is free * to move our interrupts to power cluster once * blacklisting has been turned off in the "else" case. */ } else { /* from TPUT_LO -> TPUT->HI */ NAPI_DEBUG("%s: Moving to napi_tput_HI state", __func__); rc = hif_napi_cpu_migrate(napid, HNC_ANY_CPU, HNC_ACT_DISPERSE); blacklist_pending = BLACKLIST_ON_PENDING; } napid->napi_mode = tput_mode; break; } case NAPI_EVT_USR_SERIAL: { unsigned long users = (unsigned long)data; NAPI_DEBUG("%s: User forced SERIALIZATION; users=%ld", __func__, users); rc = hif_napi_cpu_migrate(napid, HNC_ANY_CPU, HNC_ACT_COLLAPSE); if ((users == 0) && (rc == 0)) blacklist_pending = BLACKLIST_ON_PENDING; break; } case NAPI_EVT_USR_NORMAL: { NAPI_DEBUG("%s: User forced DE-SERIALIZATION", __func__); if (!napid->user_cpu_affin_mask) blacklist_pending = BLACKLIST_OFF_PENDING; /* * Deserialization timeout is handled at hdd layer; * just mark current mode to uninitialized to ensure * it will be set when the delay is over */ napid->napi_mode = QCA_NAPI_TPUT_UNINITIALIZED; break; } default: { HIF_ERROR("%s: unknown event: %d (data=0x%0lx)", __func__, event, (unsigned long) data); break; } /* default */ }; /* switch */ switch (blacklist_pending) { case BLACKLIST_ON_PENDING: /* assume the control of WLAN IRQs */ hif_napi_cpu_blacklist(napid, BLACKLIST_ON); break; case BLACKLIST_OFF_PENDING: /* yield the control of WLAN IRQs */ hif_napi_cpu_blacklist(napid, BLACKLIST_OFF); break; default: /* nothing to do */ break; } /* switch blacklist_pending */ /* we want to perform the comparison in lock: * there is a possiblity of hif_napi_event get called * from two different contexts (driver unload and cpu hotplug * notification) and napid->state get changed * in driver unload context and can lead to race condition * in cpu hotplug context. Therefore, perform the napid->state * comparison before releasing lock. */ state_changed = (prev_state != napid->state); qdf_spin_unlock_bh(&(napid->lock)); if (state_changed) { if (napid->state == ENABLE_NAPI_MASK) { rc = 1; for (i = 0; i < CE_COUNT_MAX; i++) { struct qca_napi_info *napii = napid->napis[i]; if (napii) { napi = &(napii->napi); NAPI_DEBUG("%s: enabling NAPI %d", __func__, i); napi_enable(napi); } } } else { rc = 0; for (i = 0; i < CE_COUNT_MAX; i++) { struct qca_napi_info *napii = napid->napis[i]; if (napii) { napi = &(napii->napi); NAPI_DEBUG("%s: disabling NAPI %d", __func__, i); napi_disable(napi); /* in case it is affined, remove it */ qdf_dev_set_irq_affinity(napii->irq, NULL); } } } } else { HIF_DBG("%s: no change in hif napi state (still %d)", __func__, prev_state); } NAPI_DEBUG("<--[rc=%d]", rc); return rc; } qdf_export_symbol(hif_napi_event); /** * hif_napi_enabled() - checks whether NAPI is enabled for given ce or not * @hif: hif context * @ce : CE instance (or -1, to check if any CEs are enabled) * * Return: bool */ int hif_napi_enabled(struct hif_opaque_softc *hif_ctx, int ce) { int rc; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); if (-1 == ce) rc = ((hif->napi_data.state == ENABLE_NAPI_MASK)); else rc = ((hif->napi_data.state == ENABLE_NAPI_MASK) && (hif->napi_data.ce_map & (0x01 << ce))); return rc; } qdf_export_symbol(hif_napi_enabled); /** * hif_napi_created() - checks whether NAPI is created for given ce or not * @hif: hif context * @ce : CE instance * * Return: bool */ bool hif_napi_created(struct hif_opaque_softc *hif_ctx, int ce) { int rc; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); rc = (hif->napi_data.ce_map & (0x01 << ce)); return !!rc; } qdf_export_symbol(hif_napi_created); /** * hif_napi_enable_irq() - enables bus interrupts after napi_complete * * @hif: hif context * @id : id of NAPI instance calling this (used to determine the CE) * * Return: void */ inline void hif_napi_enable_irq(struct hif_opaque_softc *hif, int id) { struct hif_softc *scn = HIF_GET_SOFTC(hif); hif_irq_enable(scn, NAPI_ID2PIPE(id)); } /** * hif_napi_schedule() - schedules napi, updates stats * @scn: hif context * @ce_id: index of napi instance * * Return: false if napi didn't enable or already scheduled, otherwise true */ bool hif_napi_schedule(struct hif_opaque_softc *hif_ctx, int ce_id) { int cpu = smp_processor_id(); struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); struct qca_napi_info *napii; napii = scn->napi_data.napis[ce_id]; if (qdf_unlikely(!napii)) { HIF_ERROR("%s, scheduling unallocated napi (ce:%d)", __func__, ce_id); qdf_atomic_dec(&scn->active_tasklet_cnt); return false; } if (test_bit(NAPI_STATE_SCHED, &napii->napi.state)) { NAPI_DEBUG("napi scheduled, return"); qdf_atomic_dec(&scn->active_tasklet_cnt); return false; } hif_record_ce_desc_event(scn, ce_id, NAPI_SCHEDULE, NULL, NULL, 0, 0); napii->stats[cpu].napi_schedules++; NAPI_DEBUG("scheduling napi %d (ce:%d)", napii->id, ce_id); napi_schedule(&(napii->napi)); return true; } qdf_export_symbol(hif_napi_schedule); /** * hif_napi_correct_cpu() - correct the interrupt affinity for napi if needed * @napi_info: pointer to qca_napi_info for the napi instance * * Return: true => interrupt already on correct cpu, no correction needed * false => interrupt on wrong cpu, correction done for cpu affinity * of the interrupt */ static inline bool hif_napi_correct_cpu(struct qca_napi_info *napi_info) { bool right_cpu = true; int rc = 0; int cpu; struct qca_napi_data *napid; QDF_STATUS ret; napid = hif_napi_get_all(GET_HIF_OPAQUE_HDL(napi_info->hif_ctx)); if (napid->flags & QCA_NAPI_FEATURE_CPU_CORRECTION) { cpu = qdf_get_cpu(); if (unlikely((hif_napi_cpu_blacklist(napid, BLACKLIST_QUERY) > 0) && (cpu != napi_info->cpu))) { right_cpu = false; NAPI_DEBUG("interrupt on wrong CPU, correcting"); napi_info->cpumask.bits[0] = (0x01 << napi_info->cpu); irq_modify_status(napi_info->irq, IRQ_NO_BALANCING, 0); ret = qdf_dev_set_irq_affinity(napi_info->irq, (struct qdf_cpu_mask *) &napi_info->cpumask); rc = qdf_status_to_os_return(ret); irq_modify_status(napi_info->irq, 0, IRQ_NO_BALANCING); if (rc) HIF_ERROR("error setting irq affinity hint: %d", rc); else napi_info->stats[cpu].cpu_corrected++; } } return right_cpu; } #ifdef RECEIVE_OFFLOAD /** * hif_napi_offld_flush_cb() - Call upper layer flush callback * @napi_info: Handle to hif_napi_info * * Return: None */ static void hif_napi_offld_flush_cb(struct qca_napi_info *napi_info) { if (napi_info->offld_flush_cb) napi_info->offld_flush_cb(napi_info); } #else static void hif_napi_offld_flush_cb(struct qca_napi_info *napi_info) { } #endif /** * hif_napi_poll() - NAPI poll routine * @napi : pointer to NAPI struct as kernel holds it * @budget: * * This is the body of the poll function. * The poll function is called by kernel. So, there is a wrapper * function in HDD, which in turn calls this function. * Two main reasons why the whole thing is not implemented in HDD: * a) references to things like ce_service that HDD is not aware of * b) proximity to the implementation of ce_tasklet, which the body * of this function should be very close to. * * NOTE TO THE MAINTAINER: * Consider this function and ce_tasklet very tightly coupled pairs. * Any changes to ce_tasklet or this function may likely need to be * reflected in the counterpart. * * Returns: * int: the amount of work done in this poll (<= budget) */ int hif_napi_poll(struct hif_opaque_softc *hif_ctx, struct napi_struct *napi, int budget) { int rc = 0; /* default: no work done, also takes care of error */ int normalized = 0; int bucket; int cpu = smp_processor_id(); bool poll_on_right_cpu; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); struct qca_napi_info *napi_info; struct CE_state *ce_state = NULL; if (unlikely(NULL == hif)) { HIF_ERROR("%s: hif context is NULL", __func__); QDF_ASSERT(0); goto out; } napi_info = (struct qca_napi_info *) container_of(napi, struct qca_napi_info, napi); NAPI_DEBUG("%s -->(napi(%d, irq=%d), budget=%d)", __func__, napi_info->id, napi_info->irq, budget); napi_info->stats[cpu].napi_polls++; hif_record_ce_desc_event(hif, NAPI_ID2PIPE(napi_info->id), NAPI_POLL_ENTER, NULL, NULL, cpu, 0); rc = ce_per_engine_service(hif, NAPI_ID2PIPE(napi_info->id)); NAPI_DEBUG("%s: ce_per_engine_service processed %d msgs", __func__, rc); hif_napi_offld_flush_cb(napi_info); /* do not return 0, if there was some work done, * even if it is below the scale */ if (rc) { napi_info->stats[cpu].napi_workdone += rc; normalized = (rc / napi_info->scale); if (normalized == 0) normalized++; bucket = (normalized - 1) / (QCA_NAPI_BUDGET / QCA_NAPI_NUM_BUCKETS); if (bucket >= QCA_NAPI_NUM_BUCKETS) { bucket = QCA_NAPI_NUM_BUCKETS - 1; HIF_ERROR("Bad bucket#(%d) > QCA_NAPI_NUM_BUCKETS(%d)" " normalized %d, napi budget %d", bucket, QCA_NAPI_NUM_BUCKETS, normalized, QCA_NAPI_BUDGET); } napi_info->stats[cpu].napi_budget_uses[bucket]++; } else { /* if ce_per engine reports 0, then poll should be terminated */ NAPI_DEBUG("%s:%d: nothing processed by CE. Completing NAPI", __func__, __LINE__); } ce_state = hif->ce_id_to_state[NAPI_ID2PIPE(napi_info->id)]; /* * Not using the API hif_napi_correct_cpu directly in the if statement * below since the API may not get evaluated if put at the end if any * prior condition would evaluate to be true. The CPU correction * check should kick in every poll. */ #ifdef NAPI_YIELD_BUDGET_BASED if (ce_state && (ce_state->force_break || 0 == rc)) { #else poll_on_right_cpu = hif_napi_correct_cpu(napi_info); if ((ce_state) && (!ce_check_rx_pending(ce_state) || (0 == rc) || !poll_on_right_cpu)) { #endif napi_info->stats[cpu].napi_completes++; #ifdef NAPI_YIELD_BUDGET_BASED ce_state->force_break = 0; #endif hif_record_ce_desc_event(hif, ce_state->id, NAPI_COMPLETE, NULL, NULL, 0, 0); if (normalized >= budget) normalized = budget - 1; napi_complete(napi); /* enable interrupts */ hif_napi_enable_irq(hif_ctx, napi_info->id); /* support suspend/resume */ qdf_atomic_dec(&(hif->active_tasklet_cnt)); NAPI_DEBUG("%s:%d: napi_complete + enabling the interrupts", __func__, __LINE__); } else { /* 4.4 kernel NAPI implementation requires drivers to * return full work when they ask to be re-scheduled, * or napi_complete and re-start with a fresh interrupt */ normalized = budget; } hif_record_ce_desc_event(hif, NAPI_ID2PIPE(napi_info->id), NAPI_POLL_EXIT, NULL, NULL, normalized, 0); NAPI_DEBUG("%s <--[normalized=%d]", __func__, normalized); return normalized; out: return rc; } qdf_export_symbol(hif_napi_poll); void hif_update_napi_max_poll_time(struct CE_state *ce_state, int ce_id, int cpu_id) { struct hif_softc *hif; struct qca_napi_info *napi_info; unsigned long long napi_poll_time = sched_clock() - ce_state->ce_service_start_time; hif = ce_state->scn; napi_info = hif->napi_data.napis[ce_id]; if (napi_poll_time > napi_info->stats[cpu_id].napi_max_poll_time) napi_info->stats[cpu_id].napi_max_poll_time = napi_poll_time; } qdf_export_symbol(hif_update_napi_max_poll_time); #ifdef HIF_IRQ_AFFINITY /** * * hif_napi_update_yield_stats() - update NAPI yield related stats * @cpu_id: CPU ID for which stats needs to be updates * @ce_id: Copy Engine ID for which yield stats needs to be updates * @time_limit_reached: indicates whether the time limit was reached * @rxpkt_thresh_reached: indicates whether rx packet threshold was reached * * Return: None */ void hif_napi_update_yield_stats(struct CE_state *ce_state, bool time_limit_reached, bool rxpkt_thresh_reached) { struct hif_softc *hif; struct qca_napi_data *napi_data = NULL; int ce_id = 0; int cpu_id = 0; if (unlikely(NULL == ce_state)) { QDF_ASSERT(NULL != ce_state); return; } hif = ce_state->scn; if (unlikely(NULL == hif)) { QDF_ASSERT(NULL != hif); return; } napi_data = &(hif->napi_data); if (unlikely(NULL == napi_data)) { QDF_ASSERT(NULL != napi_data); return; } ce_id = ce_state->id; cpu_id = qdf_get_cpu(); if (unlikely(!napi_data->napis[ce_id])) { HIF_INFO("%s: NAPI info is NULL for ce id: %d", __func__, ce_id); return; } if (time_limit_reached) napi_data->napis[ce_id]->stats[cpu_id].time_limit_reached++; else napi_data->napis[ce_id]->stats[cpu_id].rxpkt_thresh_reached++; hif_update_napi_max_poll_time(ce_state, ce_id, cpu_id); } /** * * hif_napi_stats() - display NAPI CPU statistics * @napid: pointer to qca_napi_data * * Description: * Prints the various CPU cores on which the NAPI instances /CEs interrupts * are being executed. Can be called from outside NAPI layer. * * Return: None */ void hif_napi_stats(struct qca_napi_data *napid) { int i; struct qca_napi_cpu *cpu; if (napid == NULL) { qdf_debug("%s: napiid struct is null", __func__); return; } cpu = napid->napi_cpu; qdf_debug("NAPI CPU TABLE"); qdf_debug("lilclhead=%d, bigclhead=%d", napid->lilcl_head, napid->bigcl_head); for (i = 0; i < NR_CPUS; i++) { qdf_debug("CPU[%02d]: state:%d crid=%02d clid=%02d crmk:0x%0lx thmk:0x%0lx frq:%d napi = 0x%08x lnk:%d", i, cpu[i].state, cpu[i].core_id, cpu[i].cluster_id, cpu[i].core_mask.bits[0], cpu[i].thread_mask.bits[0], cpu[i].max_freq, cpu[i].napis, cpu[i].cluster_nxt); } } #ifdef FEATURE_NAPI_DEBUG /* * Local functions * - no argument checks, all internal/trusted callers */ static void hnc_dump_cpus(struct qca_napi_data *napid) { hif_napi_stats(napid); } #else static void hnc_dump_cpus(struct qca_napi_data *napid) { /* no-op */ }; #endif /* FEATURE_NAPI_DEBUG */ /** * hnc_link_clusters() - partitions to cpu table into clusters * @napid: pointer to NAPI data * * Takes in a CPU topology table and builds two linked lists * (big cluster cores, list-head at bigcl_head, and little cluster * cores, list-head at lilcl_head) out of it. * * If there are more than two clusters: * - bigcl_head and lilcl_head will be different, * - the cluster with highest cpufreq will be considered the "big" cluster. * If there are more than one with the highest frequency, the *last* of such * clusters will be designated as the "big cluster" * - the cluster with lowest cpufreq will be considered the "li'l" cluster. * If there are more than one clusters with the lowest cpu freq, the *first* * of such clusters will be designated as the "little cluster" * - We only support up to 32 clusters * Return: 0 : OK * !0: error (at least one of lil/big clusters could not be found) */ #define HNC_MIN_CLUSTER 0 #define HNC_MAX_CLUSTER 1 static int hnc_link_clusters(struct qca_napi_data *napid) { int rc = 0; int i; int it = 0; uint32_t cl_done = 0x0; int cl, curcl, curclhead = 0; int more; unsigned int lilfrq = INT_MAX; unsigned int bigfrq = 0; unsigned int clfrq = 0; int prev = 0; struct qca_napi_cpu *cpus = napid->napi_cpu; napid->lilcl_head = napid->bigcl_head = -1; do { more = 0; it++; curcl = -1; for (i = 0; i < NR_CPUS; i++) { cl = cpus[i].cluster_id; NAPI_DEBUG("Processing cpu[%d], cluster=%d\n", i, cl); if ((cl < HNC_MIN_CLUSTER) || (cl > HNC_MAX_CLUSTER)) { NAPI_DEBUG("Bad cluster (%d). SKIPPED\n", cl); /* continue if ASSERTs are disabled */ continue; }; if (cpumask_weight(&(cpus[i].core_mask)) == 0) { NAPI_DEBUG("Core mask 0. SKIPPED\n"); continue; } if (cl_done & (0x01 << cl)) { NAPI_DEBUG("Cluster already processed. SKIPPED\n"); continue; } else { if (more == 0) { more = 1; curcl = cl; curclhead = i; /* row */ clfrq = cpus[i].max_freq; prev = -1; }; if ((curcl >= 0) && (curcl != cl)) { NAPI_DEBUG("Entry cl(%d) != curcl(%d). SKIPPED\n", cl, curcl); continue; } if (cpus[i].max_freq != clfrq) NAPI_DEBUG("WARN: frq(%d)!=clfrq(%d)\n", cpus[i].max_freq, clfrq); if (clfrq >= bigfrq) { bigfrq = clfrq; napid->bigcl_head = curclhead; NAPI_DEBUG("bigcl=%d\n", curclhead); } if (clfrq < lilfrq) { lilfrq = clfrq; napid->lilcl_head = curclhead; NAPI_DEBUG("lilcl=%d\n", curclhead); } if (prev != -1) cpus[prev].cluster_nxt = i; prev = i; } } if (curcl >= 0) cl_done |= (0x01 << curcl); } while (more); if (qdf_unlikely((napid->lilcl_head < 0) && (napid->bigcl_head < 0))) rc = -EFAULT; hnc_dump_cpus(napid); /* if NAPI_DEBUG */ return rc; } #undef HNC_MIN_CLUSTER #undef HNC_MAX_CLUSTER /* * hotplug function group */ /** * hnc_cpu_online_cb() - handles CPU hotplug "up" events * @context: the associated HIF context * @cpu: the CPU Id of the CPU the event happened on * * Return: None */ static void hnc_cpu_online_cb(void *context, uint32_t cpu) { struct hif_softc *hif = context; struct qca_napi_data *napid = &hif->napi_data; if (cpu >= NR_CPUS) return; NAPI_DEBUG("-->%s(act=online, cpu=%u)", __func__, cpu); napid->napi_cpu[cpu].state = QCA_NAPI_CPU_UP; NAPI_DEBUG("%s: CPU %u marked %d", __func__, cpu, napid->napi_cpu[cpu].state); NAPI_DEBUG("<--%s", __func__); } /** * hnc_cpu_before_offline_cb() - handles CPU hotplug "prepare down" events * @context: the associated HIF context * @cpu: the CPU Id of the CPU the event happened on * * On transtion to offline, we act on PREP events, because we may need to move * the irqs/NAPIs to another CPU before it is actually off-lined. * * Return: None */ static void hnc_cpu_before_offline_cb(void *context, uint32_t cpu) { struct hif_softc *hif = context; struct qca_napi_data *napid = &hif->napi_data; if (cpu >= NR_CPUS) return; NAPI_DEBUG("-->%s(act=before_offline, cpu=%u)", __func__, cpu); napid->napi_cpu[cpu].state = QCA_NAPI_CPU_DOWN; NAPI_DEBUG("%s: CPU %u marked %d; updating affinity", __func__, cpu, napid->napi_cpu[cpu].state); /** * we need to move any NAPIs on this CPU out. * if we are in LO throughput mode, then this is valid * if the CPU is the the low designated CPU. */ hif_napi_event(GET_HIF_OPAQUE_HDL(hif), NAPI_EVT_CPU_STATE, (void *) ((size_t)cpu << 16 | napid->napi_cpu[cpu].state)); NAPI_DEBUG("<--%s", __func__); } static int hnc_hotplug_register(struct hif_softc *hif_sc) { QDF_STATUS status; NAPI_DEBUG("-->%s", __func__); status = qdf_cpuhp_register(&hif_sc->napi_data.cpuhp_handler, hif_sc, hnc_cpu_online_cb, hnc_cpu_before_offline_cb); NAPI_DEBUG("<--%s [%d]", __func__, status); return qdf_status_to_os_return(status); } static void hnc_hotplug_unregister(struct hif_softc *hif_sc) { NAPI_DEBUG("-->%s", __func__); if (hif_sc->napi_data.cpuhp_handler) qdf_cpuhp_unregister(&hif_sc->napi_data.cpuhp_handler); NAPI_DEBUG("<--%s", __func__); } /** * hnc_install_tput() - installs a callback in the throughput detector * @register: !0 => register; =0: unregister * * installs a callback to be called when wifi driver throughput (tx+rx) * crosses a threshold. Currently, we are using the same criteria as * TCP ack suppression (500 packets/100ms by default). * * Return: 0 : success * <0: failure */ static int hnc_tput_hook(int install) { int rc = 0; /* * Nothing, until the bw_calculation accepts registration * it is now hardcoded in the wlan_hdd_main.c::hdd_bus_bw_compute_cbk * hdd_napi_throughput_policy(...) */ return rc; } /* * Implementation of hif_napi_cpu API */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) static inline void record_sibling_cpumask(struct qca_napi_cpu *cpus, int i) { cpumask_copy(&(cpus[i].thread_mask), topology_sibling_cpumask(i)); } #else static inline void record_sibling_cpumask(struct qca_napi_cpu *cpus, int i) { } #endif /** * hif_napi_cpu_init() - initialization of irq affinity block * @ctx: pointer to qca_napi_data * * called by hif_napi_create, after the first instance is called * - builds napi_rss_cpus table from cpu topology * - links cores of the same clusters together * - installs hot-plug notifier * - installs throughput trigger notifier (when such mechanism exists) * * Return: 0: OK * <0: error code */ int hif_napi_cpu_init(struct hif_opaque_softc *hif) { int rc = 0; int i; struct qca_napi_data *napid = &HIF_GET_SOFTC(hif)->napi_data; struct qca_napi_cpu *cpus = napid->napi_cpu; NAPI_DEBUG("--> "); if (cpus[0].state != QCA_NAPI_CPU_UNINITIALIZED) { NAPI_DEBUG("NAPI RSS table already initialized.\n"); rc = -EALREADY; goto lab_rss_init; } /* build CPU topology table */ for_each_possible_cpu(i) { cpus[i].state = ((cpumask_test_cpu(i, cpu_online_mask) ? QCA_NAPI_CPU_UP : QCA_NAPI_CPU_DOWN)); cpus[i].core_id = topology_core_id(i); cpus[i].cluster_id = topology_physical_package_id(i); cpumask_copy(&(cpus[i].core_mask), topology_core_cpumask(i)); record_sibling_cpumask(cpus, i); cpus[i].max_freq = cpufreq_quick_get_max(i); cpus[i].napis = 0x0; cpus[i].cluster_nxt = -1; /* invalid */ } /* link clusters together */ rc = hnc_link_clusters(napid); if (0 != rc) goto lab_err_topology; /* install hotplug notifier */ rc = hnc_hotplug_register(HIF_GET_SOFTC(hif)); if (0 != rc) goto lab_err_hotplug; /* install throughput notifier */ rc = hnc_tput_hook(1); if (0 == rc) goto lab_rss_init; lab_err_hotplug: hnc_tput_hook(0); hnc_hotplug_unregister(HIF_GET_SOFTC(hif)); lab_err_topology: memset(napid->napi_cpu, 0, sizeof(struct qca_napi_cpu) * NR_CPUS); lab_rss_init: NAPI_DEBUG("<-- [rc=%d]", rc); return rc; } /** * hif_napi_cpu_deinit() - clean-up of irq affinity block * * called by hif_napi_destroy, when the last instance is removed * - uninstalls throughput and hotplug notifiers * - clears cpu topology table * Return: 0: OK */ int hif_napi_cpu_deinit(struct hif_opaque_softc *hif) { int rc = 0; struct qca_napi_data *napid = &HIF_GET_SOFTC(hif)->napi_data; NAPI_DEBUG("-->%s(...)", __func__); /* uninstall tput notifier */ rc = hnc_tput_hook(0); /* uninstall hotplug notifier */ hnc_hotplug_unregister(HIF_GET_SOFTC(hif)); /* clear the topology table */ memset(napid->napi_cpu, 0, sizeof(struct qca_napi_cpu) * NR_CPUS); NAPI_DEBUG("<--%s[rc=%d]", __func__, rc); return rc; } /** * hncm_migrate_to() - migrates a NAPI to a CPU * @napid: pointer to NAPI block * @ce_id: CE_id of the NAPI instance * @didx : index in the CPU topology table for the CPU to migrate to * * Migrates NAPI (identified by the CE_id) to the destination core * Updates the napi_map of the destination entry * * Return: * =0 : success * <0 : error */ static int hncm_migrate_to(struct qca_napi_data *napid, int napi_ce, int didx) { int rc = 0; QDF_STATUS status; NAPI_DEBUG("-->%s(napi_cd=%d, didx=%d)", __func__, napi_ce, didx); if (!napid->napis[napi_ce]) return -EINVAL; napid->napis[napi_ce]->cpumask.bits[0] = (1 << didx); irq_modify_status(napid->napis[napi_ce]->irq, IRQ_NO_BALANCING, 0); status = qdf_dev_set_irq_affinity(napid->napis[napi_ce]->irq, (struct qdf_cpu_mask *) &napid->napis[napi_ce]->cpumask); rc = qdf_status_to_os_return(status); /* unmark the napis bitmap in the cpu table */ napid->napi_cpu[napid->napis[napi_ce]->cpu].napis &= ~(0x01 << napi_ce); /* mark the napis bitmap for the new designated cpu */ napid->napi_cpu[didx].napis |= (0x01 << napi_ce); napid->napis[napi_ce]->cpu = didx; NAPI_DEBUG("<--%s[%d]", __func__, rc); return rc; } /** * hncm_dest_cpu() - finds a destination CPU for NAPI * @napid: pointer to NAPI block * @act : RELOCATE | COLLAPSE | DISPERSE * * Finds the designated destionation for the next IRQ. * RELOCATE: translated to either COLLAPSE or DISPERSE based * on napid->napi_mode (throughput state) * COLLAPSE: All have the same destination: the first online CPU in lilcl * DISPERSE: One of the CPU in bigcl, which has the smallest number of * NAPIs on it * * Return: >=0 : index in the cpu topology table * : < 0 : error */ static int hncm_dest_cpu(struct qca_napi_data *napid, int act) { int destidx = -1; int head, i; NAPI_DEBUG("-->%s(act=%d)", __func__, act); if (act == HNC_ACT_RELOCATE) { if (napid->napi_mode == QCA_NAPI_TPUT_LO) act = HNC_ACT_COLLAPSE; else act = HNC_ACT_DISPERSE; NAPI_DEBUG("%s: act changed from HNC_ACT_RELOCATE to %d", __func__, act); } if (act == HNC_ACT_COLLAPSE) { head = i = napid->lilcl_head; retry_collapse: while (i >= 0) { if (napid->napi_cpu[i].state == QCA_NAPI_CPU_UP) { destidx = i; break; } i = napid->napi_cpu[i].cluster_nxt; } if ((destidx < 0) && (head == napid->lilcl_head)) { NAPI_DEBUG("%s: COLLAPSE: no lilcl dest, try bigcl", __func__); head = i = napid->bigcl_head; goto retry_collapse; } } else { /* HNC_ACT_DISPERSE */ int smallest = 99; /* all 32 bits full */ int smallidx = -1; head = i = napid->bigcl_head; retry_disperse: while (i >= 0) { if ((napid->napi_cpu[i].state == QCA_NAPI_CPU_UP) && (hweight32(napid->napi_cpu[i].napis) <= smallest)) { smallest = napid->napi_cpu[i].napis; smallidx = i; } i = napid->napi_cpu[i].cluster_nxt; } /* Check if matches with user sepecified CPU mask */ smallidx = ((1 << smallidx) & napid->user_cpu_affin_mask) ? smallidx : -1; if ((smallidx < 0) && (head == napid->bigcl_head)) { NAPI_DEBUG("%s: DISPERSE: no bigcl dest, try lilcl", __func__); head = i = napid->lilcl_head; goto retry_disperse; } destidx = smallidx; } NAPI_DEBUG("<--%s[dest=%d]", __func__, destidx); return destidx; } /** * hif_napi_cpu_migrate() - migrate IRQs away * @cpu: -1: all CPUs specific CPU * @act: COLLAPSE | DISPERSE * * Moves IRQs/NAPIs from specific or all CPUs (specified by @cpu) to eligible * cores. Eligible cores are: * act=COLLAPSE -> the first online core of the little cluster * act=DISPERSE -> separate cores of the big cluster, so that each core will * host minimum number of NAPIs/IRQs (napid->cpus[cpu].napis) * * Note that this function is called with a spinlock acquired already. * * Return: =0: success * <0: error */ int hif_napi_cpu_migrate(struct qca_napi_data *napid, int cpu, int action) { int rc = 0; struct qca_napi_cpu *cpup; int i, dind; uint32_t napis; NAPI_DEBUG("-->%s(.., cpu=%d, act=%d)", __func__, cpu, action); /* the following is really: hif_napi_enabled() with less overhead */ if (napid->ce_map == 0) { NAPI_DEBUG("%s: NAPI disabled. Not migrating.", __func__); goto hncm_return; } cpup = napid->napi_cpu; switch (action) { case HNC_ACT_RELOCATE: case HNC_ACT_DISPERSE: case HNC_ACT_COLLAPSE: { /* first find the src napi set */ if (cpu == HNC_ANY_CPU) napis = napid->ce_map; else napis = cpup[cpu].napis; /* then clear the napi bitmap on each CPU */ for (i = 0; i < NR_CPUS; i++) cpup[i].napis = 0; /* then for each of the NAPIs to disperse: */ for (i = 0; i < CE_COUNT_MAX; i++) if (napis & (1 << i)) { /* find a destination CPU */ dind = hncm_dest_cpu(napid, action); if (dind >= 0) { NAPI_DEBUG("Migrating NAPI ce%d to %d", i, dind); rc = hncm_migrate_to(napid, i, dind); } else { NAPI_DEBUG("No dest for NAPI ce%d", i); hnc_dump_cpus(napid); rc = -1; } } break; } default: { NAPI_DEBUG("%s: bad action: %d\n", __func__, action); QDF_BUG(0); break; } } /* switch action */ hncm_return: hnc_dump_cpus(napid); return rc; } /** * hif_napi_bl_irq() - calls irq_modify_status to enable/disable blacklisting * @napid: pointer to qca_napi_data structure * @bl_flag: blacklist flag to enable/disable blacklisting * * The function enables/disables blacklisting for all the copy engine * interrupts on which NAPI is enabled. * * Return: None */ static inline void hif_napi_bl_irq(struct qca_napi_data *napid, bool bl_flag) { int i; struct qca_napi_info *napii; for (i = 0; i < CE_COUNT_MAX; i++) { /* check if NAPI is enabled on the CE */ if (!(napid->ce_map & (0x01 << i))) continue; /*double check that NAPI is allocated for the CE */ napii = napid->napis[i]; if (!(napii)) continue; if (bl_flag == true) irq_modify_status(napii->irq, 0, IRQ_NO_BALANCING); else irq_modify_status(napii->irq, IRQ_NO_BALANCING, 0); HIF_DBG("%s: bl_flag %d CE %d", __func__, bl_flag, i); } } #ifdef CONFIG_SCHED_CORE_CTL /* Enable this API only if kernel feature - CONFIG_SCHED_CORE_CTL is defined */ static inline int hif_napi_core_ctl_set_boost(bool boost) { return core_ctl_set_boost(boost); } #else static inline int hif_napi_core_ctl_set_boost(bool boost) { return 0; } #endif /** * hif_napi_cpu_blacklist() - en(dis)ables blacklisting for NAPI RX interrupts. * @napid: pointer to qca_napi_data structure * @op: blacklist operation to perform * * The function enables/disables/queries blacklisting for all CE RX * interrupts with NAPI enabled. Besides blacklisting, it also enables/disables * core_ctl_set_boost. * Once blacklisting is enabled, the interrupts will not be managed by the IRQ * balancer. * * Return: -EINVAL, in case IRQ_BLACKLISTING and CORE_CTL_BOOST is not enabled * for BLACKLIST_QUERY op - blacklist refcount * for BLACKLIST_ON op - return value from core_ctl_set_boost API * for BLACKLIST_OFF op - return value from core_ctl_set_boost API */ int hif_napi_cpu_blacklist(struct qca_napi_data *napid, enum qca_blacklist_op op) { int rc = 0; static int ref_count; /* = 0 by the compiler */ uint8_t flags = napid->flags; bool bl_en = flags & QCA_NAPI_FEATURE_IRQ_BLACKLISTING; bool ccb_en = flags & QCA_NAPI_FEATURE_CORE_CTL_BOOST; NAPI_DEBUG("-->%s(%d %d)", __func__, flags, op); if (!(bl_en && ccb_en)) { rc = -EINVAL; goto out; } switch (op) { case BLACKLIST_QUERY: rc = ref_count; break; case BLACKLIST_ON: ref_count++; rc = 0; if (ref_count == 1) { rc = hif_napi_core_ctl_set_boost(true); NAPI_DEBUG("boost_on() returns %d - refcnt=%d", rc, ref_count); hif_napi_bl_irq(napid, true); } break; case BLACKLIST_OFF: if (ref_count) { ref_count--; rc = 0; if (ref_count == 0) { rc = hif_napi_core_ctl_set_boost(false); NAPI_DEBUG("boost_off() returns %d - refcnt=%d", rc, ref_count); hif_napi_bl_irq(napid, false); } } break; default: NAPI_DEBUG("Invalid blacklist op: %d", op); rc = -EINVAL; } /* switch */ out: NAPI_DEBUG("<--%s[%d]", __func__, rc); return rc; } /** * hif_napi_serialize() - [de-]serialize NAPI operations * @hif: context * @is_on: 1: serialize, 0: deserialize * * hif_napi_serialize(hif, 1) can be called multiple times. It will perform the * following steps (see hif_napi_event for code): * - put irqs of all NAPI instances on the same CPU * - only for the first serialize call: blacklist * * hif_napi_serialize(hif, 0): * - start a timer (multiple of BusBandwidthTimer -- default: 100 msec) * - at the end of the timer, check the current throughput state and * implement it. */ static unsigned long napi_serialize_reqs; int hif_napi_serialize(struct hif_opaque_softc *hif, int is_on) { int rc = -EINVAL; if (hif != NULL) switch (is_on) { case 0: { /* de-serialize */ rc = hif_napi_event(hif, NAPI_EVT_USR_NORMAL, (void *) 0); napi_serialize_reqs = 0; break; } /* end de-serialize */ case 1: { /* serialize */ rc = hif_napi_event(hif, NAPI_EVT_USR_SERIAL, (void *)napi_serialize_reqs++); break; } /* end serialize */ default: break; /* no-op */ } /* switch */ return rc; } #endif /* ifdef HIF_IRQ_AFFINITY */