/* * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "dp_htt.h" #include "dp_types.h" #include "dp_internal.h" #include "dp_peer.h" #include #include #ifdef CONFIG_MCL #include #include #endif #include #include #ifdef DP_LFR static inline void dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params, uint8_t valid) { params->u.upd_queue_params.update_svld = 1; params->u.upd_queue_params.svld = valid; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "%s: Setting SSN valid bit to %d\n", __func__, valid); } #else static inline void dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params, uint8_t valid) {}; #endif static inline int dp_peer_find_mac_addr_cmp( union dp_align_mac_addr *mac_addr1, union dp_align_mac_addr *mac_addr2) { return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd) /* * Intentionally use & rather than &&. * because the operands are binary rather than generic boolean, * the functionality is equivalent. * Using && has the advantage of short-circuited evaluation, * but using & has the advantage of no conditional branching, * which is a more significant benefit. */ & (mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef)); } static int dp_peer_find_map_attach(struct dp_soc *soc) { uint32_t max_peers, peer_map_size; max_peers = soc->max_peers; /* allocate the peer ID -> peer object map */ QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO, "\n<=== cfg max peer id %d ====>\n", max_peers); peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]); soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size); if (!soc->peer_id_to_obj_map) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: peer map memory allocation failed\n", __func__); return QDF_STATUS_E_NOMEM; } /* * The peer_id_to_obj_map doesn't really need to be initialized, * since elements are only used after they have been individually * initialized. * However, it is convenient for debugging to have all elements * that are not in use set to 0. */ qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size); return 0; /* success */ } static int dp_log2_ceil(unsigned value) { unsigned tmp = value; int log2 = -1; while (tmp) { log2++; tmp >>= 1; } if (1 << log2 != value) log2++; return log2; } static int dp_peer_find_add_id_to_obj( struct dp_peer *peer, uint16_t peer_id) { int i; for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) { if (peer->peer_ids[i] == HTT_INVALID_PEER) { peer->peer_ids[i] = peer_id; return 0; /* success */ } } return QDF_STATUS_E_FAILURE; /* failure */ } #define DP_PEER_HASH_LOAD_MULT 2 #define DP_PEER_HASH_LOAD_SHIFT 0 #define DP_AST_HASH_LOAD_MULT 2 #define DP_AST_HASH_LOAD_SHIFT 0 static int dp_peer_find_hash_attach(struct dp_soc *soc) { int i, hash_elems, log2; /* allocate the peer MAC address -> peer object hash table */ hash_elems = soc->max_peers; hash_elems *= DP_PEER_HASH_LOAD_MULT; hash_elems >>= DP_PEER_HASH_LOAD_SHIFT; log2 = dp_log2_ceil(hash_elems); hash_elems = 1 << log2; soc->peer_hash.mask = hash_elems - 1; soc->peer_hash.idx_bits = log2; /* allocate an array of TAILQ peer object lists */ soc->peer_hash.bins = qdf_mem_malloc( hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer))); if (!soc->peer_hash.bins) return QDF_STATUS_E_NOMEM; for (i = 0; i < hash_elems; i++) TAILQ_INIT(&soc->peer_hash.bins[i]); return 0; } static void dp_peer_find_hash_detach(struct dp_soc *soc) { qdf_mem_free(soc->peer_hash.bins); } static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc, union dp_align_mac_addr *mac_addr) { unsigned index; index = mac_addr->align2.bytes_ab ^ mac_addr->align2.bytes_cd ^ mac_addr->align2.bytes_ef; index ^= index >> soc->peer_hash.idx_bits; index &= soc->peer_hash.mask; return index; } void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer) { unsigned index; index = dp_peer_find_hash_index(soc, &peer->mac_addr); qdf_spin_lock_bh(&soc->peer_ref_mutex); /* * It is important to add the new peer at the tail of the peer list * with the bin index. Together with having the hash_find function * search from head to tail, this ensures that if two entries with * the same MAC address are stored, the one added first will be * found first. */ TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem); qdf_spin_unlock_bh(&soc->peer_ref_mutex); } #ifdef FEATURE_AST /* * dp_peer_ast_hash_attach() - Allocate and initialize AST Hash Table * @soc: SoC handle * * Return: None */ static int dp_peer_ast_hash_attach(struct dp_soc *soc) { int i, hash_elems, log2; hash_elems = ((soc->max_peers * DP_AST_HASH_LOAD_MULT) >> DP_AST_HASH_LOAD_SHIFT); log2 = dp_log2_ceil(hash_elems); hash_elems = 1 << log2; soc->ast_hash.mask = hash_elems - 1; soc->ast_hash.idx_bits = log2; /* allocate an array of TAILQ peer object lists */ soc->ast_hash.bins = qdf_mem_malloc( hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_ast_entry))); if (!soc->ast_hash.bins) return QDF_STATUS_E_NOMEM; for (i = 0; i < hash_elems; i++) TAILQ_INIT(&soc->ast_hash.bins[i]); return 0; } /* * dp_peer_ast_hash_detach() - Free AST Hash table * @soc: SoC handle * * Return: None */ static void dp_peer_ast_hash_detach(struct dp_soc *soc) { qdf_mem_free(soc->ast_hash.bins); } /* * dp_peer_ast_hash_index() - Compute the AST hash from MAC address * @soc: SoC handle * * Return: AST hash */ static inline uint32_t dp_peer_ast_hash_index(struct dp_soc *soc, union dp_align_mac_addr *mac_addr) { uint32_t index; index = mac_addr->align2.bytes_ab ^ mac_addr->align2.bytes_cd ^ mac_addr->align2.bytes_ef; index ^= index >> soc->ast_hash.idx_bits; index &= soc->ast_hash.mask; return index; } /* * dp_peer_ast_hash_add() - Add AST entry into hash table * @soc: SoC handle * * This function adds the AST entry into SoC AST hash table * It assumes caller has taken the ast lock to protect the access to this table * * Return: None */ static inline void dp_peer_ast_hash_add(struct dp_soc *soc, struct dp_ast_entry *ase) { uint32_t index; index = dp_peer_ast_hash_index(soc, &ase->mac_addr); TAILQ_INSERT_TAIL(&soc->ast_hash.bins[index], ase, hash_list_elem); } /* * dp_peer_ast_hash_remove() - Look up and remove AST entry from hash table * @soc: SoC handle * * This function removes the AST entry from soc AST hash table * It assumes caller has taken the ast lock to protect the access to this table * * Return: None */ static inline void dp_peer_ast_hash_remove(struct dp_soc *soc, struct dp_ast_entry *ase) { unsigned index; struct dp_ast_entry *tmpase; int found = 0; index = dp_peer_ast_hash_index(soc, &ase->mac_addr); /* Check if tail is not empty before delete*/ QDF_ASSERT(!TAILQ_EMPTY(&soc->ast_hash.bins[index])); TAILQ_FOREACH(tmpase, &soc->ast_hash.bins[index], hash_list_elem) { if (tmpase == ase) { found = 1; break; } } QDF_ASSERT(found); TAILQ_REMOVE(&soc->ast_hash.bins[index], ase, hash_list_elem); } /* * dp_peer_ast_hash_find() - Find AST entry by MAC address * @soc: SoC handle * * It assumes caller has taken the ast lock to protect the access to * AST hash table * * Return: AST entry */ struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc, uint8_t *ast_mac_addr) { union dp_align_mac_addr local_mac_addr_aligned, *mac_addr; unsigned index; struct dp_ast_entry *ase; qdf_mem_copy(&local_mac_addr_aligned.raw[0], ast_mac_addr, DP_MAC_ADDR_LEN); mac_addr = &local_mac_addr_aligned; index = dp_peer_ast_hash_index(soc, mac_addr); TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) { if (dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr) == 0) { return ase; } } return NULL; } /* * dp_peer_map_ast() - Map the ast entry with HW AST Index * @soc: SoC handle * @peer: peer to which ast node belongs * @mac_addr: MAC address of ast node * @hw_peer_id: HW AST Index returned by target in peer map event * @vdev_id: vdev id for VAP to which the peer belongs to * * Return: None */ static inline void dp_peer_map_ast(struct dp_soc *soc, struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id, uint8_t vdev_id) { struct dp_ast_entry *ast_entry; enum cdp_txrx_ast_entry_type peer_type = CDP_TXRX_AST_TYPE_STATIC; bool ast_entry_found = FALSE; if (!peer) { return; } QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, peer, hw_peer_id, vdev_id, mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]); qdf_spin_lock_bh(&soc->ast_lock); TAILQ_FOREACH(ast_entry, &peer->ast_entry_list, ase_list_elem) { if (!(qdf_mem_cmp(mac_addr, ast_entry->mac_addr.raw, DP_MAC_ADDR_LEN))) { ast_entry->ast_idx = hw_peer_id; soc->ast_table[hw_peer_id] = ast_entry; ast_entry->is_active = TRUE; peer_type = ast_entry->type; ast_entry_found = TRUE; } } if (ast_entry_found || (peer->vdev && peer->vdev->proxysta_vdev)) { if (soc->cdp_soc.ol_ops->peer_map_event) { soc->cdp_soc.ol_ops->peer_map_event( soc->ctrl_psoc, peer->peer_ids[0], hw_peer_id, vdev_id, mac_addr, peer_type); } } else { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "AST entry not found\n"); } qdf_spin_unlock_bh(&soc->ast_lock); return; } /* * dp_peer_add_ast() - Allocate and add AST entry into peer list * @soc: SoC handle * @peer: peer to which ast node belongs * @mac_addr: MAC address of ast node * @is_self: Is this base AST entry with peer mac address * * This API is used by WDS source port learning function to * add a new AST entry into peer AST list * * Return: 0 if new entry is allocated, * -1 if entry add failed */ int dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer, uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type, uint32_t flags) { struct dp_ast_entry *ast_entry; struct dp_vdev *vdev = peer->vdev; uint8_t next_node_mac[6]; int ret = -1; if (!vdev) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("Peers vdev is NULL")); QDF_ASSERT(0); return ret; } QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: peer %pK mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, peer, mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]); qdf_spin_lock_bh(&soc->ast_lock); /* If AST entry already exists , just return from here */ ast_entry = dp_peer_ast_hash_find(soc, mac_addr); if (ast_entry) { if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC) ast_entry->is_active = TRUE; qdf_spin_unlock_bh(&soc->ast_lock); return 0; } ast_entry = (struct dp_ast_entry *) qdf_mem_malloc(sizeof(struct dp_ast_entry)); if (!ast_entry) { qdf_spin_unlock_bh(&soc->ast_lock); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("fail to allocate ast_entry")); QDF_ASSERT(0); return ret; } qdf_mem_copy(&ast_entry->mac_addr.raw[0], mac_addr, DP_MAC_ADDR_LEN); ast_entry->peer = peer; ast_entry->pdev_id = vdev->pdev->pdev_id; ast_entry->vdev_id = vdev->vdev_id; switch (type) { case CDP_TXRX_AST_TYPE_STATIC: peer->self_ast_entry = ast_entry; ast_entry->type = CDP_TXRX_AST_TYPE_STATIC; break; case CDP_TXRX_AST_TYPE_WDS: ast_entry->next_hop = 1; ast_entry->type = CDP_TXRX_AST_TYPE_WDS; break; case CDP_TXRX_AST_TYPE_WDS_HM: ast_entry->next_hop = 1; ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM; break; case CDP_TXRX_AST_TYPE_MEC: ast_entry->next_hop = 1; ast_entry->type = CDP_TXRX_AST_TYPE_MEC; break; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Incorrect AST entry type")); } ast_entry->is_active = TRUE; TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem); DP_STATS_INC(soc, ast.added, 1); dp_peer_ast_hash_add(soc, ast_entry); qdf_spin_unlock_bh(&soc->ast_lock); if (ast_entry->type == CDP_TXRX_AST_TYPE_MEC) qdf_mem_copy(next_node_mac, peer->vdev->mac_addr.raw, 6); else qdf_mem_copy(next_node_mac, peer->mac_addr.raw, 6); if (ast_entry->type != CDP_TXRX_AST_TYPE_STATIC) { if (QDF_STATUS_SUCCESS == soc->cdp_soc.ol_ops->peer_add_wds_entry( peer->vdev->osif_vdev, mac_addr, next_node_mac, flags)) return 0; } return ret; } /* * dp_peer_del_ast() - Delete and free AST entry * @soc: SoC handle * @ast_entry: AST entry of the node * * This function removes the AST entry from peer and soc tables * It assumes caller has taken the ast lock to protect the access to these * tables * * Return: None */ void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { struct dp_peer *peer = ast_entry->peer; if (ast_entry->next_hop) soc->cdp_soc.ol_ops->peer_del_wds_entry(peer->vdev->osif_vdev, ast_entry->mac_addr.raw); soc->ast_table[ast_entry->ast_idx] = NULL; TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem); DP_STATS_INC(soc, ast.deleted, 1); dp_peer_ast_hash_remove(soc, ast_entry); qdf_mem_free(ast_entry); } /* * dp_peer_update_ast() - Delete and free AST entry * @soc: SoC handle * @peer: peer to which ast node belongs * @ast_entry: AST entry of the node * @flags: wds or hmwds * * This function update the AST entry to the roamed peer and soc tables * It assumes caller has taken the ast lock to protect the access to these * tables * * Return: 0 if ast entry is updated successfully * -1 failure */ int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer, struct dp_ast_entry *ast_entry, uint32_t flags) { int ret = -1; struct dp_peer *old_peer; struct dp_peer *sa_peer; if (ast_entry->type == CDP_TXRX_AST_TYPE_STATIC) { sa_peer = ast_entry->peer; /* * Kickout, when direct associated peer(SA) roams * to another AP and reachable via TA peer */ if (!sa_peer->delete_in_progress) { sa_peer->delete_in_progress = true; if (soc->cdp_soc.ol_ops->peer_sta_kickout) { soc->cdp_soc.ol_ops->peer_sta_kickout( sa_peer->vdev->pdev->osif_pdev, ast_entry->mac_addr.raw); } return 0; } } old_peer = ast_entry->peer; TAILQ_REMOVE(&old_peer->ast_entry_list, ast_entry, ase_list_elem); ast_entry->peer = peer; ast_entry->type = CDP_TXRX_AST_TYPE_WDS; ast_entry->pdev_id = peer->vdev->pdev->pdev_id; ast_entry->vdev_id = peer->vdev->vdev_id; ast_entry->is_active = TRUE; TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem); ret = soc->cdp_soc.ol_ops->peer_update_wds_entry( peer->vdev->osif_vdev, ast_entry->mac_addr.raw, peer->mac_addr.raw, flags); return ret; } /* * dp_peer_ast_get_pdev_id() - get pdev_id from the ast entry * @soc: SoC handle * @ast_entry: AST entry of the node * * This function gets the pdev_id from the ast entry. * * Return: (uint8_t) pdev_id */ uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return ast_entry->pdev_id; } /* * dp_peer_ast_get_next_hop() - get next_hop from the ast entry * @soc: SoC handle * @ast_entry: AST entry of the node * * This function gets the next hop from the ast entry. * * Return: (uint8_t) next_hop */ uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return ast_entry->next_hop; } /* * dp_peer_ast_set_type() - set type from the ast entry * @soc: SoC handle * @ast_entry: AST entry of the node * * This function sets the type in the ast entry. * * Return: */ void dp_peer_ast_set_type(struct dp_soc *soc, struct dp_ast_entry *ast_entry, enum cdp_txrx_ast_entry_type type) { ast_entry->type = type; } #else int dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer, uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type, uint32_t flags) { return 1; } void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { } int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer, struct dp_ast_entry *ast_entry, uint32_t flags) { return 1; } struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc, uint8_t *ast_mac_addr) { return NULL; } static int dp_peer_ast_hash_attach(struct dp_soc *soc) { return 0; } static inline void dp_peer_map_ast(struct dp_soc *soc, struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id, uint8_t vdev_id) { return; } static void dp_peer_ast_hash_detach(struct dp_soc *soc) { } void dp_peer_ast_set_type(struct dp_soc *soc, struct dp_ast_entry *ast_entry, enum cdp_txrx_ast_entry_type type) { } uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return 0xff; } uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return 0xff; } #endif struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc, uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id) { union dp_align_mac_addr local_mac_addr_aligned, *mac_addr; unsigned index; struct dp_peer *peer; if (mac_addr_is_aligned) { mac_addr = (union dp_align_mac_addr *) peer_mac_addr; } else { qdf_mem_copy( &local_mac_addr_aligned.raw[0], peer_mac_addr, DP_MAC_ADDR_LEN); mac_addr = &local_mac_addr_aligned; } index = dp_peer_find_hash_index(soc, mac_addr); qdf_spin_lock_bh(&soc->peer_ref_mutex); TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) { #if ATH_SUPPORT_WRAP /* ProxySTA may have multiple BSS peer with same MAC address, * modified find will take care of finding the correct BSS peer. */ if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 && ((peer->vdev->vdev_id == vdev_id) || (vdev_id == DP_VDEV_ALL))) { #else if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) { #endif /* found it - increment the ref count before releasing * the lock */ qdf_atomic_inc(&peer->ref_cnt); qdf_spin_unlock_bh(&soc->peer_ref_mutex); return peer; } } qdf_spin_unlock_bh(&soc->peer_ref_mutex); return NULL; /* failure */ } void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer) { unsigned index; struct dp_peer *tmppeer = NULL; int found = 0; index = dp_peer_find_hash_index(soc, &peer->mac_addr); /* Check if tail is not empty before delete*/ QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index])); /* * DO NOT take the peer_ref_mutex lock here - it needs to be taken * by the caller. * The caller needs to hold the lock from the time the peer object's * reference count is decremented and tested up through the time the * reference to the peer object is removed from the hash table, by * this function. * Holding the lock only while removing the peer object reference * from the hash table keeps the hash table consistent, but does not * protect against a new HL tx context starting to use the peer object * if it looks up the peer object from its MAC address just after the * peer ref count is decremented to zero, but just before the peer * object reference is removed from the hash table. */ TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) { if (tmppeer == peer) { found = 1; break; } } QDF_ASSERT(found); TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem); } void dp_peer_find_hash_erase(struct dp_soc *soc) { int i; /* * Not really necessary to take peer_ref_mutex lock - by this point, * it's known that the soc is no longer in use. */ for (i = 0; i <= soc->peer_hash.mask; i++) { if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) { struct dp_peer *peer, *peer_next; /* * TAILQ_FOREACH_SAFE must be used here to avoid any * memory access violation after peer is freed */ TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i], hash_list_elem, peer_next) { /* * Don't remove the peer from the hash table - * that would modify the list we are currently * traversing, and it's not necessary anyway. */ /* * Artificially adjust the peer's ref count to * 1, so it will get deleted by * dp_peer_unref_delete. */ /* set to zero */ qdf_atomic_init(&peer->ref_cnt); /* incr to one */ qdf_atomic_inc(&peer->ref_cnt); dp_peer_unref_delete(peer); } } } } static void dp_peer_find_map_detach(struct dp_soc *soc) { qdf_mem_free(soc->peer_id_to_obj_map); } int dp_peer_find_attach(struct dp_soc *soc) { if (dp_peer_find_map_attach(soc)) return 1; if (dp_peer_find_hash_attach(soc)) { dp_peer_find_map_detach(soc); return 1; } if (dp_peer_ast_hash_attach(soc)) { dp_peer_find_hash_detach(soc); dp_peer_find_map_detach(soc); return 1; } return 0; /* success */ } void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt; struct hal_reo_queue_status *queue_status = &(reo_status->queue_status); if (queue_status->header.status != HAL_REO_CMD_SUCCESS) { DP_TRACE_STATS(FATAL, "REO stats failure %d for TID %d\n", queue_status->header.status, rx_tid->tid); return; } DP_TRACE_STATS(FATAL, "REO queue stats (TID: %d): \n" "ssn: %d\n" "curr_idx : %d\n" "pn_31_0 : %08x\n" "pn_63_32 : %08x\n" "pn_95_64 : %08x\n" "pn_127_96 : %08x\n" "last_rx_enq_tstamp : %08x\n" "last_rx_deq_tstamp : %08x\n" "rx_bitmap_31_0 : %08x\n" "rx_bitmap_63_32 : %08x\n" "rx_bitmap_95_64 : %08x\n" "rx_bitmap_127_96 : %08x\n" "rx_bitmap_159_128 : %08x\n" "rx_bitmap_191_160 : %08x\n" "rx_bitmap_223_192 : %08x\n" "rx_bitmap_255_224 : %08x\n", rx_tid->tid, queue_status->ssn, queue_status->curr_idx, queue_status->pn_31_0, queue_status->pn_63_32, queue_status->pn_95_64, queue_status->pn_127_96, queue_status->last_rx_enq_tstamp, queue_status->last_rx_deq_tstamp, queue_status->rx_bitmap_31_0, queue_status->rx_bitmap_63_32, queue_status->rx_bitmap_95_64, queue_status->rx_bitmap_127_96, queue_status->rx_bitmap_159_128, queue_status->rx_bitmap_191_160, queue_status->rx_bitmap_223_192, queue_status->rx_bitmap_255_224); DP_TRACE_STATS(FATAL, "curr_mpdu_cnt : %d\n" "curr_msdu_cnt : %d\n" "fwd_timeout_cnt : %d\n" "fwd_bar_cnt : %d\n" "dup_cnt : %d\n" "frms_in_order_cnt : %d\n" "bar_rcvd_cnt : %d\n" "mpdu_frms_cnt : %d\n" "msdu_frms_cnt : %d\n" "total_byte_cnt : %d\n" "late_recv_mpdu_cnt : %d\n" "win_jump_2k : %d\n" "hole_cnt : %d\n", queue_status->curr_mpdu_cnt, queue_status->curr_msdu_cnt, queue_status->fwd_timeout_cnt, queue_status->fwd_bar_cnt, queue_status->dup_cnt, queue_status->frms_in_order_cnt, queue_status->bar_rcvd_cnt, queue_status->mpdu_frms_cnt, queue_status->msdu_frms_cnt, queue_status->total_cnt, queue_status->late_recv_mpdu_cnt, queue_status->win_jump_2k, queue_status->hole_cnt); DP_PRINT_STATS("Num of Addba Req = %d\n", rx_tid->num_of_addba_req); DP_PRINT_STATS("Num of Addba Resp = %d\n", rx_tid->num_of_addba_resp); DP_PRINT_STATS("Num of Delba Req = %d\n", rx_tid->num_of_delba_req); DP_PRINT_STATS("BA window size = %d\n", rx_tid->ba_win_size); DP_PRINT_STATS("Pn size = %d\n", rx_tid->pn_size); } static inline struct dp_peer *dp_peer_find_add_id(struct dp_soc *soc, uint8_t *peer_mac_addr, uint16_t peer_id, uint16_t hw_peer_id, uint8_t vdev_id) { struct dp_peer *peer; QDF_ASSERT(peer_id <= soc->max_peers); /* check if there's already a peer object with this MAC address */ peer = dp_peer_find_hash_find(soc, peer_mac_addr, 0 /* is aligned */, vdev_id); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: peer %pK ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, peer, peer_id, vdev_id, peer_mac_addr[0], peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3], peer_mac_addr[4], peer_mac_addr[5]); if (peer) { /* peer's ref count was already incremented by * peer_find_hash_find */ QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: ref_cnt: %d", __func__, qdf_atomic_read(&peer->ref_cnt)); soc->peer_id_to_obj_map[peer_id] = peer; if (dp_peer_find_add_id_to_obj(peer, peer_id)) { /* TBDXXX: assert for now */ QDF_ASSERT(0); } return peer; } return NULL; } /** * dp_rx_peer_map_handler() - handle peer map event from firmware * @soc_handle - genereic soc handle * @peeri_id - peer_id from firmware * @hw_peer_id - ast index for this peer * vdev_id - vdev ID * peer_mac_addr - macc assress of the peer * * associate the peer_id that firmware provided with peer entry * and update the ast table in the host with the hw_peer_id. * * Return: none */ void dp_rx_peer_map_handler(void *soc_handle, uint16_t peer_id, uint16_t hw_peer_id, uint8_t vdev_id, uint8_t *peer_mac_addr) { struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_peer *peer = NULL; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "peer_map_event (soc:%pK): peer_id %di, hw_peer_id %d, peer_mac " "%02x:%02x:%02x:%02x:%02x:%02x, vdev_id %d\n", soc, peer_id, hw_peer_id, peer_mac_addr[0], peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3], peer_mac_addr[4], peer_mac_addr[5], vdev_id); peer = soc->peer_id_to_obj_map[peer_id]; if ((hw_peer_id < 0) || (hw_peer_id > (WLAN_UMAC_PSOC_MAX_PEERS * 2))) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "invalid hw_peer_id: %d", hw_peer_id); qdf_assert_always(0); } /* * check if peer already exists for this peer_id, if so * this peer map event is in response for a wds peer add * wmi command sent during wds source port learning. * in this case just add the ast entry to the existing * peer ast_list. */ if (!peer) peer = dp_peer_find_add_id(soc, peer_mac_addr, peer_id, hw_peer_id, vdev_id); if (peer) { qdf_assert_always(peer->vdev); /* * For every peer MAp message search and set if bss_peer */ if (!(qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw, DP_MAC_ADDR_LEN))) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH, "vdev bss_peer!!!!"); peer->bss_peer = 1; peer->vdev->vap_bss_peer = peer; } } dp_peer_map_ast(soc, peer, peer_mac_addr, hw_peer_id, vdev_id); } void dp_rx_peer_unmap_handler(void *soc_handle, uint16_t peer_id) { struct dp_peer *peer; struct dp_soc *soc = (struct dp_soc *)soc_handle; uint8_t i; peer = __dp_peer_find_by_id(soc, peer_id); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "peer_unmap_event (soc:%pK) peer_id %d peer %pK\n", soc, peer_id, peer); /* * Currently peer IDs are assigned for vdevs as well as peers. * If the peer ID is for a vdev, then the peer pointer stored * in peer_id_to_obj_map will be NULL. */ if (!peer) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Received unmap event for invalid peer_id" " %u\n", __func__, peer_id); return; } soc->peer_id_to_obj_map[peer_id] = NULL; for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) { if (peer->peer_ids[i] == peer_id) { peer->peer_ids[i] = HTT_INVALID_PEER; break; } } if (soc->cdp_soc.ol_ops->peer_unmap_event) { soc->cdp_soc.ol_ops->peer_unmap_event(soc->ctrl_psoc, peer_id); } /* * Remove a reference to the peer. * If there are no more references, delete the peer object. */ dp_peer_unref_delete(peer); } void dp_peer_find_detach(struct dp_soc *soc) { dp_peer_find_map_detach(soc); dp_peer_find_hash_detach(soc); dp_peer_ast_hash_detach(soc); } static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt; if ((reo_status->rx_queue_status.header.status != HAL_REO_CMD_SUCCESS) && (reo_status->rx_queue_status.header.status != HAL_REO_CMD_DRAIN)) { /* Should not happen normally. Just print error for now */ QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Rx tid HW desc update failed(%d): tid %d\n", __func__, reo_status->rx_queue_status.header.status, rx_tid->tid); } } /* * dp_find_peer_by_addr - find peer instance by mac address * @dev: physical device instance * @peer_mac_addr: peer mac address * @local_id: local id for the peer * * Return: peer instance pointer */ void *dp_find_peer_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr, uint8_t *local_id) { struct dp_pdev *pdev = (struct dp_pdev *)dev; struct dp_peer *peer; peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, DP_VDEV_ALL); if (!peer) return NULL; /* Multiple peer ids? How can know peer id? */ *local_id = peer->local_id; DP_TRACE(INFO, "%s: peer %pK id %d", __func__, peer, *local_id); /* ref_cnt is incremented inside dp_peer_find_hash_find(). * Decrement it here. */ qdf_atomic_dec(&peer->ref_cnt); return peer; } /* * dp_rx_tid_update_wifi3() – Update receive TID state * @peer: Datapath peer handle * @tid: TID * @ba_window_size: BlockAck window size * @start_seq: Starting sequence number * * Return: 0 on success, error code on failure */ static int dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t ba_window_size, uint32_t start_seq) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.upd_queue_params.update_ba_window_size = 1; params.u.upd_queue_params.ba_window_size = ba_window_size; if (start_seq < IEEE80211_SEQ_MAX) { params.u.upd_queue_params.update_ssn = 1; params.u.upd_queue_params.ssn = start_seq; } dp_set_ssn_valid_flag(¶ms, 0); dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_update_cb, rx_tid); return 0; } /* * dp_reo_desc_free() - Callback free reo descriptor memory after * HW cache flush * * @soc: DP SOC handle * @cb_ctxt: Callback context * @reo_status: REO command status */ static void dp_reo_desc_free(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct reo_desc_list_node *freedesc = (struct reo_desc_list_node *)cb_ctxt; struct dp_rx_tid *rx_tid = &freedesc->rx_tid; if ((reo_status->fl_cache_status.header.status != HAL_REO_CMD_SUCCESS) && (reo_status->fl_cache_status.header.status != HAL_REO_CMD_DRAIN)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Rx tid HW desc flush failed(%d): tid %d\n", __func__, reo_status->rx_queue_status.header.status, freedesc->rx_tid.tid); } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "%s: hw_qdesc_paddr: %pK, tid:%d\n", __func__, (void *)(rx_tid->hw_qdesc_paddr), rx_tid->tid); qdf_mem_unmap_nbytes_single(soc->osdev, rx_tid->hw_qdesc_paddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size); qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); qdf_mem_free(freedesc); } #if defined(QCA_WIFI_QCA8074) && defined(BUILD_X86) /* Hawkeye emulation requires bus address to be >= 0x50000000 */ static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr) { if (dma_addr < 0x50000000) return QDF_STATUS_E_FAILURE; else return QDF_STATUS_SUCCESS; } #else static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr) { return QDF_STATUS_SUCCESS; } #endif /* * dp_rx_tid_setup_wifi3() – Setup receive TID state * @peer: Datapath peer handle * @tid: TID * @ba_window_size: BlockAck window size * @start_seq: Starting sequence number * * Return: 0 on success, error code on failure */ int dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid, uint32_t ba_window_size, uint32_t start_seq) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; struct dp_vdev *vdev = peer->vdev; struct dp_soc *soc = vdev->pdev->soc; uint32_t hw_qdesc_size; uint32_t hw_qdesc_align; int hal_pn_type; void *hw_qdesc_vaddr; uint32_t alloc_tries = 0; if (peer->delete_in_progress) return QDF_STATUS_E_FAILURE; rx_tid->ba_win_size = ba_window_size; if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) return dp_rx_tid_update_wifi3(peer, tid, ba_window_size, start_seq); rx_tid->num_of_addba_req = 0; rx_tid->num_of_delba_req = 0; rx_tid->num_of_addba_resp = 0; #ifdef notyet hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size); #else /* TODO: Allocating HW queue descriptors based on max BA window size * for all QOS TIDs so that same descriptor can be used later when * ADDBA request is recevied. This should be changed to allocate HW * queue descriptors based on BA window size being negotiated (0 for * non BA cases), and reallocate when BA window size changes and also * send WMI message to FW to change the REO queue descriptor in Rx * peer entry as part of dp_rx_tid_update. */ if (tid != DP_NON_QOS_TID) hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, HAL_RX_MAX_BA_WINDOW); else hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size); #endif hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc); /* To avoid unnecessary extra allocation for alignment, try allocating * exact size and see if we already have aligned address. */ rx_tid->hw_qdesc_alloc_size = hw_qdesc_size; try_desc_alloc: rx_tid->hw_qdesc_vaddr_unaligned = qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size); if (!rx_tid->hw_qdesc_vaddr_unaligned) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Rx tid HW desc alloc failed: tid %d\n", __func__, tid); return QDF_STATUS_E_NOMEM; } if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) % hw_qdesc_align) { /* Address allocated above is not alinged. Allocate extra * memory for alignment */ qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); rx_tid->hw_qdesc_vaddr_unaligned = qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size + hw_qdesc_align - 1); if (!rx_tid->hw_qdesc_vaddr_unaligned) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Rx tid HW desc alloc failed: tid %d\n", __func__, tid); return QDF_STATUS_E_NOMEM; } hw_qdesc_vaddr = (void *)qdf_align((unsigned long) rx_tid->hw_qdesc_vaddr_unaligned, hw_qdesc_align); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "%s: Total Size %d Aligned Addr %pK\n", __func__, rx_tid->hw_qdesc_alloc_size, hw_qdesc_vaddr); } else { hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned; } /* TODO: Ensure that sec_type is set before ADDBA is received. * Currently this is set based on htt indication * HTT_T2H_MSG_TYPE_SEC_IND from target */ switch (peer->security[dp_sec_ucast].sec_type) { case cdp_sec_type_tkip_nomic: case cdp_sec_type_aes_ccmp: case cdp_sec_type_aes_ccmp_256: case cdp_sec_type_aes_gcmp: case cdp_sec_type_aes_gcmp_256: hal_pn_type = HAL_PN_WPA; break; case cdp_sec_type_wapi: if (vdev->opmode == wlan_op_mode_ap) hal_pn_type = HAL_PN_WAPI_EVEN; else hal_pn_type = HAL_PN_WAPI_UNEVEN; break; default: hal_pn_type = HAL_PN_NONE; break; } hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq, hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type); qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size, &(rx_tid->hw_qdesc_paddr)); if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) != QDF_STATUS_SUCCESS) { if (alloc_tries++ < 10) goto try_desc_alloc; else { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Rx tid HW desc alloc failed (lowmem): tid %d\n", __func__, tid); return QDF_STATUS_E_NOMEM; } } if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) { soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup( vdev->pdev->osif_pdev, peer->vdev->vdev_id, peer->mac_addr.raw, rx_tid->hw_qdesc_paddr, tid, tid); } return 0; } /* * dp_rx_tid_delete_cb() - Callback to flush reo descriptor HW cache * after deleting the entries (ie., setting valid=0) * * @soc: DP SOC handle * @cb_ctxt: Callback context * @reo_status: REO command status */ static void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct reo_desc_list_node *freedesc = (struct reo_desc_list_node *)cb_ctxt; uint32_t list_size; struct reo_desc_list_node *desc; unsigned long curr_ts = qdf_get_system_timestamp(); uint32_t desc_size, tot_desc_size; struct hal_reo_cmd_params params; if (reo_status->rx_queue_status.header.status == HAL_REO_CMD_DRAIN) { qdf_mem_zero(reo_status, sizeof(*reo_status)); reo_status->fl_cache_status.header.status = HAL_REO_CMD_DRAIN; dp_reo_desc_free(soc, (void *)freedesc, reo_status); return; } else if (reo_status->rx_queue_status.header.status != HAL_REO_CMD_SUCCESS) { /* Should not happen normally. Just print error for now */ QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Rx tid HW desc deletion failed(%d): tid %d\n", __func__, reo_status->rx_queue_status.header.status, freedesc->rx_tid.tid); } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW, "%s: rx_tid: %d status: %d\n", __func__, freedesc->rx_tid.tid, reo_status->rx_queue_status.header.status); qdf_spin_lock_bh(&soc->reo_desc_freelist_lock); freedesc->free_ts = curr_ts; qdf_list_insert_back_size(&soc->reo_desc_freelist, (qdf_list_node_t *)freedesc, &list_size); while ((qdf_list_peek_front(&soc->reo_desc_freelist, (qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) && ((list_size >= REO_DESC_FREELIST_SIZE) || ((curr_ts - desc->free_ts) > REO_DESC_FREE_DEFER_MS))) { struct dp_rx_tid *rx_tid; qdf_list_remove_front(&soc->reo_desc_freelist, (qdf_list_node_t **)&desc); list_size--; rx_tid = &desc->rx_tid; /* Flush and invalidate REO descriptor from HW cache: Base and * extension descriptors should be flushed separately */ tot_desc_size = hal_get_reo_qdesc_size(soc->hal_soc, rx_tid->ba_win_size); desc_size = hal_get_reo_qdesc_size(soc->hal_soc, 0); /* Flush reo extension descriptors */ while ((tot_desc_size -= desc_size) > 0) { qdf_mem_zero(¶ms, sizeof(params)); params.std.addr_lo = ((uint64_t)(rx_tid->hw_qdesc_paddr) + tot_desc_size) & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, NULL, NULL)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: fail to send CMD_CACHE_FLUSH:" "tid %d desc %pK\n", __func__, rx_tid->tid, (void *)(rx_tid->hw_qdesc_paddr)); } } /* Flush base descriptor */ qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = (uint64_t)(rx_tid->hw_qdesc_paddr) & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, dp_reo_desc_free, (void *)desc)) { union hal_reo_status reo_status; /* * If dp_reo_send_cmd return failure, related TID queue desc * should be unmapped. Also locally reo_desc, together with * TID queue desc also need to be freed accordingly. * * Here invoke desc_free function directly to do clean up. */ QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: fail to send REO cmd to flush cache: tid %d\n", __func__, rx_tid->tid); qdf_mem_zero(&reo_status, sizeof(reo_status)); reo_status.fl_cache_status.header.status = 0; dp_reo_desc_free(soc, (void *)desc, &reo_status); } } qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock); } /* * dp_rx_tid_delete_wifi3() – Delete receive TID queue * @peer: Datapath peer handle * @tid: TID * * Return: 0 on success, error code on failure */ static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid) { struct dp_rx_tid *rx_tid = &(peer->rx_tid[tid]); struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; struct reo_desc_list_node *freedesc = qdf_mem_malloc(sizeof(*freedesc)); if (!freedesc) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: malloc failed for freedesc: tid %d\n", __func__, tid); return -ENOMEM; } freedesc->rx_tid = *rx_tid; qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 0; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.upd_queue_params.update_vld = 1; params.u.upd_queue_params.vld = 0; dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_delete_cb, (void *)freedesc); rx_tid->hw_qdesc_vaddr_unaligned = NULL; rx_tid->hw_qdesc_alloc_size = 0; rx_tid->hw_qdesc_paddr = 0; return 0; } #ifdef DP_LFR static void dp_peer_setup_remaining_tids(struct dp_peer *peer) { int tid; for (tid = 1; tid < DP_MAX_TIDS-1; tid++) { dp_rx_tid_setup_wifi3(peer, tid, 1, 0); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "Setting up TID %d for peer %pK peer->local_id %d\n", tid, peer, peer->local_id); } } #else static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {}; #endif /* * dp_peer_rx_init() – Initialize receive TID state * @pdev: Datapath pdev * @peer: Datapath peer * */ void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer) { int tid; struct dp_rx_tid *rx_tid; for (tid = 0; tid < DP_MAX_TIDS; tid++) { rx_tid = &peer->rx_tid[tid]; rx_tid->array = &rx_tid->base; rx_tid->base.head = rx_tid->base.tail = NULL; rx_tid->tid = tid; rx_tid->defrag_timeout_ms = 0; rx_tid->ba_win_size = 0; rx_tid->ba_status = DP_RX_BA_INACTIVE; rx_tid->defrag_waitlist_elem.tqe_next = NULL; rx_tid->defrag_waitlist_elem.tqe_prev = NULL; #ifdef notyet /* TODO: See if this is required for exception handling */ /* invalid sequence number */ peer->tids_last_seq[tid] = 0xffff; #endif } /* Setup default (non-qos) rx tid queue */ dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0); /* Setup rx tid queue for TID 0. * Other queues will be setup on receiving first packet, which will cause * NULL REO queue error */ dp_rx_tid_setup_wifi3(peer, 0, 1, 0); /* * Setup the rest of TID's to handle LFR */ dp_peer_setup_remaining_tids(peer); /* * Set security defaults: no PN check, no security. The target may * send a HTT SEC_IND message to overwrite these defaults. */ peer->security[dp_sec_ucast].sec_type = peer->security[dp_sec_mcast].sec_type = cdp_sec_type_none; } /* * dp_peer_rx_cleanup() – Cleanup receive TID state * @vdev: Datapath vdev * @peer: Datapath peer * */ void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer) { int tid; uint32_t tid_delete_mask = 0; for (tid = 0; tid < DP_MAX_TIDS; tid++) { if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned != NULL) { dp_rx_tid_delete_wifi3(peer, tid); tid_delete_mask |= (1 << tid); } } #ifdef notyet /* See if FW can remove queues as part of peer cleanup */ if (soc->ol_ops->peer_rx_reorder_queue_remove) { soc->ol_ops->peer_rx_reorder_queue_remove(vdev->pdev->osif_pdev, peer->vdev->vdev_id, peer->mac_addr.raw, tid_delete_mask); } #endif } /* * dp_peer_cleanup() – Cleanup peer information * @vdev: Datapath vdev * @peer: Datapath peer * */ void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer) { peer->last_assoc_rcvd = 0; peer->last_disassoc_rcvd = 0; peer->last_deauth_rcvd = 0; /* cleanup the Rx reorder queues for this peer */ dp_peer_rx_cleanup(vdev, peer); } /* * dp_rx_addba_requestprocess_wifi3() – Process ADDBA request from peer * * @peer: Datapath peer handle * @dialogtoken: dialogtoken from ADDBA frame * @tid: TID number * @startseqnum: Start seq. number received in BA sequence control * in ADDBA frame * * Return: 0 on success, error code on failure */ int dp_addba_requestprocess_wifi3(void *peer_handle, uint8_t dialogtoken, uint16_t tid, uint16_t batimeout, uint16_t buffersize, uint16_t startseqnum) { struct dp_peer *peer = (struct dp_peer *)peer_handle; struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; if ((rx_tid->ba_status == DP_RX_BA_ACTIVE) && (rx_tid->hw_qdesc_vaddr_unaligned != NULL)) rx_tid->ba_status = DP_RX_BA_INACTIVE; if (dp_rx_tid_setup_wifi3(peer, tid, buffersize, startseqnum)) { /* TODO: Should we send addba reject in this case */ return QDF_STATUS_E_FAILURE; } if (rx_tid->userstatuscode != IEEE80211_STATUS_SUCCESS) rx_tid->statuscode = rx_tid->userstatuscode; else rx_tid->statuscode = IEEE80211_STATUS_SUCCESS; rx_tid->dialogtoken = dialogtoken; rx_tid->ba_status = DP_RX_BA_ACTIVE; rx_tid->num_of_addba_req++; return 0; } /* * dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer * * @peer: Datapath peer handle * @tid: TID number * @dialogtoken: output dialogtoken * @statuscode: output dialogtoken * @buffersize: Output BA window size * @batimeout: Output BA timeout */ void dp_addba_responsesetup_wifi3(void *peer_handle, uint8_t tid, uint8_t *dialogtoken, uint16_t *statuscode, uint16_t *buffersize, uint16_t *batimeout) { struct dp_peer *peer = (struct dp_peer *)peer_handle; struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; rx_tid->num_of_addba_resp++; /* setup ADDBA response parameters */ *dialogtoken = rx_tid->dialogtoken; *statuscode = rx_tid->statuscode; *buffersize = rx_tid->ba_win_size; *batimeout = 0; } /* * dp_set_addba_response() – Set a user defined ADDBA response status code * * @peer: Datapath peer handle * @tid: TID number * @statuscode: response status code to be set */ void dp_set_addba_response(void *peer_handle, uint8_t tid, uint16_t statuscode) { struct dp_peer *peer = (struct dp_peer *)peer_handle; struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; rx_tid->userstatuscode = statuscode; } /* * dp_rx_delba_process_wifi3() – Process DELBA from peer * @peer: Datapath peer handle * @tid: TID number * @reasoncode: Reason code received in DELBA frame * * Return: 0 on success, error code on failure */ int dp_delba_process_wifi3(void *peer_handle, int tid, uint16_t reasoncode) { struct dp_peer *peer = (struct dp_peer *)peer_handle; struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; if (rx_tid->ba_status != DP_RX_BA_ACTIVE) return QDF_STATUS_E_FAILURE; /* TODO: See if we can delete the existing REO queue descriptor and * replace with a new one without queue extenstion descript to save * memory */ rx_tid->num_of_delba_req++; dp_rx_tid_update_wifi3(peer, tid, 1, 0); rx_tid->ba_status = DP_RX_BA_INACTIVE; return 0; } void dp_rx_discard(struct dp_vdev *vdev, struct dp_peer *peer, unsigned tid, qdf_nbuf_t msdu_list) { while (msdu_list) { qdf_nbuf_t msdu = msdu_list; msdu_list = qdf_nbuf_next(msdu_list); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "discard rx %pK from partly-deleted peer %pK " "(%02x:%02x:%02x:%02x:%02x:%02x)\n", msdu, peer, peer->mac_addr.raw[0], peer->mac_addr.raw[1], peer->mac_addr.raw[2], peer->mac_addr.raw[3], peer->mac_addr.raw[4], peer->mac_addr.raw[5]); qdf_nbuf_free(msdu); } } /** * dp_set_pn_check_wifi3() - enable PN check in REO for security * @peer: Datapath peer handle * @vdev: Datapath vdev * @pdev - data path device instance * @sec_type - security type * @rx_pn - Receive pn starting number * */ void dp_set_pn_check_wifi3(struct cdp_vdev *vdev_handle, struct cdp_peer *peer_handle, enum cdp_sec_type sec_type, uint32_t *rx_pn) { struct dp_peer *peer = (struct dp_peer *)peer_handle; struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle; struct dp_pdev *pdev; struct dp_soc *soc; int i; uint8_t pn_size; struct hal_reo_cmd_params params; /* preconditions */ qdf_assert(vdev); pdev = vdev->pdev; soc = pdev->soc; qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.u.upd_queue_params.update_pn_valid = 1; params.u.upd_queue_params.update_pn_size = 1; params.u.upd_queue_params.update_pn = 1; params.u.upd_queue_params.update_pn_check_needed = 1; peer->security[dp_sec_ucast].sec_type = sec_type; switch (sec_type) { case cdp_sec_type_tkip_nomic: case cdp_sec_type_aes_ccmp: case cdp_sec_type_aes_ccmp_256: case cdp_sec_type_aes_gcmp: case cdp_sec_type_aes_gcmp_256: params.u.upd_queue_params.pn_check_needed = 1; params.u.upd_queue_params.pn_size = 48; pn_size = 48; break; case cdp_sec_type_wapi: params.u.upd_queue_params.pn_check_needed = 1; params.u.upd_queue_params.pn_size = 128; pn_size = 128; if (vdev->opmode == wlan_op_mode_ap) { params.u.upd_queue_params.pn_even = 1; params.u.upd_queue_params.update_pn_even = 1; } else { params.u.upd_queue_params.pn_uneven = 1; params.u.upd_queue_params.update_pn_uneven = 1; } break; default: params.u.upd_queue_params.pn_check_needed = 0; pn_size = 0; break; } for (i = 0; i < DP_MAX_TIDS; i++) { struct dp_rx_tid *rx_tid = &peer->rx_tid[i]; if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) { params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (sec_type != cdp_sec_type_wapi) { params.u.upd_queue_params.update_pn_valid = 0; } else { /* * Setting PN valid bit for WAPI sec_type, * since WAPI PN has to be started with * predefined value */ params.u.upd_queue_params.update_pn_valid = 1; params.u.upd_queue_params.pn_31_0 = rx_pn[0]; params.u.upd_queue_params.pn_63_32 = rx_pn[1]; params.u.upd_queue_params.pn_95_64 = rx_pn[2]; params.u.upd_queue_params.pn_127_96 = rx_pn[3]; } rx_tid->pn_size = pn_size; dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_update_cb, rx_tid); } else { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "PN Check not setup for TID :%d \n", i); } } } void dp_rx_sec_ind_handler(void *soc_handle, uint16_t peer_id, enum htt_sec_type sec_type, int is_unicast, u_int32_t *michael_key, u_int32_t *rx_pn) { struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_peer *peer; int sec_index; peer = dp_peer_find_by_id(soc, peer_id); if (!peer) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Couldn't find peer from ID %d - skipping security inits\n", peer_id); return; } QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "sec spec for peer %pK (%02x:%02x:%02x:%02x:%02x:%02x): " "%s key of type %d\n", peer, peer->mac_addr.raw[0], peer->mac_addr.raw[1], peer->mac_addr.raw[2], peer->mac_addr.raw[3], peer->mac_addr.raw[4], peer->mac_addr.raw[5], is_unicast ? "ucast" : "mcast", sec_type); sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast; peer->security[sec_index].sec_type = sec_type; #ifdef notyet /* TODO: See if this is required for defrag support */ /* michael key only valid for TKIP, but for simplicity, * copy it anyway */ qdf_mem_copy( &peer->security[sec_index].michael_key[0], michael_key, sizeof(peer->security[sec_index].michael_key)); #ifdef BIG_ENDIAN_HOST OL_IF_SWAPBO(peer->security[sec_index].michael_key[0], sizeof(peer->security[sec_index].michael_key)); #endif /* BIG_ENDIAN_HOST */ #endif #ifdef notyet /* TODO: Check if this is required for wifi3.0 */ if (sec_type != htt_sec_type_wapi) { qdf_mem_set(peer->tids_last_pn_valid, _EXT_TIDS, 0x00); } else { for (i = 0; i < DP_MAX_TIDS; i++) { /* * Setting PN valid bit for WAPI sec_type, * since WAPI PN has to be started with predefined value */ peer->tids_last_pn_valid[i] = 1; qdf_mem_copy( (u_int8_t *) &peer->tids_last_pn[i], (u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t)); peer->tids_last_pn[i].pn128[1] = qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]); peer->tids_last_pn[i].pn128[0] = qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]); } } #endif /* TODO: Update HW TID queue with PN check parameters (pn type for * all security types and last pn for WAPI) once REO command API * is available */ } #ifndef CONFIG_WIN /** * dp_register_peer() - Register peer into physical device * @pdev - data path device instance * @sta_desc - peer description * * Register peer into physical device * * Return: QDF_STATUS_SUCCESS registration success * QDF_STATUS_E_FAULT peer not found */ QDF_STATUS dp_register_peer(struct cdp_pdev *pdev_handle, struct ol_txrx_desc_type *sta_desc) { struct dp_peer *peer; struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, sta_desc->sta_id); if (!peer) return QDF_STATUS_E_FAULT; qdf_spin_lock_bh(&peer->peer_info_lock); peer->state = OL_TXRX_PEER_STATE_CONN; qdf_spin_unlock_bh(&peer->peer_info_lock); return QDF_STATUS_SUCCESS; } /** * dp_clear_peer() - remove peer from physical device * @pdev - data path device instance * @sta_id - local peer id * * remove peer from physical device * * Return: QDF_STATUS_SUCCESS registration success * QDF_STATUS_E_FAULT peer not found */ QDF_STATUS dp_clear_peer(struct cdp_pdev *pdev_handle, uint8_t local_id) { struct dp_peer *peer; struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, local_id); if (!peer) return QDF_STATUS_E_FAULT; qdf_spin_lock_bh(&peer->peer_info_lock); peer->state = OL_TXRX_PEER_STATE_DISC; qdf_spin_unlock_bh(&peer->peer_info_lock); return QDF_STATUS_SUCCESS; } /** * dp_find_peer_by_addr_and_vdev() - Find peer by peer mac address within vdev * @pdev - data path device instance * @vdev - virtual interface instance * @peer_addr - peer mac address * @peer_id - local peer id with target mac address * * Find peer by peer mac address within vdev * * Return: peer instance void pointer * NULL cannot find target peer */ void *dp_find_peer_by_addr_and_vdev(struct cdp_pdev *pdev_handle, struct cdp_vdev *vdev_handle, uint8_t *peer_addr, uint8_t *local_id) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle; struct dp_peer *peer; DP_TRACE(INFO, "vdev %pK peer_addr %pK", vdev, peer_addr); peer = dp_peer_find_hash_find(pdev->soc, peer_addr, 0, 0); DP_TRACE(INFO, "peer %pK vdev %pK", peer, vdev); if (!peer) return NULL; if (peer->vdev != vdev) return NULL; *local_id = peer->local_id; DP_TRACE(INFO, "peer %pK vdev %pK local id %d", peer, vdev, *local_id); /* ref_cnt is incremented inside dp_peer_find_hash_find(). * Decrement it here. */ qdf_atomic_dec(&peer->ref_cnt); return peer; } /** * dp_local_peer_id() - Find local peer id within peer instance * @peer - peer instance * * Find local peer id within peer instance * * Return: local peer id */ uint16_t dp_local_peer_id(void *peer) { return ((struct dp_peer *)peer)->local_id; } /** * dp_peer_find_by_local_id() - Find peer by local peer id * @pdev - data path device instance * @local_peer_id - local peer id want to find * * Find peer by local peer id within physical device * * Return: peer instance void pointer * NULL cannot find target peer */ void *dp_peer_find_by_local_id(struct cdp_pdev *pdev_handle, uint8_t local_id) { struct dp_peer *peer; struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; qdf_spin_lock_bh(&pdev->local_peer_ids.lock); peer = pdev->local_peer_ids.map[local_id]; qdf_spin_unlock_bh(&pdev->local_peer_ids.lock); DP_TRACE(DEBUG, "peer %pK local id %d", peer, local_id); return peer; } /** * dp_peer_state_update() - update peer local state * @pdev - data path device instance * @peer_addr - peer mac address * @state - new peer local state * * update peer local state * * Return: QDF_STATUS_SUCCESS registration success */ QDF_STATUS dp_peer_state_update(struct cdp_pdev *pdev_handle, uint8_t *peer_mac, enum ol_txrx_peer_state state) { struct dp_peer *peer; struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; peer = dp_peer_find_hash_find(pdev->soc, peer_mac, 0, DP_VDEV_ALL); if (NULL == peer) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Failed to find peer for: [%pM]", peer_mac); return QDF_STATUS_E_FAILURE; } peer->state = state; DP_TRACE(INFO, "peer %pK state %d", peer, peer->state); /* ref_cnt is incremented inside dp_peer_find_hash_find(). * Decrement it here. */ qdf_atomic_dec(&peer->ref_cnt); return QDF_STATUS_SUCCESS; } /** * dp_get_vdevid() - Get virtual interface id which peer registered * @peer - peer instance * @vdev_id - virtual interface id which peer registered * * Get virtual interface id which peer registered * * Return: QDF_STATUS_SUCCESS registration success */ QDF_STATUS dp_get_vdevid(void *peer_handle, uint8_t *vdev_id) { struct dp_peer *peer = peer_handle; DP_TRACE(INFO, "peer %pK vdev %pK vdev id %d", peer, peer->vdev, peer->vdev->vdev_id); *vdev_id = peer->vdev->vdev_id; return QDF_STATUS_SUCCESS; } struct cdp_vdev *dp_get_vdev_by_sta_id(struct cdp_pdev *pdev_handle, uint8_t sta_id) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; struct dp_peer *peer = NULL; if (sta_id >= WLAN_MAX_STA_COUNT) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "Invalid sta id passed"); return NULL; } if (!pdev) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "PDEV not found for sta_id [%d]", sta_id); return NULL; } peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, sta_id); if (!peer) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "PEER [%d] not found", sta_id); return NULL; } return (struct cdp_vdev *)peer->vdev; } /** * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs * @peer - peer instance * * Get virtual interface instance which peer belongs * * Return: virtual interface instance pointer * NULL in case cannot find */ struct cdp_vdev *dp_get_vdev_for_peer(void *peer_handle) { struct dp_peer *peer = peer_handle; DP_TRACE(INFO, "peer %pK vdev %pK", peer, peer->vdev); return (struct cdp_vdev *)peer->vdev; } /** * dp_peer_get_peer_mac_addr() - Get peer mac address * @peer - peer instance * * Get peer mac address * * Return: peer mac address pointer * NULL in case cannot find */ uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle) { struct dp_peer *peer = peer_handle; uint8_t *mac; mac = peer->mac_addr.raw; DP_TRACE(INFO, "peer %pK mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x", peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); return peer->mac_addr.raw; } /** * dp_get_peer_state() - Get local peer state * @peer - peer instance * * Get local peer state * * Return: peer status */ int dp_get_peer_state(void *peer_handle) { struct dp_peer *peer = peer_handle; DP_TRACE(DEBUG, "peer %pK stats %d", peer, peer->state); return peer->state; } /** * dp_get_last_assoc_received() - get time of last assoc received * @peer_handle: peer handle * * Return: pointer for the time of last assoc received */ qdf_time_t *dp_get_last_assoc_received(void *peer_handle) { struct dp_peer *peer = peer_handle; DP_TRACE(INFO, "peer %pK last_assoc_rcvd: %lu", peer, peer->last_assoc_rcvd); return &peer->last_assoc_rcvd; } /** * dp_get_last_disassoc_received() - get time of last disassoc received * @peer_handle: peer handle * * Return: pointer for the time of last disassoc received */ qdf_time_t *dp_get_last_disassoc_received(void *peer_handle) { struct dp_peer *peer = peer_handle; DP_TRACE(INFO, "peer %pK last_disassoc_rcvd: %lu", peer, peer->last_disassoc_rcvd); return &peer->last_disassoc_rcvd; } /** * dp_get_last_deauth_received() - get time of last deauth received * @peer_handle: peer handle * * Return: pointer for the time of last deauth received */ qdf_time_t *dp_get_last_deauth_received(void *peer_handle) { struct dp_peer *peer = peer_handle; DP_TRACE(INFO, "peer %pK last_deauth_rcvd: %lu", peer, peer->last_deauth_rcvd); return &peer->last_deauth_rcvd; } /** * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device * @pdev - data path device instance * * local peer id pool alloc for physical device * * Return: none */ void dp_local_peer_id_pool_init(struct dp_pdev *pdev) { int i; /* point the freelist to the first ID */ pdev->local_peer_ids.freelist = 0; /* link each ID to the next one */ for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) { pdev->local_peer_ids.pool[i] = i + 1; pdev->local_peer_ids.map[i] = NULL; } /* link the last ID to itself, to mark the end of the list */ i = OL_TXRX_NUM_LOCAL_PEER_IDS; pdev->local_peer_ids.pool[i] = i; qdf_spinlock_create(&pdev->local_peer_ids.lock); DP_TRACE(INFO, "Peer pool init"); } /** * dp_local_peer_id_alloc() - allocate local peer id * @pdev - data path device instance * @peer - new peer instance * * allocate local peer id * * Return: none */ void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer) { int i; qdf_spin_lock_bh(&pdev->local_peer_ids.lock); i = pdev->local_peer_ids.freelist; if (pdev->local_peer_ids.pool[i] == i) { /* the list is empty, except for the list-end marker */ peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID; } else { /* take the head ID and advance the freelist */ peer->local_id = i; pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i]; pdev->local_peer_ids.map[i] = peer; } qdf_spin_unlock_bh(&pdev->local_peer_ids.lock); DP_TRACE(INFO, "peer %pK, local id %d", peer, peer->local_id); } /** * dp_local_peer_id_free() - remove local peer id * @pdev - data path device instance * @peer - peer instance should be removed * * remove local peer id * * Return: none */ void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer) { int i = peer->local_id; if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) || (i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) { return; } /* put this ID on the head of the freelist */ qdf_spin_lock_bh(&pdev->local_peer_ids.lock); pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist; pdev->local_peer_ids.freelist = i; pdev->local_peer_ids.map[i] = NULL; qdf_spin_unlock_bh(&pdev->local_peer_ids.lock); } #endif /** * dp_get_peer_mac_addr_frm_id(): get mac address of the peer * @soc_handle: DP SOC handle * @peer_id:peer_id of the peer * * return: vdev_id of the vap */ uint8_t dp_get_peer_mac_addr_frm_id(struct cdp_soc_t *soc_handle, uint16_t peer_id, uint8_t *peer_mac) { struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_peer *peer; peer = dp_peer_find_by_id(soc, peer_id); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "soc %pK peer_id %d", soc, peer_id); if (!peer) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "peer not found "); return CDP_INVALID_VDEV_ID; } qdf_mem_copy(peer_mac, peer->mac_addr.raw, 6); return peer->vdev->vdev_id; } /** * dp_peer_rxtid_stats: Retried Rx TID (REO queue) stats from HW * @peer: DP peer handle * @dp_stats_cmd_cb: REO command callback function * @cb_ctxt: Callback context * * Return: none */ void dp_peer_rxtid_stats(struct dp_peer *peer, void (*dp_stats_cmd_cb), void *cb_ctxt) { struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; int i; if (!dp_stats_cmd_cb) return; qdf_mem_zero(¶ms, sizeof(params)); for (i = 0; i < DP_MAX_TIDS; i++) { struct dp_rx_tid *rx_tid = &peer->rx_tid[i]; if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) { params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (cb_ctxt) { dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS, ¶ms, dp_stats_cmd_cb, cb_ctxt); } else { dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS, ¶ms, dp_stats_cmd_cb, rx_tid); } /* Flush REO descriptor from HW cache to update stats * in descriptor memory. This is to help debugging */ qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 0; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.fl_cache_params.flush_no_inval = 1; dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, NULL, NULL); } } }