/* * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "cdp_txrx_cmn_struct.h" #include "hal_hw_headers.h" #include "dp_types.h" #include "dp_rx.h" #include "dp_tx.h" #include "dp_be_rx.h" #include "dp_peer.h" #include "hal_rx.h" #include "hal_be_rx.h" #include "hal_api.h" #include "hal_be_api.h" #include "qdf_nbuf.h" #include "hal_be_rx_tlv.h" #ifdef MESH_MODE_SUPPORT #include "if_meta_hdr.h" #endif #include "dp_internal.h" #include "dp_ipa.h" #ifdef FEATURE_WDS #include "dp_txrx_wds.h" #endif #include "dp_hist.h" #include "dp_rx_buffer_pool.h" #ifdef WLAN_SUPPORT_RX_FLOW_TAG static inline void dp_rx_update_flow_info(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr) { qdf_nbuf_set_rx_flow_idx_invalid(nbuf, hal_rx_msdu_flow_idx_invalid_be(rx_tlv_hdr)); qdf_nbuf_set_rx_flow_idx_timeout(nbuf, hal_rx_msdu_flow_idx_invalid_be(rx_tlv_hdr)); } #else static inline void dp_rx_update_flow_info(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr) { } #endif #ifndef AST_OFFLOAD_ENABLE static void dp_rx_wds_learn(struct dp_soc *soc, struct dp_vdev *vdev, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf, struct hal_rx_msdu_metadata msdu_metadata) { /* WDS Source Port Learning */ if (qdf_likely(vdev->wds_enabled)) dp_rx_wds_srcport_learn(soc, rx_tlv_hdr, txrx_peer, nbuf, msdu_metadata); } #else #ifdef QCA_SUPPORT_WDS_EXTENDED /** * dp_wds_ext_peer_learn_be() - function to send event to control * path on receiving 1st 4-address frame from backhaul. * @soc: DP soc * @ta_txrx_peer: WDS repeater txrx peer * @rx_tlv_hdr : start address of rx tlvs * @nbuf: RX packet buffer * * Return: void */ static inline void dp_wds_ext_peer_learn_be(struct dp_soc *soc, struct dp_txrx_peer *ta_txrx_peer, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf) { uint8_t wds_ext_src_mac[QDF_MAC_ADDR_SIZE]; struct dp_peer *ta_base_peer; /* instead of checking addr4 is valid or not in per packet path * check for init bit, which will be set on reception of * first addr4 valid packet. */ if (!ta_txrx_peer->vdev->wds_ext_enabled || qdf_atomic_test_bit(WDS_EXT_PEER_INIT_BIT, &ta_txrx_peer->wds_ext.init)) return; if (qdf_nbuf_is_rx_chfrag_start(nbuf) && hal_rx_get_mpdu_mac_ad4_valid_be(rx_tlv_hdr)) { qdf_atomic_test_and_set_bit(WDS_EXT_PEER_INIT_BIT, &ta_txrx_peer->wds_ext.init); ta_base_peer = dp_peer_get_ref_by_id(soc, ta_txrx_peer->peer_id, DP_MOD_ID_RX); if (!ta_base_peer) return; qdf_mem_copy(wds_ext_src_mac, &ta_base_peer->mac_addr.raw[0], QDF_MAC_ADDR_SIZE); dp_peer_unref_delete(ta_base_peer, DP_MOD_ID_RX); soc->cdp_soc.ol_ops->rx_wds_ext_peer_learn( soc->ctrl_psoc, ta_txrx_peer->peer_id, ta_txrx_peer->vdev->vdev_id, wds_ext_src_mac); } } #else static inline void dp_wds_ext_peer_learn_be(struct dp_soc *soc, struct dp_txrx_peer *ta_txrx_peer, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf) { } #endif static void dp_rx_wds_learn(struct dp_soc *soc, struct dp_vdev *vdev, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *ta_txrx_peer, qdf_nbuf_t nbuf, struct hal_rx_msdu_metadata msdu_metadata) { dp_wds_ext_peer_learn_be(soc, ta_txrx_peer, rx_tlv_hdr, nbuf); } #endif #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO) static inline void dp_rx_set_msdu_lmac_id(qdf_nbuf_t nbuf, uint32_t peer_mdata) { uint8_t lmac_id; lmac_id = dp_rx_peer_metadata_lmac_id_get_be(peer_mdata); qdf_nbuf_set_lmac_id(nbuf, lmac_id); } #else static inline void dp_rx_set_msdu_lmac_id(qdf_nbuf_t nbuf, uint32_t peer_mdata) { } #endif /** * dp_rx_process_be() - Brain of the Rx processing functionality * Called from the bottom half (tasklet/NET_RX_SOFTIRQ) * @int_ctx: per interrupt context * @hal_ring_hdl: opaque pointer to the HAL Rx Ring, which will be serviced * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring. * @quota: No. of units (packets) that can be serviced in one shot. * * This function implements the core of Rx functionality. This is * expected to handle only non-error frames. * * Return: uint32_t: No. of elements processed */ uint32_t dp_rx_process_be(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl, uint8_t reo_ring_num, uint32_t quota) { hal_ring_desc_t ring_desc; hal_ring_desc_t last_prefetched_hw_desc; hal_soc_handle_t hal_soc; struct dp_rx_desc *rx_desc = NULL; struct dp_rx_desc *last_prefetched_sw_desc = NULL; qdf_nbuf_t nbuf, next; bool near_full; union dp_rx_desc_list_elem_t *head[WLAN_MAX_MLO_CHIPS][MAX_PDEV_CNT]; union dp_rx_desc_list_elem_t *tail[WLAN_MAX_MLO_CHIPS][MAX_PDEV_CNT]; uint32_t num_pending = 0; uint32_t rx_bufs_used = 0, rx_buf_cookie; uint16_t msdu_len = 0; uint16_t peer_id; uint8_t vdev_id; struct dp_txrx_peer *txrx_peer; dp_txrx_ref_handle txrx_ref_handle = NULL; struct dp_vdev *vdev; uint32_t pkt_len = 0; struct hal_rx_mpdu_desc_info mpdu_desc_info; struct hal_rx_msdu_desc_info msdu_desc_info; enum hal_reo_error_status error; uint32_t peer_mdata; uint8_t *rx_tlv_hdr; uint32_t rx_bufs_reaped[WLAN_MAX_MLO_CHIPS][MAX_PDEV_CNT]; uint8_t mac_id = 0; struct dp_pdev *rx_pdev; bool enh_flag; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; struct dp_soc *soc = int_ctx->soc; struct cdp_tid_rx_stats *tid_stats; qdf_nbuf_t nbuf_head; qdf_nbuf_t nbuf_tail; qdf_nbuf_t deliver_list_head; qdf_nbuf_t deliver_list_tail; uint32_t num_rx_bufs_reaped = 0; uint32_t intr_id; struct hif_opaque_softc *scn; int32_t tid = 0; bool is_prev_msdu_last = true; uint32_t num_entries_avail = 0; uint32_t rx_ol_pkt_cnt = 0; uint32_t num_entries = 0; struct hal_rx_msdu_metadata msdu_metadata; QDF_STATUS status; qdf_nbuf_t ebuf_head; qdf_nbuf_t ebuf_tail; uint8_t pkt_capture_offload = 0; struct dp_srng *rx_ring = &soc->reo_dest_ring[reo_ring_num]; int max_reap_limit, ring_near_full; struct dp_soc *replenish_soc; uint8_t chip_id; uint64_t current_time = 0; uint32_t old_tid; uint32_t peer_ext_stats; uint32_t dsf; DP_HIST_INIT(); qdf_assert_always(soc && hal_ring_hdl); hal_soc = soc->hal_soc; qdf_assert_always(hal_soc); scn = soc->hif_handle; intr_id = int_ctx->dp_intr_id; num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl); dp_runtime_pm_mark_last_busy(soc); more_data: /* reset local variables here to be re-used in the function */ nbuf_head = NULL; nbuf_tail = NULL; deliver_list_head = NULL; deliver_list_tail = NULL; txrx_peer = NULL; vdev = NULL; num_rx_bufs_reaped = 0; ebuf_head = NULL; ebuf_tail = NULL; ring_near_full = 0; max_reap_limit = dp_rx_get_loop_pkt_limit(soc); qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped)); qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info)); qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info)); qdf_mem_zero(head, sizeof(head)); qdf_mem_zero(tail, sizeof(tail)); old_tid = 0xff; dsf = 0; peer_ext_stats = 0; rx_pdev = NULL; tid_stats = NULL; dp_pkt_get_timestamp(¤t_time); ring_near_full = _dp_srng_test_and_update_nf_params(soc, rx_ring, &max_reap_limit); peer_ext_stats = wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx); if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) { /* * Need API to convert from hal_ring pointer to * Ring Type / Ring Id combo */ DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("HAL RING Access Failed -- %pK"), hal_ring_hdl); goto done; } hal_srng_update_ring_usage_wm_no_lock(soc->hal_soc, hal_ring_hdl); if (!num_pending) num_pending = hal_srng_dst_num_valid(hal_soc, hal_ring_hdl, 0); if (num_pending > quota) num_pending = quota; dp_srng_dst_inv_cached_descs(soc, hal_ring_hdl, num_pending); last_prefetched_hw_desc = dp_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl, num_pending); /* * start reaping the buffers from reo ring and queue * them in per vdev queue. * Process the received pkts in a different per vdev loop. */ while (qdf_likely(num_pending)) { ring_desc = dp_srng_dst_get_next(soc, hal_ring_hdl); if (qdf_unlikely(!ring_desc)) break; error = HAL_RX_ERROR_STATUS_GET(ring_desc); if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) { dp_rx_err("%pK: HAL RING 0x%pK:error %d", soc, hal_ring_hdl, error); DP_STATS_INC(soc, rx.err.hal_reo_error[reo_ring_num], 1); /* Don't know how to deal with this -- assert */ qdf_assert(0); } dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc); rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc); status = dp_rx_cookie_check_and_invalidate(ring_desc); if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) { DP_STATS_INC(soc, rx.err.stale_cookie, 1); break; } rx_desc = (struct dp_rx_desc *) hal_rx_get_reo_desc_va(ring_desc); dp_rx_desc_sw_cc_check(soc, rx_buf_cookie, &rx_desc); status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl, ring_desc, rx_desc); if (QDF_IS_STATUS_ERROR(status)) { if (qdf_unlikely(rx_desc && rx_desc->nbuf)) { qdf_assert_always(!rx_desc->unmapped); dp_rx_nbuf_unmap(soc, rx_desc, reo_ring_num); rx_desc->unmapped = 1; dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf, rx_desc->pool_id); dp_rx_add_to_free_desc_list( &head[rx_desc->chip_id][rx_desc->pool_id], &tail[rx_desc->chip_id][rx_desc->pool_id], rx_desc); } hal_srng_dst_get_next(hal_soc, hal_ring_hdl); continue; } /* * this is a unlikely scenario where the host is reaping * a descriptor which it already reaped just a while ago * but is yet to replenish it back to HW. * In this case host will dump the last 128 descriptors * including the software descriptor rx_desc and assert. */ if (qdf_unlikely(!rx_desc->in_use)) { DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1); dp_info_rl("Reaping rx_desc not in use!"); dp_rx_dump_info_and_assert(soc, hal_ring_hdl, ring_desc, rx_desc); /* ignore duplicate RX desc and continue to process */ /* Pop out the descriptor */ hal_srng_dst_get_next(hal_soc, hal_ring_hdl); continue; } status = dp_rx_desc_nbuf_sanity_check(soc, ring_desc, rx_desc); if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) { DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1); dp_info_rl("Nbuf sanity check failure!"); dp_rx_dump_info_and_assert(soc, hal_ring_hdl, ring_desc, rx_desc); rx_desc->in_err_state = 1; hal_srng_dst_get_next(hal_soc, hal_ring_hdl); continue; } if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) { dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie); DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1); dp_rx_dump_info_and_assert(soc, hal_ring_hdl, ring_desc, rx_desc); } /* Get MPDU DESC info */ hal_rx_mpdu_desc_info_get_be(ring_desc, &mpdu_desc_info); /* Get MSDU DESC info */ hal_rx_msdu_desc_info_get_be(ring_desc, &msdu_desc_info); /* Set the end bit to identify the last buffer in MPDU */ if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU) qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1); if (qdf_unlikely(msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)) { /* In dp_rx_sg_create() until the last buffer, * end bit should not be set. As continuation bit set, * this is not a last buffer. */ qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 0); /* previous msdu has end bit set, so current one is * the new MPDU */ if (is_prev_msdu_last) { /* Get number of entries available in HW ring */ num_entries_avail = hal_srng_dst_num_valid(hal_soc, hal_ring_hdl, 1); /* For new MPDU check if we can read complete * MPDU by comparing the number of buffers * available and number of buffers needed to * reap this MPDU */ if ((msdu_desc_info.msdu_len / (RX_DATA_BUFFER_SIZE - soc->rx_pkt_tlv_size) + 1) > num_pending) { DP_STATS_INC(soc, rx.msdu_scatter_wait_break, 1); dp_rx_cookie_reset_invalid_bit( ring_desc); /* As we are going to break out of the * loop because of unavailability of * descs to form complete SG, we need to * reset the TP in the REO destination * ring. */ hal_srng_dst_dec_tp(hal_soc, hal_ring_hdl); break; } is_prev_msdu_last = false; } } if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT) qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1); if (qdf_unlikely(mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RAW_AMPDU)) qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1); if (!is_prev_msdu_last && !(msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)) is_prev_msdu_last = true; rx_bufs_reaped[rx_desc->chip_id][rx_desc->pool_id]++; peer_mdata = mpdu_desc_info.peer_meta_data; QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) = dp_rx_peer_metadata_peer_id_get_be(soc, peer_mdata); QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) = dp_rx_peer_metadata_vdev_id_get_be(soc, peer_mdata); dp_rx_set_msdu_lmac_id(rx_desc->nbuf, peer_mdata); /* to indicate whether this msdu is rx offload */ pkt_capture_offload = DP_PEER_METADATA_OFFLOAD_GET_BE(peer_mdata); /* * save msdu flags first, last and continuation msdu in * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and * length to nbuf->cb. This ensures the info required for * per pkt processing is always in the same cache line. * This helps in improving throughput for smaller pkt * sizes. */ if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU) qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION) qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC) qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID) qdf_nbuf_set_da_valid(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID) qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_INTRA_BSS) qdf_nbuf_set_intra_bss(rx_desc->nbuf, 1); if (qdf_likely(mpdu_desc_info.mpdu_flags & HAL_MPDU_F_QOS_CONTROL_VALID)) qdf_nbuf_set_tid_val(rx_desc->nbuf, mpdu_desc_info.tid); /* set sw exception */ qdf_nbuf_set_rx_reo_dest_ind_or_sw_excpt( rx_desc->nbuf, hal_rx_sw_exception_get_be(ring_desc)); QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len; QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num; /* * move unmap after scattered msdu waiting break logic * in case double skb unmap happened. */ dp_rx_nbuf_unmap(soc, rx_desc, reo_ring_num); rx_desc->unmapped = 1; DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head, ebuf_tail, rx_desc); quota -= 1; num_pending -= 1; dp_rx_add_to_free_desc_list (&head[rx_desc->chip_id][rx_desc->pool_id], &tail[rx_desc->chip_id][rx_desc->pool_id], rx_desc); num_rx_bufs_reaped++; dp_rx_prefetch_hw_sw_nbuf_32_byte_desc(soc, hal_soc, num_pending, hal_ring_hdl, &last_prefetched_hw_desc, &last_prefetched_sw_desc); /* * only if complete msdu is received for scatter case, * then allow break. */ if (is_prev_msdu_last && dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped, max_reap_limit)) break; } done: dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl); qdf_dsb(); dp_rx_per_core_stats_update(soc, reo_ring_num, num_rx_bufs_reaped); for (chip_id = 0; chip_id < WLAN_MAX_MLO_CHIPS; chip_id++) { for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) { /* * continue with next mac_id if no pkts were reaped * from that pool */ if (!rx_bufs_reaped[chip_id][mac_id]) continue; replenish_soc = dp_rx_replensih_soc_get(soc, chip_id); dp_rxdma_srng = &replenish_soc->rx_refill_buf_ring[mac_id]; rx_desc_pool = &replenish_soc->rx_desc_buf[mac_id]; dp_rx_buffers_replenish_simple(replenish_soc, mac_id, dp_rxdma_srng, rx_desc_pool, rx_bufs_reaped[chip_id][mac_id], &head[chip_id][mac_id], &tail[chip_id][mac_id]); } } /* Peer can be NULL is case of LFR */ if (qdf_likely(txrx_peer)) vdev = NULL; /* * BIG loop where each nbuf is dequeued from global queue, * processed and queued back on a per vdev basis. These nbufs * are sent to stack as and when we run out of nbufs * or a new nbuf dequeued from global queue has a different * vdev when compared to previous nbuf. */ nbuf = nbuf_head; while (nbuf) { next = nbuf->next; dp_rx_prefetch_nbuf_data_be(nbuf, next); if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) { nbuf = next; DP_STATS_INC(soc, rx.err.raw_frm_drop, 1); continue; } rx_tlv_hdr = qdf_nbuf_data(nbuf); vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf); peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf); if (dp_rx_is_list_ready(deliver_list_head, vdev, txrx_peer, peer_id, vdev_id)) { dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head, deliver_list_tail); deliver_list_head = NULL; deliver_list_tail = NULL; } /* Get TID from struct cb->tid_val, save to tid */ tid = qdf_nbuf_get_tid_val(nbuf); if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS)) { DP_STATS_INC(soc, rx.err.rx_invalid_tid_err, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } if (qdf_unlikely(!txrx_peer)) { txrx_peer = dp_rx_get_txrx_peer_and_vdev(soc, nbuf, peer_id, &txrx_ref_handle, pkt_capture_offload, &vdev, &rx_pdev, &dsf, &old_tid); if (qdf_unlikely(!txrx_peer) || qdf_unlikely(!vdev)) { nbuf = next; continue; } enh_flag = rx_pdev->enhanced_stats_en; } else if (txrx_peer && txrx_peer->peer_id != peer_id) { dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); txrx_peer = dp_rx_get_txrx_peer_and_vdev(soc, nbuf, peer_id, &txrx_ref_handle, pkt_capture_offload, &vdev, &rx_pdev, &dsf, &old_tid); if (qdf_unlikely(!txrx_peer) || qdf_unlikely(!vdev)) { nbuf = next; continue; } enh_flag = rx_pdev->enhanced_stats_en; } if (txrx_peer) { QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false; qdf_dp_trace_set_track(nbuf, QDF_RX); QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1; QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) = QDF_NBUF_RX_PKT_DATA_TRACK; } rx_bufs_used++; /* when hlos tid override is enabled, save tid in * skb->priority */ if (qdf_unlikely(vdev->skip_sw_tid_classification & DP_TXRX_HLOS_TID_OVERRIDE_ENABLED)) qdf_nbuf_set_priority(nbuf, tid); DP_RX_TID_SAVE(nbuf, tid); if (qdf_unlikely(dsf) || qdf_unlikely(peer_ext_stats) || dp_rx_pkt_tracepoints_enabled()) qdf_nbuf_set_timestamp(nbuf); if (qdf_likely(old_tid != tid)) { tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[reo_ring_num][tid]; old_tid = tid; } /* * Check if DMA completed -- msdu_done is the last bit * to be written */ if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) && !hal_rx_tlv_msdu_done_get_be(rx_tlv_hdr))) { dp_err("MSDU DONE failure"); DP_STATS_INC(soc, rx.err.msdu_done_fail, 1); hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr, QDF_TRACE_LEVEL_INFO); tid_stats->fail_cnt[MSDU_DONE_FAILURE]++; dp_rx_nbuf_free(nbuf); qdf_assert(0); nbuf = next; continue; } DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id); /* * First IF condition: * 802.11 Fragmented pkts are reinjected to REO * HW block as SG pkts and for these pkts we only * need to pull the RX TLVS header length. * Second IF condition: * The below condition happens when an MSDU is spread * across multiple buffers. This can happen in two cases * 1. The nbuf size is smaller then the received msdu. * ex: we have set the nbuf size to 2048 during * nbuf_alloc. but we received an msdu which is * 2304 bytes in size then this msdu is spread * across 2 nbufs. * * 2. AMSDUs when RAW mode is enabled. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread * across 1st nbuf and 2nd nbuf and last MSDU is * spread across 2nd nbuf and 3rd nbuf. * * for these scenarios let us create a skb frag_list and * append these buffers till the last MSDU of the AMSDU * Third condition: * This is the most likely case, we receive 802.3 pkts * decapsulated by HW, here we need to set the pkt length. */ hal_rx_msdu_packet_metadata_get_generic_be(rx_tlv_hdr, &msdu_metadata); if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) { bool is_mcbc, is_sa_vld, is_da_vld; is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc, rx_tlv_hdr); is_sa_vld = hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc, rx_tlv_hdr); is_da_vld = hal_rx_msdu_end_da_is_valid_get(soc->hal_soc, rx_tlv_hdr); qdf_nbuf_set_da_mcbc(nbuf, is_mcbc); qdf_nbuf_set_da_valid(nbuf, is_da_vld); qdf_nbuf_set_sa_valid(nbuf, is_sa_vld); qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size); } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) { msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); nbuf = dp_rx_sg_create(soc, nbuf); next = nbuf->next; if (qdf_nbuf_is_raw_frame(nbuf)) { DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1); DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1, msdu_len); } else { DP_STATS_INC(soc, rx.err.scatter_msdu, 1); if (!dp_rx_is_sg_supported()) { dp_rx_nbuf_free(nbuf); dp_info_rl("sg msdu len %d, dropped", msdu_len); nbuf = next; continue; } } } else { msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); pkt_len = msdu_len + msdu_metadata.l3_hdr_pad + soc->rx_pkt_tlv_size; qdf_nbuf_set_pktlen(nbuf, pkt_len); dp_rx_skip_tlvs(soc, nbuf, msdu_metadata.l3_hdr_pad); } dp_rx_send_pktlog(soc, rx_pdev, nbuf, QDF_TX_RX_STATUS_OK); if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, txrx_peer)) { dp_rx_err("%pK: Policy Check Drop pkt", soc); DP_PEER_PER_PKT_STATS_INC(txrx_peer, rx.policy_check_drop, 1); tid_stats->fail_cnt[POLICY_CHECK_DROP]++; /* Drop & free packet */ dp_rx_nbuf_free(nbuf); /* Statistics */ nbuf = next; continue; } /* * Drop non-EAPOL frames from unauthorized peer. */ if (qdf_likely(txrx_peer) && qdf_unlikely(!txrx_peer->authorize) && !qdf_nbuf_is_raw_frame(nbuf)) { bool is_eapol = qdf_nbuf_is_ipv4_eapol_pkt(nbuf) || qdf_nbuf_is_ipv4_wapi_pkt(nbuf); if (!is_eapol) { DP_PEER_PER_PKT_STATS_INC(txrx_peer, rx.peer_unauth_rx_pkt_drop, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } } dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr); dp_rx_update_flow_info(nbuf, rx_tlv_hdr); if (qdf_unlikely(!rx_pdev->rx_fast_flag)) { /* * process frame for mulitpass phrase processing */ if (qdf_unlikely(vdev->multipass_en)) { if (dp_rx_multipass_process(txrx_peer, nbuf, tid) == false) { DP_PEER_PER_PKT_STATS_INC (txrx_peer, rx.multipass_rx_pkt_drop, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } } if (qdf_unlikely(txrx_peer && (txrx_peer->nawds_enabled) && (qdf_nbuf_is_da_mcbc(nbuf)) && (hal_rx_get_mpdu_mac_ad4_valid_be (rx_tlv_hdr) == false))) { tid_stats->fail_cnt[NAWDS_MCAST_DROP]++; DP_PEER_PER_PKT_STATS_INC(txrx_peer, rx.nawds_mcast_drop, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } /* Update the protocol tag in SKB based on CCE metadata */ dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr, reo_ring_num, false, true); /* Update the flow tag in SKB based on FSE metadata */ dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true); if (qdf_likely(vdev->rx_decap_type == htt_cmn_pkt_type_ethernet) && qdf_likely(!vdev->mesh_vdev)) { dp_rx_wds_learn(soc, vdev, rx_tlv_hdr, txrx_peer, nbuf, msdu_metadata); } if (qdf_unlikely(vdev->mesh_vdev)) { if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr) == QDF_STATUS_SUCCESS) { dp_rx_info("%pK: mesh pkt filtered", soc); tid_stats->fail_cnt[MESH_FILTER_DROP]++; DP_STATS_INC(vdev->pdev, dropped.mesh_filter, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, txrx_peer); } } dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer, reo_ring_num, tid_stats); if (qdf_likely(vdev->rx_decap_type == htt_cmn_pkt_type_ethernet) && qdf_likely(!vdev->mesh_vdev)) { /* Intrabss-fwd */ if (dp_rx_check_ap_bridge(vdev)) if (dp_rx_intrabss_fwd_be(soc, txrx_peer, rx_tlv_hdr, nbuf, msdu_metadata)) { nbuf = next; tid_stats->intrabss_cnt++; continue; /* Get next desc */ } } dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt); dp_rx_mark_first_packet_after_wow_wakeup(vdev->pdev, rx_tlv_hdr, nbuf); dp_rx_update_stats(soc, nbuf); dp_pkt_add_timestamp(txrx_peer->vdev, QDF_PKT_RX_DRIVER_ENTRY, current_time, nbuf); DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf); DP_PEER_TO_STACK_INCC_PKT(txrx_peer, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf), enh_flag); if (qdf_unlikely(txrx_peer->in_twt)) DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.to_stack_twt, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf)); tid_stats->delivered_to_stack++; nbuf = next; } DP_RX_DELIVER_TO_STACK(soc, vdev, txrx_peer, peer_id, pkt_capture_offload, deliver_list_head, deliver_list_tail); if (qdf_likely(txrx_peer)) dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); /* * If we are processing in near-full condition, there are 3 scenario * 1) Ring entries has reached critical state * 2) Ring entries are still near high threshold * 3) Ring entries are below the safe level * * One more loop will move the state to normal processing and yield */ if (ring_near_full && quota) goto more_data; if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) { if (quota) { num_pending = dp_rx_srng_get_num_pending(hal_soc, hal_ring_hdl, num_entries, &near_full); if (num_pending) { DP_STATS_INC(soc, rx.hp_oos2, 1); if (!hif_exec_should_yield(scn, intr_id)) goto more_data; if (qdf_unlikely(near_full)) { DP_STATS_INC(soc, rx.near_full, 1); goto more_data; } } } if (vdev && vdev->osif_fisa_flush) vdev->osif_fisa_flush(soc, reo_ring_num); if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) { vdev->osif_gro_flush(vdev->osif_vdev, reo_ring_num); } } /* Update histogram statistics by looping through pdev's */ DP_RX_HIST_STATS_PER_PDEV(); return rx_bufs_used; /* Assume no scale factor for now */ } #ifdef RX_DESC_MULTI_PAGE_ALLOC /** * dp_rx_desc_pool_init_be_cc() - initial RX desc pool for cookie conversion * @soc: Handle to DP Soc structure * @rx_desc_pool: Rx descriptor pool handler * @pool_id: Rx descriptor pool ID * * Return: QDF_STATUS_SUCCESS - succeeded, others - failed */ static QDF_STATUS dp_rx_desc_pool_init_be_cc(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { struct dp_hw_cookie_conversion_t *cc_ctx; struct dp_soc_be *be_soc; union dp_rx_desc_list_elem_t *rx_desc_elem; struct dp_spt_page_desc *page_desc; uint32_t ppt_idx = 0; uint32_t avail_entry_index = 0; if (!rx_desc_pool->pool_size) { dp_err("desc_num 0 !!"); return QDF_STATUS_E_FAILURE; } be_soc = dp_get_be_soc_from_dp_soc(soc); cc_ctx = &be_soc->rx_cc_ctx[pool_id]; page_desc = &cc_ctx->page_desc_base[0]; rx_desc_elem = rx_desc_pool->freelist; while (rx_desc_elem) { if (avail_entry_index == 0) { if (ppt_idx >= cc_ctx->total_page_num) { dp_alert("insufficient secondary page tables"); qdf_assert_always(0); } page_desc = &cc_ctx->page_desc_base[ppt_idx++]; } /* put each RX Desc VA to SPT pages and * get corresponding ID */ DP_CC_SPT_PAGE_UPDATE_VA(page_desc->page_v_addr, avail_entry_index, &rx_desc_elem->rx_desc); rx_desc_elem->rx_desc.cookie = dp_cc_desc_id_generate(page_desc->ppt_index, avail_entry_index); rx_desc_elem->rx_desc.chip_id = dp_mlo_get_chip_id(soc); rx_desc_elem->rx_desc.pool_id = pool_id; rx_desc_elem->rx_desc.in_use = 0; rx_desc_elem = rx_desc_elem->next; avail_entry_index = (avail_entry_index + 1) & DP_CC_SPT_PAGE_MAX_ENTRIES_MASK; } return QDF_STATUS_SUCCESS; } #else static QDF_STATUS dp_rx_desc_pool_init_be_cc(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { struct dp_hw_cookie_conversion_t *cc_ctx; struct dp_soc_be *be_soc; struct dp_spt_page_desc *page_desc; uint32_t ppt_idx = 0; uint32_t avail_entry_index = 0; int i = 0; if (!rx_desc_pool->pool_size) { dp_err("desc_num 0 !!"); return QDF_STATUS_E_FAILURE; } be_soc = dp_get_be_soc_from_dp_soc(soc); cc_ctx = &be_soc->rx_cc_ctx[pool_id]; page_desc = &cc_ctx->page_desc_base[0]; for (i = 0; i <= rx_desc_pool->pool_size - 1; i++) { if (i == rx_desc_pool->pool_size - 1) rx_desc_pool->array[i].next = NULL; else rx_desc_pool->array[i].next = &rx_desc_pool->array[i + 1]; if (avail_entry_index == 0) { if (ppt_idx >= cc_ctx->total_page_num) { dp_alert("insufficient secondary page tables"); qdf_assert_always(0); } page_desc = &cc_ctx->page_desc_base[ppt_idx++]; } /* put each RX Desc VA to SPT pages and * get corresponding ID */ DP_CC_SPT_PAGE_UPDATE_VA(page_desc->page_v_addr, avail_entry_index, &rx_desc_pool->array[i].rx_desc); rx_desc_pool->array[i].rx_desc.cookie = dp_cc_desc_id_generate(page_desc->ppt_index, avail_entry_index); rx_desc_pool->array[i].rx_desc.pool_id = pool_id; rx_desc_pool->array[i].rx_desc.in_use = 0; rx_desc_pool->array[i].rx_desc.chip_id = dp_mlo_get_chip_id(soc); avail_entry_index = (avail_entry_index + 1) & DP_CC_SPT_PAGE_MAX_ENTRIES_MASK; } return QDF_STATUS_SUCCESS; } #endif static void dp_rx_desc_pool_deinit_be_cc(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { struct dp_spt_page_desc *page_desc; struct dp_soc_be *be_soc; int i = 0; struct dp_hw_cookie_conversion_t *cc_ctx; be_soc = dp_get_be_soc_from_dp_soc(soc); cc_ctx = &be_soc->rx_cc_ctx[pool_id]; for (i = 0; i < cc_ctx->total_page_num; i++) { page_desc = &cc_ctx->page_desc_base[i]; qdf_mem_zero(page_desc->page_v_addr, qdf_page_size); } } QDF_STATUS dp_rx_desc_pool_init_be(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { QDF_STATUS status = QDF_STATUS_SUCCESS; /* Only regular RX buffer desc pool use HW cookie conversion */ if (rx_desc_pool->desc_type == DP_RX_DESC_BUF_TYPE) { dp_info("rx_desc_buf pool init"); status = dp_rx_desc_pool_init_be_cc(soc, rx_desc_pool, pool_id); } else { dp_info("non_rx_desc_buf_pool init"); status = dp_rx_desc_pool_init_generic(soc, rx_desc_pool, pool_id); } return status; } void dp_rx_desc_pool_deinit_be(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { if (rx_desc_pool->desc_type == DP_RX_DESC_BUF_TYPE) dp_rx_desc_pool_deinit_be_cc(soc, rx_desc_pool, pool_id); } #ifdef DP_FEATURE_HW_COOKIE_CONVERSION #ifdef DP_HW_COOKIE_CONVERT_EXCEPTION QDF_STATUS dp_wbm_get_rx_desc_from_hal_desc_be(struct dp_soc *soc, void *ring_desc, struct dp_rx_desc **r_rx_desc) { if (hal_rx_wbm_get_cookie_convert_done(ring_desc)) { /* HW cookie conversion done */ *r_rx_desc = (struct dp_rx_desc *) hal_rx_wbm_get_desc_va(ring_desc); } else { /* SW do cookie conversion */ uint32_t cookie = HAL_RX_BUF_COOKIE_GET(ring_desc); *r_rx_desc = (struct dp_rx_desc *) dp_cc_desc_find(soc, cookie); } return QDF_STATUS_SUCCESS; } #else QDF_STATUS dp_wbm_get_rx_desc_from_hal_desc_be(struct dp_soc *soc, void *ring_desc, struct dp_rx_desc **r_rx_desc) { *r_rx_desc = (struct dp_rx_desc *) hal_rx_wbm_get_desc_va(ring_desc); return QDF_STATUS_SUCCESS; } #endif /* DP_HW_COOKIE_CONVERT_EXCEPTION */ #else QDF_STATUS dp_wbm_get_rx_desc_from_hal_desc_be(struct dp_soc *soc, void *ring_desc, struct dp_rx_desc **r_rx_desc) { /* SW do cookie conversion */ uint32_t cookie = HAL_RX_BUF_COOKIE_GET(ring_desc); *r_rx_desc = (struct dp_rx_desc *) dp_cc_desc_find(soc, cookie); return QDF_STATUS_SUCCESS; } #endif /* DP_FEATURE_HW_COOKIE_CONVERSION */ struct dp_rx_desc *dp_rx_desc_cookie_2_va_be(struct dp_soc *soc, uint32_t cookie) { return (struct dp_rx_desc *)dp_cc_desc_find(soc, cookie); } #if defined(WLAN_FEATURE_11BE_MLO) #if defined(WLAN_MLO_MULTI_CHIP) && defined(WLAN_MCAST_MLO) #define DP_RANDOM_MAC_ID_BIT_MASK 0xC0 #define DP_RANDOM_MAC_OFFSET 1 #define DP_MAC_LOCAL_ADMBIT_MASK 0x2 #define DP_MAC_LOCAL_ADMBIT_OFFSET 0 static inline void dp_rx_dummy_src_mac(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { uint8_t random_mac[QDF_MAC_ADDR_SIZE] = {0}; qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf); qdf_mem_copy(random_mac, &vdev->mld_mac_addr.raw[0], QDF_MAC_ADDR_SIZE); random_mac[DP_MAC_LOCAL_ADMBIT_OFFSET] = random_mac[DP_MAC_LOCAL_ADMBIT_OFFSET] | DP_MAC_LOCAL_ADMBIT_MASK; random_mac[DP_RANDOM_MAC_OFFSET] = random_mac[DP_RANDOM_MAC_OFFSET] ^ DP_RANDOM_MAC_ID_BIT_MASK; qdf_mem_copy(&eh->ether_shost[0], random_mac, QDF_MAC_ADDR_SIZE); } #ifdef QCA_SUPPORT_WDS_EXTENDED static inline bool dp_rx_mlo_igmp_wds_ext_handler(struct dp_txrx_peer *peer) { return qdf_atomic_test_bit(WDS_EXT_PEER_INIT_BIT, &peer->wds_ext.init); } #else static inline bool dp_rx_mlo_igmp_wds_ext_handler(struct dp_txrx_peer *peer) { return false; } #endif bool dp_rx_mlo_igmp_handler(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *peer, qdf_nbuf_t nbuf) { struct dp_vdev *mcast_primary_vdev = NULL; struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev); struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc); uint8_t tid = qdf_nbuf_get_tid_val(nbuf); struct cdp_tid_rx_stats *tid_stats = &peer->vdev->pdev->stats. tid_stats.tid_rx_wbm_stats[0][tid]; if (!(qdf_nbuf_is_ipv4_igmp_pkt(nbuf) || qdf_nbuf_is_ipv6_igmp_pkt(nbuf))) return false; if (qdf_unlikely(vdev->multipass_en)) { if (dp_rx_multipass_process(peer, nbuf, tid) == false) { DP_PEER_PER_PKT_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1); return false; } } if (!peer->bss_peer) { if (dp_rx_intrabss_mcbc_fwd(soc, peer, NULL, nbuf, tid_stats)) dp_rx_err("forwarding failed"); } /* * In the case of ME6, Backhaul WDS, NAWDS * send the igmp pkt on the same link where it received, * as these features will use peer based tcl metadata */ qdf_nbuf_set_next(nbuf, NULL); if (vdev->mcast_enhancement_en || be_vdev->mcast_primary || peer->nawds_enabled) goto send_pkt; if (qdf_unlikely(dp_rx_mlo_igmp_wds_ext_handler(peer))) goto send_pkt; mcast_primary_vdev = dp_mlo_get_mcast_primary_vdev(be_soc, be_vdev, DP_MOD_ID_RX); if (!mcast_primary_vdev) { dp_rx_debug("Non mlo vdev"); goto send_pkt; } if (qdf_unlikely(vdev->wrap_vdev)) { /* In the case of qwrap repeater send the original * packet on the interface where it received, * packet with dummy src on the mcast primary interface. */ qdf_nbuf_t nbuf_copy; nbuf_copy = qdf_nbuf_copy(nbuf); if (qdf_likely(nbuf_copy)) dp_rx_deliver_to_stack(soc, vdev, peer, nbuf_copy, NULL); } if (qdf_nbuf_is_ipv4_igmp_leave_pkt(nbuf) || qdf_nbuf_is_ipv6_igmp_leave_pkt(nbuf)) { qdf_nbuf_free(nbuf); dp_vdev_unref_delete(mcast_primary_vdev->pdev->soc, mcast_primary_vdev, DP_MOD_ID_RX); return true; } dp_rx_dummy_src_mac(vdev, nbuf); dp_rx_deliver_to_stack(mcast_primary_vdev->pdev->soc, mcast_primary_vdev, peer, nbuf, NULL); dp_vdev_unref_delete(mcast_primary_vdev->pdev->soc, mcast_primary_vdev, DP_MOD_ID_RX); return true; send_pkt: dp_rx_deliver_to_stack(be_vdev->vdev.pdev->soc, &be_vdev->vdev, peer, nbuf, NULL); return true; } #else bool dp_rx_mlo_igmp_handler(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *peer, qdf_nbuf_t nbuf) { return false; } #endif #endif #ifdef WLAN_FEATURE_NEAR_FULL_IRQ uint32_t dp_rx_nf_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl, uint8_t reo_ring_num, uint32_t quota) { struct dp_soc *soc = int_ctx->soc; struct dp_srng *rx_ring = &soc->reo_dest_ring[reo_ring_num]; uint32_t work_done = 0; if (dp_srng_get_near_full_level(soc, rx_ring) < DP_SRNG_THRESH_NEAR_FULL) return 0; qdf_atomic_set(&rx_ring->near_full, 1); work_done++; return work_done; } #endif #ifndef QCA_HOST_MODE_WIFI_DISABLED #ifdef WLAN_FEATURE_11BE_MLO /** * dp_rx_intrabss_fwd_mlo_allow() - check if MLO forwarding is allowed * @ta_peer: transmitter peer handle * @da_peer: destination peer handle * * Return: true - MLO forwarding case, false: not */ static inline bool dp_rx_intrabss_fwd_mlo_allow(struct dp_txrx_peer *ta_peer, struct dp_txrx_peer *da_peer) { /* TA peer and DA peer's vdev should be partner MLO vdevs */ if (dp_peer_find_mac_addr_cmp(&ta_peer->vdev->mld_mac_addr, &da_peer->vdev->mld_mac_addr)) return false; return true; } #else static inline bool dp_rx_intrabss_fwd_mlo_allow(struct dp_txrx_peer *ta_peer, struct dp_txrx_peer *da_peer) { return false; } #endif #ifdef INTRA_BSS_FWD_OFFLOAD /** * dp_rx_intrabss_ucast_check_be() - Check if intrabss is allowed * for unicast frame * @nbuf: RX packet buffer * @ta_peer: transmitter DP peer handle * @rx_tlv_hdr: Rx TLV header * @msdu_metadata: MSDU meta data info * @params: params to be filled in * * Return: true - intrabss allowed * false - not allow */ static bool dp_rx_intrabss_ucast_check_be(qdf_nbuf_t nbuf, struct dp_txrx_peer *ta_peer, uint8_t *rx_tlv_hdr, struct hal_rx_msdu_metadata *msdu_metadata, struct dp_be_intrabss_params *params) { uint8_t dest_chip_id, dest_chip_pmac_id; struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(ta_peer->vdev); struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(params->dest_soc); if (!qdf_nbuf_is_intra_bss(nbuf)) return false; hal_rx_tlv_get_dest_chip_pmac_id(rx_tlv_hdr, &dest_chip_id, &dest_chip_pmac_id); qdf_assert_always(dest_chip_id <= (DP_MLO_MAX_DEST_CHIP_ID - 1)); if (dest_chip_id == be_soc->mlo_chip_id) { /* TODO: adding to self list is better */ params->tx_vdev_id = ta_peer->vdev->vdev_id; return true; } params->dest_soc = dp_mlo_get_soc_ref_by_chip_id(be_soc->ml_ctxt, dest_chip_id); if (!params->dest_soc) return false; params->tx_vdev_id = be_vdev->partner_vdev_list[dest_chip_id][dest_chip_pmac_id]; return true; } #else #ifdef WLAN_MLO_MULTI_CHIP static bool dp_rx_intrabss_ucast_check_be(qdf_nbuf_t nbuf, struct dp_txrx_peer *ta_peer, uint8_t *rx_tlv_hdr, struct hal_rx_msdu_metadata *msdu_metadata, struct dp_be_intrabss_params *params) { uint16_t da_peer_id; struct dp_txrx_peer *da_peer; bool ret = false; uint8_t dest_chip_id; dp_txrx_ref_handle txrx_ref_handle = NULL; struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(ta_peer->vdev); struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(params->dest_soc); if (!(qdf_nbuf_is_da_valid(nbuf) || qdf_nbuf_is_da_mcbc(nbuf))) return false; dest_chip_id = HAL_RX_DEST_CHIP_ID_GET(msdu_metadata); qdf_assert_always(dest_chip_id <= (DP_MLO_MAX_DEST_CHIP_ID - 1)); da_peer_id = HAL_RX_PEER_ID_GET(msdu_metadata); /* use dest chip id when TA is MLD peer and DA is legacy */ if (be_soc->mlo_enabled && ta_peer->mld_peer && !(da_peer_id & HAL_RX_DA_IDX_ML_PEER_MASK)) { /* validate chip_id, get a ref, and re-assign soc */ params->dest_soc = dp_mlo_get_soc_ref_by_chip_id(be_soc->ml_ctxt, dest_chip_id); if (!params->dest_soc) return false; da_peer = dp_txrx_peer_get_ref_by_id(params->dest_soc, da_peer_id, &txrx_ref_handle, DP_MOD_ID_RX); if (!da_peer) return false; } else { da_peer = dp_txrx_peer_get_ref_by_id(params->dest_soc, da_peer_id, &txrx_ref_handle, DP_MOD_ID_RX); if (!da_peer) return false; params->dest_soc = da_peer->vdev->pdev->soc; if (!params->dest_soc) goto rel_da_peer; } params->tx_vdev_id = da_peer->vdev->vdev_id; /* If the source or destination peer in the isolation * list then dont forward instead push to bridge stack. */ if (dp_get_peer_isolation(ta_peer) || dp_get_peer_isolation(da_peer)) { ret = false; goto rel_da_peer; } if (da_peer->bss_peer || (da_peer == ta_peer)) { ret = false; goto rel_da_peer; } /* Same vdev, support Inra-BSS */ if (da_peer->vdev == ta_peer->vdev) { ret = true; goto rel_da_peer; } /* MLO specific Intra-BSS check */ if (dp_rx_intrabss_fwd_mlo_allow(ta_peer, da_peer)) { /* use dest chip id for legacy dest peer */ if (!(da_peer_id & HAL_RX_DA_IDX_ML_PEER_MASK)) { if (!(be_vdev->partner_vdev_list[dest_chip_id][0] == params->tx_vdev_id) && !(be_vdev->partner_vdev_list[dest_chip_id][1] == params->tx_vdev_id)) { /*dp_soc_unref_delete(soc);*/ goto rel_da_peer; } } ret = true; } rel_da_peer: dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); return ret; } #else static bool dp_rx_intrabss_ucast_check_be(qdf_nbuf_t nbuf, struct dp_txrx_peer *ta_peer, uint8_t *rx_tlv_hdr, struct hal_rx_msdu_metadata *msdu_metadata, struct dp_be_intrabss_params *params) { uint16_t da_peer_id; struct dp_txrx_peer *da_peer; bool ret = false; dp_txrx_ref_handle txrx_ref_handle = NULL; if (!qdf_nbuf_is_da_valid(nbuf) || qdf_nbuf_is_da_mcbc(nbuf)) return false; da_peer_id = dp_rx_peer_metadata_peer_id_get_be( params->dest_soc, msdu_metadata->da_idx); da_peer = dp_txrx_peer_get_ref_by_id(params->dest_soc, da_peer_id, &txrx_ref_handle, DP_MOD_ID_RX); if (!da_peer) return false; params->tx_vdev_id = da_peer->vdev->vdev_id; /* If the source or destination peer in the isolation * list then dont forward instead push to bridge stack. */ if (dp_get_peer_isolation(ta_peer) || dp_get_peer_isolation(da_peer)) goto rel_da_peer; if (da_peer->bss_peer || da_peer == ta_peer) goto rel_da_peer; /* Same vdev, support Inra-BSS */ if (da_peer->vdev == ta_peer->vdev) { ret = true; goto rel_da_peer; } /* MLO specific Intra-BSS check */ if (dp_rx_intrabss_fwd_mlo_allow(ta_peer, da_peer)) { ret = true; goto rel_da_peer; } rel_da_peer: dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); return ret; } #endif /* WLAN_MLO_MULTI_CHIP */ #endif /* INTRA_BSS_FWD_OFFLOAD */ #if defined(QCA_MONITOR_2_0_SUPPORT) || defined(CONFIG_WORD_BASED_TLV) void dp_rx_word_mask_subscribe_be(struct dp_soc *soc, uint32_t *msg_word, void *rx_filter) { struct htt_rx_ring_tlv_filter *tlv_filter = (struct htt_rx_ring_tlv_filter *)rx_filter; if (!msg_word || !tlv_filter) return; /* if word mask is zero, FW will set the default values */ if (!(tlv_filter->rx_mpdu_start_wmask > 0 && tlv_filter->rx_msdu_end_wmask > 0)) { msg_word += 4; *msg_word = 0; goto config_mon; } HTT_RX_RING_SELECTION_CFG_WORD_MASK_COMPACTION_ENABLE_SET(*msg_word, 1); /* word 14 */ msg_word += 3; *msg_word = 0; HTT_RX_RING_SELECTION_CFG_RX_MPDU_START_WORD_MASK_SET( *msg_word, tlv_filter->rx_mpdu_start_wmask); /* word 15 */ msg_word++; *msg_word = 0; HTT_RX_RING_SELECTION_CFG_RX_MSDU_END_WORD_MASK_SET( *msg_word, tlv_filter->rx_msdu_end_wmask); config_mon: msg_word--; dp_mon_rx_wmask_subscribe(soc, msg_word, tlv_filter); } #else void dp_rx_word_mask_subscribe_be(struct dp_soc *soc, uint32_t *msg_word, void *rx_filter) { } #endif #if defined(WLAN_MCAST_MLO) && defined(CONFIG_MLO_SINGLE_DEV) static inline bool dp_rx_intrabss_mlo_mcbc_fwd(struct dp_soc *soc, struct dp_vdev *vdev, qdf_nbuf_t nbuf_copy) { struct dp_vdev *mcast_primary_vdev = NULL; struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev); struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc); struct cdp_tx_exception_metadata tx_exc_metadata = {0}; if (!vdev->mlo_vdev) return false; tx_exc_metadata.is_mlo_mcast = 1; mcast_primary_vdev = dp_mlo_get_mcast_primary_vdev(be_soc, be_vdev, DP_MOD_ID_RX); if (!mcast_primary_vdev) return false; nbuf_copy = dp_tx_send_exception((struct cdp_soc_t *) mcast_primary_vdev->pdev->soc, mcast_primary_vdev->vdev_id, nbuf_copy, &tx_exc_metadata); if (nbuf_copy) qdf_nbuf_free(nbuf_copy); dp_vdev_unref_delete(mcast_primary_vdev->pdev->soc, mcast_primary_vdev, DP_MOD_ID_RX); return true; } #else static inline bool dp_rx_intrabss_mlo_mcbc_fwd(struct dp_soc *soc, struct dp_vdev *vdev, qdf_nbuf_t nbuf_copy) { return false; } #endif /** * dp_rx_intrabss_mcast_handler_be() - handler for mcast packets * @soc: core txrx main context * @ta_txrx_peer: source txrx_peer entry * @nbuf_copy: nbuf that has to be intrabss forwarded * @tid_stats: tid_stats structure * * Return: true if it is forwarded else false */ bool dp_rx_intrabss_mcast_handler_be(struct dp_soc *soc, struct dp_txrx_peer *ta_txrx_peer, qdf_nbuf_t nbuf_copy, struct cdp_tid_rx_stats *tid_stats) { if (qdf_unlikely(ta_txrx_peer->vdev->nawds_enabled)) { struct cdp_tx_exception_metadata tx_exc_metadata = {0}; uint16_t len = QDF_NBUF_CB_RX_PKT_LEN(nbuf_copy); tx_exc_metadata.peer_id = ta_txrx_peer->peer_id; tx_exc_metadata.is_intrabss_fwd = 1; tx_exc_metadata.tid = HTT_TX_EXT_TID_INVALID; if (dp_tx_send_exception((struct cdp_soc_t *)soc, ta_txrx_peer->vdev->vdev_id, nbuf_copy, &tx_exc_metadata)) { DP_PEER_PER_PKT_STATS_INC_PKT(ta_txrx_peer, rx.intra_bss.fail, 1, len); tid_stats->fail_cnt[INTRABSS_DROP]++; qdf_nbuf_free(nbuf_copy); } else { DP_PEER_PER_PKT_STATS_INC_PKT(ta_txrx_peer, rx.intra_bss.pkts, 1, len); tid_stats->intrabss_cnt++; } return true; } if (dp_rx_intrabss_mlo_mcbc_fwd(soc, ta_txrx_peer->vdev, nbuf_copy)) return true; return false; } /* * dp_rx_intrabss_fwd_be() - API for intrabss fwd. For EAPOL * pkt with DA not equal to vdev mac addr, fwd is not allowed. * @soc: core txrx main context * @ta_peer: source peer entry * @rx_tlv_hdr: start address of rx tlvs * @nbuf: nbuf that has to be intrabss forwarded * @msdu_metadata: msdu metadata * * Return: true if it is forwarded else false */ bool dp_rx_intrabss_fwd_be(struct dp_soc *soc, struct dp_txrx_peer *ta_peer, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf, struct hal_rx_msdu_metadata msdu_metadata) { uint8_t tid = qdf_nbuf_get_tid_val(nbuf); uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf); struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats. tid_stats.tid_rx_stats[ring_id][tid]; bool ret = false; struct dp_be_intrabss_params params; /* if it is a broadcast pkt (eg: ARP) and it is not its own * source, then clone the pkt and send the cloned pkt for * intra BSS forwarding and original pkt up the network stack * Note: how do we handle multicast pkts. do we forward * all multicast pkts as is or let a higher layer module * like igmpsnoop decide whether to forward or not with * Mcast enhancement. */ if (qdf_nbuf_is_da_mcbc(nbuf) && !ta_peer->bss_peer) { return dp_rx_intrabss_mcbc_fwd(soc, ta_peer, rx_tlv_hdr, nbuf, tid_stats); } if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr, nbuf)) return true; params.dest_soc = soc; if (dp_rx_intrabss_ucast_check_be(nbuf, ta_peer, rx_tlv_hdr, &msdu_metadata, ¶ms)) { ret = dp_rx_intrabss_ucast_fwd(params.dest_soc, ta_peer, params.tx_vdev_id, rx_tlv_hdr, nbuf, tid_stats); } return ret; } #endif bool dp_rx_chain_msdus_be(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, uint8_t mac_id) { bool mpdu_done = false; qdf_nbuf_t curr_nbuf = NULL; qdf_nbuf_t tmp_nbuf = NULL; struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id); if (!dp_pdev) { dp_rx_debug("%pK: pdev is null for mac_id = %d", soc, mac_id); return mpdu_done; } /* if invalid peer SG list has max values free the buffers in list * and treat current buffer as start of list * * current logic to detect the last buffer from attn_tlv is not reliable * in OFDMA UL scenario hence add max buffers check to avoid list pile * up */ if (!dp_pdev->first_nbuf || (dp_pdev->invalid_peer_head_msdu && QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST (dp_pdev->invalid_peer_head_msdu) >= DP_MAX_INVALID_BUFFERS)) { qdf_nbuf_set_rx_chfrag_start(nbuf, 1); dp_pdev->first_nbuf = true; /* If the new nbuf received is the first msdu of the * amsdu and there are msdus in the invalid peer msdu * list, then let us free all the msdus of the invalid * peer msdu list. * This scenario can happen when we start receiving * new a-msdu even before the previous a-msdu is completely * received. */ curr_nbuf = dp_pdev->invalid_peer_head_msdu; while (curr_nbuf) { tmp_nbuf = curr_nbuf->next; dp_rx_nbuf_free(curr_nbuf); curr_nbuf = tmp_nbuf; } dp_pdev->invalid_peer_head_msdu = NULL; dp_pdev->invalid_peer_tail_msdu = NULL; dp_monitor_get_mpdu_status(dp_pdev, soc, rx_tlv_hdr); } if (qdf_nbuf_is_rx_chfrag_end(nbuf) && hal_rx_attn_msdu_done_get(soc->hal_soc, rx_tlv_hdr)) { qdf_assert_always(dp_pdev->first_nbuf); dp_pdev->first_nbuf = false; mpdu_done = true; } /* * For MCL, invalid_peer_head_msdu and invalid_peer_tail_msdu * should be NULL here, add the checking for debugging purpose * in case some corner case. */ DP_PDEV_INVALID_PEER_MSDU_CHECK(dp_pdev->invalid_peer_head_msdu, dp_pdev->invalid_peer_tail_msdu); DP_RX_LIST_APPEND(dp_pdev->invalid_peer_head_msdu, dp_pdev->invalid_peer_tail_msdu, nbuf); return mpdu_done; }