// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2015-2017 Google, Inc * * USB Power Delivery protocol stack. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FOREACH_STATE(S) \ S(INVALID_STATE), \ S(TOGGLING), \ S(CHECK_CONTAMINANT), \ S(SRC_UNATTACHED), \ S(SRC_ATTACH_WAIT), \ S(SRC_ATTACHED), \ S(SRC_STARTUP), \ S(SRC_SEND_CAPABILITIES), \ S(SRC_SEND_CAPABILITIES_TIMEOUT), \ S(SRC_NEGOTIATE_CAPABILITIES), \ S(SRC_TRANSITION_SUPPLY), \ S(SRC_READY), \ S(SRC_WAIT_NEW_CAPABILITIES), \ \ S(SNK_UNATTACHED), \ S(SNK_ATTACH_WAIT), \ S(SNK_DEBOUNCED), \ S(SNK_ATTACHED), \ S(SNK_STARTUP), \ S(SNK_DISCOVERY), \ S(SNK_DISCOVERY_DEBOUNCE), \ S(SNK_DISCOVERY_DEBOUNCE_DONE), \ S(SNK_WAIT_CAPABILITIES), \ S(SNK_WAIT_CAPABILITIES_TIMEOUT), \ S(SNK_NEGOTIATE_CAPABILITIES), \ S(SNK_NEGOTIATE_PPS_CAPABILITIES), \ S(SNK_TRANSITION_SINK), \ S(SNK_TRANSITION_SINK_VBUS), \ S(SNK_READY), \ \ S(ACC_UNATTACHED), \ S(DEBUG_ACC_ATTACHED), \ S(AUDIO_ACC_ATTACHED), \ S(AUDIO_ACC_DEBOUNCE), \ \ S(HARD_RESET_SEND), \ S(HARD_RESET_START), \ S(SRC_HARD_RESET_VBUS_OFF), \ S(SRC_HARD_RESET_VBUS_ON), \ S(SNK_HARD_RESET_SINK_OFF), \ S(SNK_HARD_RESET_WAIT_VBUS), \ S(SNK_HARD_RESET_SINK_ON), \ \ S(SOFT_RESET), \ S(SRC_SOFT_RESET_WAIT_SNK_TX), \ S(SNK_SOFT_RESET), \ S(SOFT_RESET_SEND), \ \ S(DR_SWAP_ACCEPT), \ S(DR_SWAP_SEND), \ S(DR_SWAP_SEND_TIMEOUT), \ S(DR_SWAP_CANCEL), \ S(DR_SWAP_CHANGE_DR), \ \ S(PR_SWAP_ACCEPT), \ S(PR_SWAP_SEND), \ S(PR_SWAP_SEND_TIMEOUT), \ S(PR_SWAP_CANCEL), \ S(PR_SWAP_START), \ S(PR_SWAP_SRC_SNK_TRANSITION_OFF), \ S(PR_SWAP_SRC_SNK_SOURCE_OFF), \ S(PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED), \ S(PR_SWAP_SRC_SNK_SINK_ON), \ S(PR_SWAP_SNK_SRC_SINK_OFF), \ S(PR_SWAP_SNK_SRC_SOURCE_ON), \ S(PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP), \ \ S(VCONN_SWAP_ACCEPT), \ S(VCONN_SWAP_SEND), \ S(VCONN_SWAP_SEND_TIMEOUT), \ S(VCONN_SWAP_CANCEL), \ S(VCONN_SWAP_START), \ S(VCONN_SWAP_WAIT_FOR_VCONN), \ S(VCONN_SWAP_TURN_ON_VCONN), \ S(VCONN_SWAP_TURN_OFF_VCONN), \ S(VCONN_SWAP_SEND_SOFT_RESET), \ \ S(FR_SWAP_SEND), \ S(FR_SWAP_SEND_TIMEOUT), \ S(FR_SWAP_SNK_SRC_TRANSITION_TO_OFF), \ S(FR_SWAP_SNK_SRC_NEW_SINK_READY), \ S(FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED), \ S(FR_SWAP_CANCEL), \ \ S(SNK_TRY), \ S(SNK_TRY_WAIT), \ S(SNK_TRY_WAIT_DEBOUNCE), \ S(SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS), \ S(SRC_TRYWAIT), \ S(SRC_TRYWAIT_DEBOUNCE), \ S(SRC_TRYWAIT_UNATTACHED), \ \ S(SRC_TRY), \ S(SRC_TRY_WAIT), \ S(SRC_TRY_DEBOUNCE), \ S(SNK_TRYWAIT), \ S(SNK_TRYWAIT_DEBOUNCE), \ S(SNK_TRYWAIT_VBUS), \ S(BIST_RX), \ \ S(GET_STATUS_SEND), \ S(GET_STATUS_SEND_TIMEOUT), \ S(GET_PPS_STATUS_SEND), \ S(GET_PPS_STATUS_SEND_TIMEOUT), \ \ S(GET_SINK_CAP), \ S(GET_SINK_CAP_TIMEOUT), \ \ S(ERROR_RECOVERY), \ S(PORT_RESET), \ S(PORT_RESET_WAIT_OFF), \ \ S(AMS_START), \ S(CHUNK_NOT_SUPP), \ \ S(SRC_VDM_IDENTITY_REQUEST) #define FOREACH_AMS(S) \ S(NONE_AMS), \ S(POWER_NEGOTIATION), \ S(GOTOMIN), \ S(SOFT_RESET_AMS), \ S(HARD_RESET), \ S(CABLE_RESET), \ S(GET_SOURCE_CAPABILITIES), \ S(GET_SINK_CAPABILITIES), \ S(POWER_ROLE_SWAP), \ S(FAST_ROLE_SWAP), \ S(DATA_ROLE_SWAP), \ S(VCONN_SWAP), \ S(SOURCE_ALERT), \ S(GETTING_SOURCE_EXTENDED_CAPABILITIES),\ S(GETTING_SOURCE_SINK_STATUS), \ S(GETTING_BATTERY_CAPABILITIES), \ S(GETTING_BATTERY_STATUS), \ S(GETTING_MANUFACTURER_INFORMATION), \ S(SECURITY), \ S(FIRMWARE_UPDATE), \ S(DISCOVER_IDENTITY), \ S(SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY), \ S(DISCOVER_SVIDS), \ S(DISCOVER_MODES), \ S(DFP_TO_UFP_ENTER_MODE), \ S(DFP_TO_UFP_EXIT_MODE), \ S(DFP_TO_CABLE_PLUG_ENTER_MODE), \ S(DFP_TO_CABLE_PLUG_EXIT_MODE), \ S(ATTENTION), \ S(BIST), \ S(UNSTRUCTURED_VDMS), \ S(STRUCTURED_VDMS), \ S(COUNTRY_INFO), \ S(COUNTRY_CODES) #define GENERATE_ENUM(e) e #define GENERATE_STRING(s) #s enum tcpm_state { FOREACH_STATE(GENERATE_ENUM) }; static const char * const tcpm_states[] = { FOREACH_STATE(GENERATE_STRING) }; enum tcpm_ams { FOREACH_AMS(GENERATE_ENUM) }; static const char * const tcpm_ams_str[] = { FOREACH_AMS(GENERATE_STRING) }; enum vdm_states { VDM_STATE_ERR_BUSY = -3, VDM_STATE_ERR_SEND = -2, VDM_STATE_ERR_TMOUT = -1, VDM_STATE_DONE = 0, /* Anything >0 represents an active state */ VDM_STATE_READY = 1, VDM_STATE_BUSY = 2, VDM_STATE_WAIT_RSP_BUSY = 3, VDM_STATE_SEND_MESSAGE = 4, }; enum pd_msg_request { PD_MSG_NONE = 0, PD_MSG_CTRL_REJECT, PD_MSG_CTRL_WAIT, PD_MSG_CTRL_NOT_SUPP, PD_MSG_DATA_SINK_CAP, PD_MSG_DATA_SOURCE_CAP, }; enum adev_actions { ADEV_NONE = 0, ADEV_NOTIFY_USB_AND_QUEUE_VDM, ADEV_QUEUE_VDM, ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL, ADEV_ATTENTION, }; /* * Initial current capability of the new source when vSafe5V is applied during PD3.0 Fast Role Swap. * Based on "Table 6-14 Fixed Supply PDO - Sink" of "USB Power Delivery Specification Revision 3.0, * Version 1.2" */ enum frs_typec_current { FRS_NOT_SUPPORTED, FRS_DEFAULT_POWER, FRS_5V_1P5A, FRS_5V_3A, }; /* Events from low level driver */ #define TCPM_CC_EVENT BIT(0) #define TCPM_VBUS_EVENT BIT(1) #define TCPM_RESET_EVENT BIT(2) #define TCPM_FRS_EVENT BIT(3) #define TCPM_SOURCING_VBUS BIT(4) #define TCPM_PORT_CLEAN BIT(5) #define TCPM_PORT_ERROR BIT(6) #define LOG_BUFFER_ENTRIES 1024 #define LOG_BUFFER_ENTRY_SIZE 128 /* Alternate mode support */ #define SVID_DISCOVERY_MAX 16 #define ALTMODE_DISCOVERY_MAX (SVID_DISCOVERY_MAX * MODE_DISCOVERY_MAX) #define GET_SINK_CAP_RETRY_MS 100 #define SEND_DISCOVER_RETRY_MS 100 struct pd_mode_data { int svid_index; /* current SVID index */ int nsvids; u16 svids[SVID_DISCOVERY_MAX]; int altmodes; /* number of alternate modes */ struct typec_altmode_desc altmode_desc[ALTMODE_DISCOVERY_MAX]; }; /* * @min_volt: Actual min voltage at the local port * @req_min_volt: Requested min voltage to the port partner * @max_volt: Actual max voltage at the local port * @req_max_volt: Requested max voltage to the port partner * @max_curr: Actual max current at the local port * @req_max_curr: Requested max current of the port partner * @req_out_volt: Requested output voltage to the port partner * @req_op_curr: Requested operating current to the port partner * @supported: Parter has at least one APDO hence supports PPS * @active: PPS mode is active */ struct pd_pps_data { u32 min_volt; u32 req_min_volt; u32 max_volt; u32 req_max_volt; u32 max_curr; u32 req_max_curr; u32 req_out_volt; u32 req_op_curr; bool supported; bool active; }; struct pd_data { struct usb_power_delivery *pd; struct usb_power_delivery_capabilities *source_cap; struct usb_power_delivery_capabilities_desc source_desc; struct usb_power_delivery_capabilities *sink_cap; struct usb_power_delivery_capabilities_desc sink_desc; unsigned int operating_snk_mw; }; struct tcpm_port { struct device *dev; struct mutex lock; /* tcpm state machine lock */ struct kthread_worker *wq; struct typec_capability typec_caps; struct typec_port *typec_port; struct tcpc_dev *tcpc; struct usb_role_switch *role_sw; enum typec_role vconn_role; enum typec_role pwr_role; enum typec_data_role data_role; enum typec_pwr_opmode pwr_opmode; struct usb_pd_identity partner_ident; struct typec_partner_desc partner_desc; struct typec_partner *partner; struct usb_pd_identity cable_ident; struct typec_cable_desc cable_desc; struct typec_cable *cable; struct typec_plug_desc plug_prime_desc; struct typec_plug *plug_prime; enum typec_cc_status cc_req; enum typec_cc_status src_rp; /* work only if pd_supported == false */ enum typec_cc_status cc1; enum typec_cc_status cc2; enum typec_cc_polarity polarity; bool attached; bool connected; bool registered; bool pd_supported; enum typec_port_type port_type; /* * Set to true when vbus is greater than VSAFE5V min. * Set to false when vbus falls below vSinkDisconnect max threshold. */ bool vbus_present; /* * Set to true when vbus is less than VSAFE0V max. * Set to false when vbus is greater than VSAFE0V max. */ bool vbus_vsafe0v; bool vbus_never_low; bool vbus_source; bool vbus_charge; /* Set to true when Discover_Identity Command is expected to be sent in Ready states. */ bool send_discover; bool op_vsafe5v; int try_role; int try_snk_count; int try_src_count; enum pd_msg_request queued_message; enum tcpm_state enter_state; enum tcpm_state prev_state; enum tcpm_state state; enum tcpm_state delayed_state; ktime_t delayed_runtime; unsigned long delay_ms; spinlock_t pd_event_lock; u32 pd_events; struct kthread_work event_work; struct hrtimer state_machine_timer; struct kthread_work state_machine; struct hrtimer vdm_state_machine_timer; struct kthread_work vdm_state_machine; struct hrtimer enable_frs_timer; struct kthread_work enable_frs; struct hrtimer send_discover_timer; struct kthread_work send_discover_work; bool state_machine_running; /* Set to true when VDM State Machine has following actions. */ bool vdm_sm_running; struct completion tx_complete; enum tcpm_transmit_status tx_status; struct mutex swap_lock; /* swap command lock */ bool swap_pending; bool non_pd_role_swap; struct completion swap_complete; int swap_status; unsigned int negotiated_rev; unsigned int message_id; unsigned int caps_count; unsigned int hard_reset_count; bool pd_capable; bool explicit_contract; unsigned int rx_msgid; /* USB PD objects */ struct usb_power_delivery **pds; struct pd_data **pd_list; struct usb_power_delivery_capabilities *port_source_caps; struct usb_power_delivery_capabilities *port_sink_caps; struct usb_power_delivery *partner_pd; struct usb_power_delivery_capabilities *partner_source_caps; struct usb_power_delivery_capabilities *partner_sink_caps; struct usb_power_delivery *selected_pd; /* Partner capabilities/requests */ u32 sink_request; u32 source_caps[PDO_MAX_OBJECTS]; unsigned int nr_source_caps; u32 sink_caps[PDO_MAX_OBJECTS]; unsigned int nr_sink_caps; /* Local capabilities */ unsigned int pd_count; u32 src_pdo[PDO_MAX_OBJECTS]; unsigned int nr_src_pdo; u32 snk_pdo[PDO_MAX_OBJECTS]; unsigned int nr_snk_pdo; u32 snk_vdo_v1[VDO_MAX_OBJECTS]; unsigned int nr_snk_vdo_v1; u32 snk_vdo[VDO_MAX_OBJECTS]; unsigned int nr_snk_vdo; unsigned int operating_snk_mw; bool update_sink_caps; /* Requested current / voltage to the port partner */ u32 req_current_limit; u32 req_supply_voltage; /* Actual current / voltage limit of the local port */ u32 current_limit; u32 supply_voltage; /* Used to export TA voltage and current */ struct power_supply *psy; struct power_supply_desc psy_desc; enum power_supply_usb_type usb_type; u32 bist_request; /* PD state for Vendor Defined Messages */ enum vdm_states vdm_state; u32 vdm_retries; /* next Vendor Defined Message to send */ u32 vdo_data[VDO_MAX_SIZE]; u8 vdo_count; /* VDO to retry if UFP responder replied busy */ u32 vdo_retry; /* PPS */ struct pd_pps_data pps_data; struct completion pps_complete; bool pps_pending; int pps_status; /* Alternate mode data */ struct pd_mode_data mode_data; struct pd_mode_data mode_data_prime; struct typec_altmode *partner_altmode[ALTMODE_DISCOVERY_MAX]; struct typec_altmode *plug_prime_altmode[ALTMODE_DISCOVERY_MAX]; struct typec_altmode *port_altmode[ALTMODE_DISCOVERY_MAX]; /* Deadline in jiffies to exit src_try_wait state */ unsigned long max_wait; /* port belongs to a self powered device */ bool self_powered; /* Sink FRS */ enum frs_typec_current new_source_frs_current; /* Sink caps have been queried */ bool sink_cap_done; /* Collision Avoidance and Atomic Message Sequence */ enum tcpm_state upcoming_state; enum tcpm_ams ams; enum tcpm_ams next_ams; bool in_ams; /* Auto vbus discharge status */ bool auto_vbus_discharge_enabled; /* * When set, port requests PD_P_SNK_STDBY_MW upon entering SNK_DISCOVERY and * the actual current limit after RX of PD_CTRL_PSRDY for PD link, * SNK_READY for non-pd link. */ bool slow_charger_loop; /* * When true indicates that the lower level drivers indicate potential presence * of contaminant in the connector pins based on the tcpm state machine * transitions. */ bool potential_contaminant; /* SOP* Related Fields */ /* * Flag to determine if SOP' Discover Identity is available. The flag * is set if Discover Identity on SOP' does not immediately follow * Discover Identity on SOP. */ bool send_discover_prime; /* * tx_sop_type determines which SOP* a message is being sent on. * For messages that are queued and not sent immediately such as in * tcpm_queue_message or messages that send after state changes, * the tx_sop_type is set accordingly. */ enum tcpm_transmit_type tx_sop_type; /* * Prior to discovering the port partner's Specification Revision, the * Vconn source and cable plug will use the lower of their two revisions. * * When the port partner's Specification Revision is discovered, the following * rules are put in place. * 1. If the cable revision (1) is lower than the revision negotiated * between the port and partner (2), the port and partner will communicate * on revision (2), but the port and cable will communicate on revision (1). * 2. If the cable revision (1) is higher than the revision negotiated * between the port and partner (2), the port and partner will communicate * on revision (2), and the port and cable will communicate on revision (2) * as well. */ unsigned int negotiated_rev_prime; /* * Each SOP* type must maintain their own tx and rx message IDs */ unsigned int message_id_prime; unsigned int rx_msgid_prime; #ifdef CONFIG_DEBUG_FS struct dentry *dentry; struct mutex logbuffer_lock; /* log buffer access lock */ int logbuffer_head; int logbuffer_tail; u8 *logbuffer[LOG_BUFFER_ENTRIES]; #endif }; struct pd_rx_event { struct kthread_work work; struct tcpm_port *port; struct pd_message msg; enum tcpm_transmit_type rx_sop_type; }; static const char * const pd_rev[] = { [PD_REV10] = "rev1", [PD_REV20] = "rev2", [PD_REV30] = "rev3", }; #define tcpm_cc_is_sink(cc) \ ((cc) == TYPEC_CC_RP_DEF || (cc) == TYPEC_CC_RP_1_5 || \ (cc) == TYPEC_CC_RP_3_0) /* As long as cc is pulled up, we can consider it as sink. */ #define tcpm_port_is_sink(port) \ (tcpm_cc_is_sink((port)->cc1) || tcpm_cc_is_sink((port)->cc2)) #define tcpm_cc_is_source(cc) ((cc) == TYPEC_CC_RD) #define tcpm_cc_is_audio(cc) ((cc) == TYPEC_CC_RA) #define tcpm_cc_is_open(cc) ((cc) == TYPEC_CC_OPEN) #define tcpm_port_is_source(port) \ ((tcpm_cc_is_source((port)->cc1) && \ !tcpm_cc_is_source((port)->cc2)) || \ (tcpm_cc_is_source((port)->cc2) && \ !tcpm_cc_is_source((port)->cc1))) #define tcpm_port_is_debug(port) \ (tcpm_cc_is_source((port)->cc1) && tcpm_cc_is_source((port)->cc2)) #define tcpm_port_is_audio(port) \ (tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_audio((port)->cc2)) #define tcpm_port_is_audio_detached(port) \ ((tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_open((port)->cc2)) || \ (tcpm_cc_is_audio((port)->cc2) && tcpm_cc_is_open((port)->cc1))) #define tcpm_try_snk(port) \ ((port)->try_snk_count == 0 && (port)->try_role == TYPEC_SINK && \ (port)->port_type == TYPEC_PORT_DRP) #define tcpm_try_src(port) \ ((port)->try_src_count == 0 && (port)->try_role == TYPEC_SOURCE && \ (port)->port_type == TYPEC_PORT_DRP) #define tcpm_data_role_for_source(port) \ ((port)->typec_caps.data == TYPEC_PORT_UFP ? \ TYPEC_DEVICE : TYPEC_HOST) #define tcpm_data_role_for_sink(port) \ ((port)->typec_caps.data == TYPEC_PORT_DFP ? \ TYPEC_HOST : TYPEC_DEVICE) #define tcpm_sink_tx_ok(port) \ (tcpm_port_is_sink(port) && \ ((port)->cc1 == TYPEC_CC_RP_3_0 || (port)->cc2 == TYPEC_CC_RP_3_0)) #define tcpm_wait_for_discharge(port) \ (((port)->auto_vbus_discharge_enabled && !(port)->vbus_vsafe0v) ? PD_T_SAFE_0V : 0) static enum tcpm_state tcpm_default_state(struct tcpm_port *port) { if (port->port_type == TYPEC_PORT_DRP) { if (port->try_role == TYPEC_SINK) return SNK_UNATTACHED; else if (port->try_role == TYPEC_SOURCE) return SRC_UNATTACHED; /* Fall through to return SRC_UNATTACHED */ } else if (port->port_type == TYPEC_PORT_SNK) { return SNK_UNATTACHED; } return SRC_UNATTACHED; } static bool tcpm_port_is_disconnected(struct tcpm_port *port) { return (!port->attached && port->cc1 == TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN) || (port->attached && ((port->polarity == TYPEC_POLARITY_CC1 && port->cc1 == TYPEC_CC_OPEN) || (port->polarity == TYPEC_POLARITY_CC2 && port->cc2 == TYPEC_CC_OPEN))); } /* * Logging */ #ifdef CONFIG_DEBUG_FS static bool tcpm_log_full(struct tcpm_port *port) { return port->logbuffer_tail == (port->logbuffer_head + 1) % LOG_BUFFER_ENTRIES; } __printf(2, 0) static void _tcpm_log(struct tcpm_port *port, const char *fmt, va_list args) { char tmpbuffer[LOG_BUFFER_ENTRY_SIZE]; u64 ts_nsec = local_clock(); unsigned long rem_nsec; mutex_lock(&port->logbuffer_lock); if (!port->logbuffer[port->logbuffer_head]) { port->logbuffer[port->logbuffer_head] = kzalloc(LOG_BUFFER_ENTRY_SIZE, GFP_KERNEL); if (!port->logbuffer[port->logbuffer_head]) { mutex_unlock(&port->logbuffer_lock); return; } } vsnprintf(tmpbuffer, sizeof(tmpbuffer), fmt, args); if (tcpm_log_full(port)) { port->logbuffer_head = max(port->logbuffer_head - 1, 0); strcpy(tmpbuffer, "overflow"); } if (port->logbuffer_head < 0 || port->logbuffer_head >= LOG_BUFFER_ENTRIES) { dev_warn(port->dev, "Bad log buffer index %d\n", port->logbuffer_head); goto abort; } if (!port->logbuffer[port->logbuffer_head]) { dev_warn(port->dev, "Log buffer index %d is NULL\n", port->logbuffer_head); goto abort; } rem_nsec = do_div(ts_nsec, 1000000000); scnprintf(port->logbuffer[port->logbuffer_head], LOG_BUFFER_ENTRY_SIZE, "[%5lu.%06lu] %s", (unsigned long)ts_nsec, rem_nsec / 1000, tmpbuffer); port->logbuffer_head = (port->logbuffer_head + 1) % LOG_BUFFER_ENTRIES; abort: mutex_unlock(&port->logbuffer_lock); } __printf(2, 3) static void tcpm_log(struct tcpm_port *port, const char *fmt, ...) { va_list args; /* Do not log while disconnected and unattached */ if (tcpm_port_is_disconnected(port) && (port->state == SRC_UNATTACHED || port->state == SNK_UNATTACHED || port->state == TOGGLING || port->state == CHECK_CONTAMINANT)) return; va_start(args, fmt); _tcpm_log(port, fmt, args); va_end(args); } __printf(2, 3) static void tcpm_log_force(struct tcpm_port *port, const char *fmt, ...) { va_list args; va_start(args, fmt); _tcpm_log(port, fmt, args); va_end(args); } static void tcpm_log_source_caps(struct tcpm_port *port) { int i; for (i = 0; i < port->nr_source_caps; i++) { u32 pdo = port->source_caps[i]; enum pd_pdo_type type = pdo_type(pdo); char msg[64]; switch (type) { case PDO_TYPE_FIXED: scnprintf(msg, sizeof(msg), "%u mV, %u mA [%s%s%s%s%s%s]", pdo_fixed_voltage(pdo), pdo_max_current(pdo), (pdo & PDO_FIXED_DUAL_ROLE) ? "R" : "", (pdo & PDO_FIXED_SUSPEND) ? "S" : "", (pdo & PDO_FIXED_HIGHER_CAP) ? "H" : "", (pdo & PDO_FIXED_USB_COMM) ? "U" : "", (pdo & PDO_FIXED_DATA_SWAP) ? "D" : "", (pdo & PDO_FIXED_EXTPOWER) ? "E" : ""); break; case PDO_TYPE_VAR: scnprintf(msg, sizeof(msg), "%u-%u mV, %u mA", pdo_min_voltage(pdo), pdo_max_voltage(pdo), pdo_max_current(pdo)); break; case PDO_TYPE_BATT: scnprintf(msg, sizeof(msg), "%u-%u mV, %u mW", pdo_min_voltage(pdo), pdo_max_voltage(pdo), pdo_max_power(pdo)); break; case PDO_TYPE_APDO: if (pdo_apdo_type(pdo) == APDO_TYPE_PPS) scnprintf(msg, sizeof(msg), "%u-%u mV, %u mA", pdo_pps_apdo_min_voltage(pdo), pdo_pps_apdo_max_voltage(pdo), pdo_pps_apdo_max_current(pdo)); else strcpy(msg, "undefined APDO"); break; default: strcpy(msg, "undefined"); break; } tcpm_log(port, " PDO %d: type %d, %s", i, type, msg); } } static int tcpm_debug_show(struct seq_file *s, void *v) { struct tcpm_port *port = s->private; int tail; mutex_lock(&port->logbuffer_lock); tail = port->logbuffer_tail; while (tail != port->logbuffer_head) { seq_printf(s, "%s\n", port->logbuffer[tail]); tail = (tail + 1) % LOG_BUFFER_ENTRIES; } if (!seq_has_overflowed(s)) port->logbuffer_tail = tail; mutex_unlock(&port->logbuffer_lock); return 0; } DEFINE_SHOW_ATTRIBUTE(tcpm_debug); static void tcpm_debugfs_init(struct tcpm_port *port) { char name[NAME_MAX]; mutex_init(&port->logbuffer_lock); snprintf(name, NAME_MAX, "tcpm-%s", dev_name(port->dev)); port->dentry = debugfs_create_dir(name, usb_debug_root); debugfs_create_file("log", S_IFREG | 0444, port->dentry, port, &tcpm_debug_fops); } static void tcpm_debugfs_exit(struct tcpm_port *port) { int i; mutex_lock(&port->logbuffer_lock); for (i = 0; i < LOG_BUFFER_ENTRIES; i++) { kfree(port->logbuffer[i]); port->logbuffer[i] = NULL; } mutex_unlock(&port->logbuffer_lock); debugfs_remove(port->dentry); } #else __printf(2, 3) static void tcpm_log(const struct tcpm_port *port, const char *fmt, ...) { } __printf(2, 3) static void tcpm_log_force(struct tcpm_port *port, const char *fmt, ...) { } static void tcpm_log_source_caps(struct tcpm_port *port) { } static void tcpm_debugfs_init(const struct tcpm_port *port) { } static void tcpm_debugfs_exit(const struct tcpm_port *port) { } #endif static void tcpm_set_cc(struct tcpm_port *port, enum typec_cc_status cc) { tcpm_log(port, "cc:=%d", cc); port->cc_req = cc; port->tcpc->set_cc(port->tcpc, cc); } static int tcpm_enable_auto_vbus_discharge(struct tcpm_port *port, bool enable) { int ret = 0; if (port->tcpc->enable_auto_vbus_discharge) { ret = port->tcpc->enable_auto_vbus_discharge(port->tcpc, enable); tcpm_log_force(port, "%s vbus discharge ret:%d", enable ? "enable" : "disable", ret); if (!ret) port->auto_vbus_discharge_enabled = enable; } return ret; } static void tcpm_apply_rc(struct tcpm_port *port) { /* * TCPCI: Move to APPLY_RC state to prevent disconnect during PR_SWAP * when Vbus auto discharge on disconnect is enabled. */ if (port->tcpc->enable_auto_vbus_discharge && port->tcpc->apply_rc) { tcpm_log(port, "Apply_RC"); port->tcpc->apply_rc(port->tcpc, port->cc_req, port->polarity); tcpm_enable_auto_vbus_discharge(port, false); } } /* * Determine RP value to set based on maximum current supported * by a port if configured as source. * Returns CC value to report to link partner. */ static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port) { const u32 *src_pdo = port->src_pdo; int nr_pdo = port->nr_src_pdo; int i; if (!port->pd_supported) return port->src_rp; /* * Search for first entry with matching voltage. * It should report the maximum supported current. */ for (i = 0; i < nr_pdo; i++) { const u32 pdo = src_pdo[i]; if (pdo_type(pdo) == PDO_TYPE_FIXED && pdo_fixed_voltage(pdo) == 5000) { unsigned int curr = pdo_max_current(pdo); if (curr >= 3000) return TYPEC_CC_RP_3_0; else if (curr >= 1500) return TYPEC_CC_RP_1_5; return TYPEC_CC_RP_DEF; } } return TYPEC_CC_RP_DEF; } static void tcpm_ams_finish(struct tcpm_port *port) { tcpm_log(port, "AMS %s finished", tcpm_ams_str[port->ams]); if (port->pd_capable && port->pwr_role == TYPEC_SOURCE) { if (port->negotiated_rev >= PD_REV30) tcpm_set_cc(port, SINK_TX_OK); else tcpm_set_cc(port, SINK_TX_NG); } else if (port->pwr_role == TYPEC_SOURCE) { tcpm_set_cc(port, tcpm_rp_cc(port)); } port->in_ams = false; port->ams = NONE_AMS; } static int tcpm_pd_transmit(struct tcpm_port *port, enum tcpm_transmit_type tx_sop_type, const struct pd_message *msg) { unsigned long time_left; int ret; unsigned int negotiated_rev; switch (tx_sop_type) { case TCPC_TX_SOP_PRIME: negotiated_rev = port->negotiated_rev_prime; break; case TCPC_TX_SOP: default: negotiated_rev = port->negotiated_rev; break; } if (msg) tcpm_log(port, "PD TX, header: %#x", le16_to_cpu(msg->header)); else tcpm_log(port, "PD TX, type: %#x", tx_sop_type); reinit_completion(&port->tx_complete); ret = port->tcpc->pd_transmit(port->tcpc, tx_sop_type, msg, negotiated_rev); if (ret < 0) return ret; mutex_unlock(&port->lock); time_left = wait_for_completion_timeout(&port->tx_complete, msecs_to_jiffies(PD_T_TCPC_TX_TIMEOUT)); mutex_lock(&port->lock); if (!time_left) return -ETIMEDOUT; switch (port->tx_status) { case TCPC_TX_SUCCESS: switch (tx_sop_type) { case TCPC_TX_SOP_PRIME: port->message_id_prime = (port->message_id_prime + 1) & PD_HEADER_ID_MASK; break; case TCPC_TX_SOP: default: port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK; break; } /* * USB PD rev 2.0, 8.3.2.2.1: * USB PD rev 3.0, 8.3.2.1.3: * "... Note that every AMS is Interruptible until the first * Message in the sequence has been successfully sent (GoodCRC * Message received)." */ if (port->ams != NONE_AMS) port->in_ams = true; break; case TCPC_TX_DISCARDED: ret = -EAGAIN; break; case TCPC_TX_FAILED: default: ret = -EIO; break; } /* Some AMS don't expect responses. Finish them here. */ if (port->ams == ATTENTION || port->ams == SOURCE_ALERT) tcpm_ams_finish(port); return ret; } void tcpm_pd_transmit_complete(struct tcpm_port *port, enum tcpm_transmit_status status) { tcpm_log(port, "PD TX complete, status: %u", status); port->tx_status = status; complete(&port->tx_complete); } EXPORT_SYMBOL_GPL(tcpm_pd_transmit_complete); static int tcpm_mux_set(struct tcpm_port *port, int state, enum usb_role usb_role, enum typec_orientation orientation) { int ret; tcpm_log(port, "Requesting mux state %d, usb-role %d, orientation %d", state, usb_role, orientation); ret = typec_set_orientation(port->typec_port, orientation); if (ret) return ret; if (port->role_sw) { ret = usb_role_switch_set_role(port->role_sw, usb_role); if (ret) return ret; } return typec_set_mode(port->typec_port, state); } static int tcpm_set_polarity(struct tcpm_port *port, enum typec_cc_polarity polarity) { int ret; tcpm_log(port, "polarity %d", polarity); ret = port->tcpc->set_polarity(port->tcpc, polarity); if (ret < 0) return ret; port->polarity = polarity; return 0; } static int tcpm_set_vconn(struct tcpm_port *port, bool enable) { int ret; tcpm_log(port, "vconn:=%d", enable); ret = port->tcpc->set_vconn(port->tcpc, enable); if (!ret) { port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK; typec_set_vconn_role(port->typec_port, port->vconn_role); } return ret; } static u32 tcpm_get_current_limit(struct tcpm_port *port) { enum typec_cc_status cc; u32 limit; cc = port->polarity ? port->cc2 : port->cc1; switch (cc) { case TYPEC_CC_RP_1_5: limit = 1500; break; case TYPEC_CC_RP_3_0: limit = 3000; break; case TYPEC_CC_RP_DEF: default: if (port->tcpc->get_current_limit) limit = port->tcpc->get_current_limit(port->tcpc); else limit = 0; break; } return limit; } static int tcpm_set_current_limit(struct tcpm_port *port, u32 max_ma, u32 mv) { int ret = -EOPNOTSUPP; tcpm_log(port, "Setting voltage/current limit %u mV %u mA", mv, max_ma); port->supply_voltage = mv; port->current_limit = max_ma; power_supply_changed(port->psy); if (port->tcpc->set_current_limit) ret = port->tcpc->set_current_limit(port->tcpc, max_ma, mv); return ret; } static int tcpm_set_attached_state(struct tcpm_port *port, bool attached) { return port->tcpc->set_roles(port->tcpc, attached, port->pwr_role, port->data_role); } static int tcpm_set_roles(struct tcpm_port *port, bool attached, enum typec_role role, enum typec_data_role data) { enum typec_orientation orientation; enum usb_role usb_role; int ret; if (port->polarity == TYPEC_POLARITY_CC1) orientation = TYPEC_ORIENTATION_NORMAL; else orientation = TYPEC_ORIENTATION_REVERSE; if (port->typec_caps.data == TYPEC_PORT_DRD) { if (data == TYPEC_HOST) usb_role = USB_ROLE_HOST; else usb_role = USB_ROLE_DEVICE; } else if (port->typec_caps.data == TYPEC_PORT_DFP) { if (data == TYPEC_HOST) { if (role == TYPEC_SOURCE) usb_role = USB_ROLE_HOST; else usb_role = USB_ROLE_NONE; } else { return -ENOTSUPP; } } else { if (data == TYPEC_DEVICE) { if (role == TYPEC_SINK) usb_role = USB_ROLE_DEVICE; else usb_role = USB_ROLE_NONE; } else { return -ENOTSUPP; } } ret = tcpm_mux_set(port, TYPEC_STATE_USB, usb_role, orientation); if (ret < 0) return ret; ret = port->tcpc->set_roles(port->tcpc, attached, role, data); if (ret < 0) return ret; if (port->tcpc->set_orientation) { ret = port->tcpc->set_orientation(port->tcpc, orientation); if (ret < 0) return ret; } port->pwr_role = role; port->data_role = data; typec_set_data_role(port->typec_port, data); typec_set_pwr_role(port->typec_port, role); return 0; } static int tcpm_set_pwr_role(struct tcpm_port *port, enum typec_role role) { int ret; ret = port->tcpc->set_roles(port->tcpc, true, role, port->data_role); if (ret < 0) return ret; port->pwr_role = role; typec_set_pwr_role(port->typec_port, role); return 0; } /* * Transform the PDO to be compliant to PD rev2.0. * Return 0 if the PDO type is not defined in PD rev2.0. * Otherwise, return the converted PDO. */ static u32 tcpm_forge_legacy_pdo(struct tcpm_port *port, u32 pdo, enum typec_role role) { switch (pdo_type(pdo)) { case PDO_TYPE_FIXED: if (role == TYPEC_SINK) return pdo & ~PDO_FIXED_FRS_CURR_MASK; else return pdo & ~PDO_FIXED_UNCHUNK_EXT; case PDO_TYPE_VAR: case PDO_TYPE_BATT: return pdo; case PDO_TYPE_APDO: default: return 0; } } static int tcpm_pd_send_source_caps(struct tcpm_port *port) { struct pd_message msg; u32 pdo; unsigned int i, nr_pdo = 0; memset(&msg, 0, sizeof(msg)); for (i = 0; i < port->nr_src_pdo; i++) { if (port->negotiated_rev >= PD_REV30) { msg.payload[nr_pdo++] = cpu_to_le32(port->src_pdo[i]); } else { pdo = tcpm_forge_legacy_pdo(port, port->src_pdo[i], TYPEC_SOURCE); if (pdo) msg.payload[nr_pdo++] = cpu_to_le32(pdo); } } if (!nr_pdo) { /* No source capabilities defined, sink only */ msg.header = PD_HEADER_LE(PD_CTRL_REJECT, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); } else { msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, nr_pdo); } return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } static int tcpm_pd_send_sink_caps(struct tcpm_port *port) { struct pd_message msg; u32 pdo; unsigned int i, nr_pdo = 0; memset(&msg, 0, sizeof(msg)); for (i = 0; i < port->nr_snk_pdo; i++) { if (port->negotiated_rev >= PD_REV30) { msg.payload[nr_pdo++] = cpu_to_le32(port->snk_pdo[i]); } else { pdo = tcpm_forge_legacy_pdo(port, port->snk_pdo[i], TYPEC_SINK); if (pdo) msg.payload[nr_pdo++] = cpu_to_le32(pdo); } } if (!nr_pdo) { /* No sink capabilities defined, source only */ msg.header = PD_HEADER_LE(PD_CTRL_REJECT, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); } else { msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, nr_pdo); } return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } static void mod_tcpm_delayed_work(struct tcpm_port *port, unsigned int delay_ms) { if (delay_ms) { hrtimer_start(&port->state_machine_timer, ms_to_ktime(delay_ms), HRTIMER_MODE_REL); } else { hrtimer_cancel(&port->state_machine_timer); kthread_queue_work(port->wq, &port->state_machine); } } static void mod_vdm_delayed_work(struct tcpm_port *port, unsigned int delay_ms) { if (delay_ms) { hrtimer_start(&port->vdm_state_machine_timer, ms_to_ktime(delay_ms), HRTIMER_MODE_REL); } else { hrtimer_cancel(&port->vdm_state_machine_timer); kthread_queue_work(port->wq, &port->vdm_state_machine); } } static void mod_enable_frs_delayed_work(struct tcpm_port *port, unsigned int delay_ms) { if (delay_ms) { hrtimer_start(&port->enable_frs_timer, ms_to_ktime(delay_ms), HRTIMER_MODE_REL); } else { hrtimer_cancel(&port->enable_frs_timer); kthread_queue_work(port->wq, &port->enable_frs); } } static void mod_send_discover_delayed_work(struct tcpm_port *port, unsigned int delay_ms) { if (delay_ms) { hrtimer_start(&port->send_discover_timer, ms_to_ktime(delay_ms), HRTIMER_MODE_REL); } else { hrtimer_cancel(&port->send_discover_timer); kthread_queue_work(port->wq, &port->send_discover_work); } } static void tcpm_set_state(struct tcpm_port *port, enum tcpm_state state, unsigned int delay_ms) { if (delay_ms) { tcpm_log(port, "pending state change %s -> %s @ %u ms [%s %s]", tcpm_states[port->state], tcpm_states[state], delay_ms, pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]); port->delayed_state = state; mod_tcpm_delayed_work(port, delay_ms); port->delayed_runtime = ktime_add(ktime_get(), ms_to_ktime(delay_ms)); port->delay_ms = delay_ms; } else { tcpm_log(port, "state change %s -> %s [%s %s]", tcpm_states[port->state], tcpm_states[state], pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]); port->delayed_state = INVALID_STATE; port->prev_state = port->state; port->state = state; /* * Don't re-queue the state machine work item if we're currently * in the state machine and we're immediately changing states. * tcpm_state_machine_work() will continue running the state * machine. */ if (!port->state_machine_running) mod_tcpm_delayed_work(port, 0); } } static void tcpm_set_state_cond(struct tcpm_port *port, enum tcpm_state state, unsigned int delay_ms) { if (port->enter_state == port->state) tcpm_set_state(port, state, delay_ms); else tcpm_log(port, "skipped %sstate change %s -> %s [%u ms], context state %s [%s %s]", delay_ms ? "delayed " : "", tcpm_states[port->state], tcpm_states[state], delay_ms, tcpm_states[port->enter_state], pd_rev[port->negotiated_rev], tcpm_ams_str[port->ams]); } static void tcpm_queue_message(struct tcpm_port *port, enum pd_msg_request message) { port->queued_message = message; mod_tcpm_delayed_work(port, 0); } static bool tcpm_vdm_ams(struct tcpm_port *port) { switch (port->ams) { case DISCOVER_IDENTITY: case SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY: case DISCOVER_SVIDS: case DISCOVER_MODES: case DFP_TO_UFP_ENTER_MODE: case DFP_TO_UFP_EXIT_MODE: case DFP_TO_CABLE_PLUG_ENTER_MODE: case DFP_TO_CABLE_PLUG_EXIT_MODE: case ATTENTION: case UNSTRUCTURED_VDMS: case STRUCTURED_VDMS: break; default: return false; } return true; } static bool tcpm_ams_interruptible(struct tcpm_port *port) { switch (port->ams) { /* Interruptible AMS */ case NONE_AMS: case SECURITY: case FIRMWARE_UPDATE: case DISCOVER_IDENTITY: case SOURCE_STARTUP_CABLE_PLUG_DISCOVER_IDENTITY: case DISCOVER_SVIDS: case DISCOVER_MODES: case DFP_TO_UFP_ENTER_MODE: case DFP_TO_UFP_EXIT_MODE: case DFP_TO_CABLE_PLUG_ENTER_MODE: case DFP_TO_CABLE_PLUG_EXIT_MODE: case UNSTRUCTURED_VDMS: case STRUCTURED_VDMS: case COUNTRY_INFO: case COUNTRY_CODES: break; /* Non-Interruptible AMS */ default: if (port->in_ams) return false; break; } return true; } static int tcpm_ams_start(struct tcpm_port *port, enum tcpm_ams ams) { int ret = 0; tcpm_log(port, "AMS %s start", tcpm_ams_str[ams]); if (!tcpm_ams_interruptible(port) && !(ams == HARD_RESET || ams == SOFT_RESET_AMS)) { port->upcoming_state = INVALID_STATE; tcpm_log(port, "AMS %s not interruptible, aborting", tcpm_ams_str[port->ams]); return -EAGAIN; } if (port->pwr_role == TYPEC_SOURCE) { enum typec_cc_status cc_req = port->cc_req; port->ams = ams; if (ams == HARD_RESET) { tcpm_set_cc(port, tcpm_rp_cc(port)); tcpm_pd_transmit(port, TCPC_TX_HARD_RESET, NULL); tcpm_set_state(port, HARD_RESET_START, 0); return ret; } else if (ams == SOFT_RESET_AMS) { if (!port->explicit_contract) tcpm_set_cc(port, tcpm_rp_cc(port)); tcpm_set_state(port, SOFT_RESET_SEND, 0); return ret; } else if (tcpm_vdm_ams(port)) { /* tSinkTx is enforced in vdm_run_state_machine */ if (port->negotiated_rev >= PD_REV30) tcpm_set_cc(port, SINK_TX_NG); return ret; } if (port->negotiated_rev >= PD_REV30) tcpm_set_cc(port, SINK_TX_NG); switch (port->state) { case SRC_READY: case SRC_STARTUP: case SRC_SOFT_RESET_WAIT_SNK_TX: case SOFT_RESET: case SOFT_RESET_SEND: if (port->negotiated_rev >= PD_REV30) tcpm_set_state(port, AMS_START, cc_req == SINK_TX_OK ? PD_T_SINK_TX : 0); else tcpm_set_state(port, AMS_START, 0); break; default: if (port->negotiated_rev >= PD_REV30) tcpm_set_state(port, SRC_READY, cc_req == SINK_TX_OK ? PD_T_SINK_TX : 0); else tcpm_set_state(port, SRC_READY, 0); break; } } else { if (port->negotiated_rev >= PD_REV30 && !tcpm_sink_tx_ok(port) && ams != SOFT_RESET_AMS && ams != HARD_RESET) { port->upcoming_state = INVALID_STATE; tcpm_log(port, "Sink TX No Go"); return -EAGAIN; } port->ams = ams; if (ams == HARD_RESET) { tcpm_pd_transmit(port, TCPC_TX_HARD_RESET, NULL); tcpm_set_state(port, HARD_RESET_START, 0); return ret; } else if (tcpm_vdm_ams(port)) { return ret; } if (port->state == SNK_READY || port->state == SNK_SOFT_RESET) tcpm_set_state(port, AMS_START, 0); else tcpm_set_state(port, SNK_READY, 0); } return ret; } /* * VDM/VDO handling functions */ static void tcpm_queue_vdm(struct tcpm_port *port, const u32 header, const u32 *data, int cnt, enum tcpm_transmit_type tx_sop_type) { u32 vdo_hdr = port->vdo_data[0]; WARN_ON(!mutex_is_locked(&port->lock)); /* If is sending discover_identity, handle received message first */ if (PD_VDO_SVDM(vdo_hdr) && PD_VDO_CMD(vdo_hdr) == CMD_DISCOVER_IDENT) { if (tx_sop_type == TCPC_TX_SOP_PRIME) port->send_discover_prime = true; else port->send_discover = true; mod_send_discover_delayed_work(port, SEND_DISCOVER_RETRY_MS); } else { /* Make sure we are not still processing a previous VDM packet */ WARN_ON(port->vdm_state > VDM_STATE_DONE); } port->vdo_count = cnt + 1; port->vdo_data[0] = header; memcpy(&port->vdo_data[1], data, sizeof(u32) * cnt); /* Set ready, vdm state machine will actually send */ port->vdm_retries = 0; port->vdm_state = VDM_STATE_READY; port->vdm_sm_running = true; port->tx_sop_type = tx_sop_type; mod_vdm_delayed_work(port, 0); } static void tcpm_queue_vdm_unlocked(struct tcpm_port *port, const u32 header, const u32 *data, int cnt, enum tcpm_transmit_type tx_sop_type) { if (port->state != SRC_READY && port->state != SNK_READY && port->state != SRC_VDM_IDENTITY_REQUEST) return; mutex_lock(&port->lock); tcpm_queue_vdm(port, header, data, cnt, tx_sop_type); mutex_unlock(&port->lock); } static void svdm_consume_identity(struct tcpm_port *port, const u32 *p, int cnt) { u32 vdo = p[VDO_INDEX_IDH]; u32 product = p[VDO_INDEX_PRODUCT]; memset(&port->mode_data, 0, sizeof(port->mode_data)); port->partner_ident.id_header = vdo; port->partner_ident.cert_stat = p[VDO_INDEX_CSTAT]; port->partner_ident.product = product; if (port->partner) typec_partner_set_identity(port->partner); tcpm_log(port, "Identity: %04x:%04x.%04x", PD_IDH_VID(vdo), PD_PRODUCT_PID(product), product & 0xffff); } static void svdm_consume_identity_sop_prime(struct tcpm_port *port, const u32 *p, int cnt) { u32 idh = p[VDO_INDEX_IDH]; u32 product = p[VDO_INDEX_PRODUCT]; int svdm_version; /* * Attempt to consume identity only if cable currently is not set */ if (!IS_ERR_OR_NULL(port->cable)) goto register_plug; /* Reset cable identity */ memset(&port->cable_ident, 0, sizeof(port->cable_ident)); /* Fill out id header, cert, product, cable VDO 1 */ port->cable_ident.id_header = idh; port->cable_ident.cert_stat = p[VDO_INDEX_CSTAT]; port->cable_ident.product = product; port->cable_ident.vdo[0] = p[VDO_INDEX_CABLE_1]; /* Fill out cable desc, infer svdm_version from pd revision */ port->cable_desc.type = (enum typec_plug_type) (VDO_TYPEC_CABLE_TYPE(p[VDO_INDEX_CABLE_1]) + USB_PLUG_TYPE_A); port->cable_desc.active = PD_IDH_PTYPE(idh) == IDH_PTYPE_ACABLE ? 1 : 0; /* Log PD Revision and additional cable VDO from negotiated revision */ switch (port->negotiated_rev_prime) { case PD_REV30: port->cable_desc.pd_revision = 0x0300; if (port->cable_desc.active) port->cable_ident.vdo[1] = p[VDO_INDEX_CABLE_2]; break; case PD_REV20: port->cable_desc.pd_revision = 0x0200; break; default: port->cable_desc.pd_revision = 0x0200; break; } port->cable_desc.identity = &port->cable_ident; /* Register Cable, set identity and svdm_version */ port->cable = typec_register_cable(port->typec_port, &port->cable_desc); if (IS_ERR_OR_NULL(port->cable)) return; typec_cable_set_identity(port->cable); /* Get SVDM version */ svdm_version = PD_VDO_SVDM_VER(p[VDO_INDEX_HDR]); typec_cable_set_svdm_version(port->cable, svdm_version); register_plug: if (IS_ERR_OR_NULL(port->plug_prime)) { port->plug_prime_desc.index = TYPEC_PLUG_SOP_P; port->plug_prime = typec_register_plug(port->cable, &port->plug_prime_desc); } } static bool svdm_consume_svids(struct tcpm_port *port, const u32 *p, int cnt, enum tcpm_transmit_type rx_sop_type) { struct pd_mode_data *pmdata = rx_sop_type == TCPC_TX_SOP_PRIME ? &port->mode_data_prime : &port->mode_data; int i; for (i = 1; i < cnt; i++) { u16 svid; svid = (p[i] >> 16) & 0xffff; if (!svid) return false; if (pmdata->nsvids >= SVID_DISCOVERY_MAX) goto abort; pmdata->svids[pmdata->nsvids++] = svid; tcpm_log(port, "SVID %d: 0x%x", pmdata->nsvids, svid); svid = p[i] & 0xffff; if (!svid) return false; if (pmdata->nsvids >= SVID_DISCOVERY_MAX) goto abort; pmdata->svids[pmdata->nsvids++] = svid; tcpm_log(port, "SVID %d: 0x%x", pmdata->nsvids, svid); } /* * PD3.0 Spec 6.4.4.3.2: The SVIDs are returned 2 per VDO (see Table * 6-43), and can be returned maximum 6 VDOs per response (see Figure * 6-19). If the Respondersupports 12 or more SVID then the Discover * SVIDs Command Shall be executed multiple times until a Discover * SVIDs VDO is returned ending either with a SVID value of 0x0000 in * the last part of the last VDO or with a VDO containing two SVIDs * with values of 0x0000. * * However, some odd dockers support SVIDs less than 12 but without * 0x0000 in the last VDO, so we need to break the Discover SVIDs * request and return false here. */ return cnt == 7; abort: tcpm_log(port, "SVID_DISCOVERY_MAX(%d) too low!", SVID_DISCOVERY_MAX); return false; } static void svdm_consume_modes(struct tcpm_port *port, const u32 *p, int cnt, enum tcpm_transmit_type rx_sop_type) { struct pd_mode_data *pmdata = &port->mode_data; struct typec_altmode_desc *paltmode; int i; switch (rx_sop_type) { case TCPC_TX_SOP_PRIME: pmdata = &port->mode_data_prime; if (pmdata->altmodes >= ARRAY_SIZE(port->plug_prime_altmode)) { /* Already logged in svdm_consume_svids() */ return; } break; case TCPC_TX_SOP: pmdata = &port->mode_data; if (pmdata->altmodes >= ARRAY_SIZE(port->partner_altmode)) { /* Already logged in svdm_consume_svids() */ return; } break; default: return; } for (i = 1; i < cnt; i++) { paltmode = &pmdata->altmode_desc[pmdata->altmodes]; memset(paltmode, 0, sizeof(*paltmode)); paltmode->svid = pmdata->svids[pmdata->svid_index]; paltmode->mode = i; paltmode->vdo = p[i]; tcpm_log(port, " Alternate mode %d: SVID 0x%04x, VDO %d: 0x%08x", pmdata->altmodes, paltmode->svid, paltmode->mode, paltmode->vdo); pmdata->altmodes++; } } static void tcpm_register_partner_altmodes(struct tcpm_port *port) { struct pd_mode_data *modep = &port->mode_data; struct typec_altmode *altmode; int i; if (!port->partner) return; for (i = 0; i < modep->altmodes; i++) { altmode = typec_partner_register_altmode(port->partner, &modep->altmode_desc[i]); if (IS_ERR(altmode)) { tcpm_log(port, "Failed to register partner SVID 0x%04x", modep->altmode_desc[i].svid); altmode = NULL; } port->partner_altmode[i] = altmode; } } static void tcpm_register_plug_altmodes(struct tcpm_port *port) { struct pd_mode_data *modep = &port->mode_data_prime; struct typec_altmode *altmode; int i; typec_plug_set_num_altmodes(port->plug_prime, modep->altmodes); for (i = 0; i < modep->altmodes; i++) { altmode = typec_plug_register_altmode(port->plug_prime, &modep->altmode_desc[i]); if (IS_ERR(altmode)) { tcpm_log(port, "Failed to register plug SVID 0x%04x", modep->altmode_desc[i].svid); altmode = NULL; } port->plug_prime_altmode[i] = altmode; } } #define supports_modal(port) PD_IDH_MODAL_SUPP((port)->partner_ident.id_header) #define supports_modal_cable(port) PD_IDH_MODAL_SUPP((port)->cable_ident.id_header) #define supports_host(port) PD_IDH_HOST_SUPP((port->partner_ident.id_header)) /* * Helper to determine whether the port is capable of SOP' communication at the * current point in time. */ static bool tcpm_can_communicate_sop_prime(struct tcpm_port *port) { /* Check to see if tcpc supports SOP' communication */ if (!port->tcpc->cable_comm_capable || !port->tcpc->cable_comm_capable(port->tcpc)) return false; /* * Power Delivery 2.0 Section 6.3.11 * Before communicating with a Cable Plug a Port Should ensure that it * is the Vconn Source and that the Cable Plugs are powered by * performing a Vconn swap if necessary. Since it cannot be guaranteed * that the present Vconn Source is supplying Vconn, the only means to * ensure that the Cable Plugs are powered is for a Port wishing to * communicate with a Cable Plug is to become the Vconn Source. * * Power Delivery 3.0 Section 6.3.11 * Before communicating with a Cable Plug a Port Shall ensure that it * is the Vconn source. */ if (port->vconn_role != TYPEC_SOURCE) return false; /* * Power Delivery 2.0 Section 2.4.4 * When no Contract or an Implicit Contract is in place the Source can * communicate with a Cable Plug using SOP' packets in order to discover * its characteristics. * * Power Delivery 3.0 Section 2.4.4 * When no Contract or an Implicit Contract is in place only the Source * port that is supplying Vconn is allowed to send packets to a Cable * Plug and is allowed to respond to packets from the Cable Plug. */ if (!port->explicit_contract) return port->pwr_role == TYPEC_SOURCE; if (port->negotiated_rev == PD_REV30) return true; /* * Power Delivery 2.0 Section 2.4.4 * * When an Explicit Contract is in place the DFP (either the Source or * the Sink) can communicate with the Cable Plug(s) using SOP’/SOP” * Packets (see Figure 2-3). */ if (port->negotiated_rev == PD_REV20) return port->data_role == TYPEC_HOST; return false; } static bool tcpm_attempt_vconn_swap_discovery(struct tcpm_port *port) { if (!port->tcpc->attempt_vconn_swap_discovery) return false; /* Port is already source, no need to perform swap */ if (port->vconn_role == TYPEC_SOURCE) return false; /* * Partner needs to support Alternate Modes with modal support. If * partner is also capable of being a USB Host, it could be a device * that supports Alternate Modes as the DFP. */ if (!supports_modal(port) || supports_host(port)) return false; if ((port->negotiated_rev == PD_REV20 && port->data_role == TYPEC_HOST) || port->negotiated_rev == PD_REV30) return port->tcpc->attempt_vconn_swap_discovery(port->tcpc); return false; } static bool tcpm_cable_vdm_supported(struct tcpm_port *port) { return !IS_ERR_OR_NULL(port->cable) && typec_cable_is_active(port->cable) && supports_modal_cable(port) && tcpm_can_communicate_sop_prime(port); } static int tcpm_pd_svdm(struct tcpm_port *port, struct typec_altmode *adev, const u32 *p, int cnt, u32 *response, enum adev_actions *adev_action, enum tcpm_transmit_type rx_sop_type, enum tcpm_transmit_type *response_tx_sop_type) { struct typec_port *typec = port->typec_port; struct typec_altmode *pdev, *pdev_prime; struct pd_mode_data *modep, *modep_prime; int svdm_version; int rlen = 0; int cmd_type; int cmd; int i; int ret; cmd_type = PD_VDO_CMDT(p[0]); cmd = PD_VDO_CMD(p[0]); tcpm_log(port, "Rx VDM cmd 0x%x type %d cmd %d len %d", p[0], cmd_type, cmd, cnt); switch (rx_sop_type) { case TCPC_TX_SOP_PRIME: modep_prime = &port->mode_data_prime; pdev_prime = typec_match_altmode(port->plug_prime_altmode, ALTMODE_DISCOVERY_MAX, PD_VDO_VID(p[0]), PD_VDO_OPOS(p[0])); svdm_version = typec_get_cable_svdm_version(typec); /* * Update SVDM version if cable was discovered before port partner. */ if (!IS_ERR_OR_NULL(port->cable) && PD_VDO_SVDM_VER(p[0]) < svdm_version) typec_cable_set_svdm_version(port->cable, svdm_version); break; case TCPC_TX_SOP: modep = &port->mode_data; pdev = typec_match_altmode(port->partner_altmode, ALTMODE_DISCOVERY_MAX, PD_VDO_VID(p[0]), PD_VDO_OPOS(p[0])); svdm_version = typec_get_negotiated_svdm_version(typec); if (svdm_version < 0) return 0; break; default: modep = &port->mode_data; pdev = typec_match_altmode(port->partner_altmode, ALTMODE_DISCOVERY_MAX, PD_VDO_VID(p[0]), PD_VDO_OPOS(p[0])); svdm_version = typec_get_negotiated_svdm_version(typec); if (svdm_version < 0) return 0; break; } switch (cmd_type) { case CMDT_INIT: /* * Only the port or port partner is allowed to initialize SVDM * commands over SOP'. In case the port partner initializes a * sequence when it is not allowed to send SOP' messages, drop * the message should the TCPM port try to process it. */ if (rx_sop_type == TCPC_TX_SOP_PRIME) return 0; switch (cmd) { case CMD_DISCOVER_IDENT: if (PD_VDO_VID(p[0]) != USB_SID_PD) break; if (IS_ERR_OR_NULL(port->partner)) break; if (PD_VDO_SVDM_VER(p[0]) < svdm_version) { typec_partner_set_svdm_version(port->partner, PD_VDO_SVDM_VER(p[0])); svdm_version = PD_VDO_SVDM_VER(p[0]); } port->ams = DISCOVER_IDENTITY; /* * PD2.0 Spec 6.10.3: respond with NAK as DFP (data host) * PD3.1 Spec 6.4.4.2.5.1: respond with NAK if "invalid field" or * "wrong configuation" or "Unrecognized" */ if ((port->data_role == TYPEC_DEVICE || svdm_version >= SVDM_VER_2_0) && port->nr_snk_vdo) { if (svdm_version < SVDM_VER_2_0) { for (i = 0; i < port->nr_snk_vdo_v1; i++) response[i + 1] = port->snk_vdo_v1[i]; rlen = port->nr_snk_vdo_v1 + 1; } else { for (i = 0; i < port->nr_snk_vdo; i++) response[i + 1] = port->snk_vdo[i]; rlen = port->nr_snk_vdo + 1; } } break; case CMD_DISCOVER_SVID: port->ams = DISCOVER_SVIDS; break; case CMD_DISCOVER_MODES: port->ams = DISCOVER_MODES; break; case CMD_ENTER_MODE: port->ams = DFP_TO_UFP_ENTER_MODE; break; case CMD_EXIT_MODE: port->ams = DFP_TO_UFP_EXIT_MODE; break; case CMD_ATTENTION: /* Attention command does not have response */ *adev_action = ADEV_ATTENTION; return 0; default: break; } if (rlen >= 1) { response[0] = p[0] | VDO_CMDT(CMDT_RSP_ACK); } else if (rlen == 0) { response[0] = p[0] | VDO_CMDT(CMDT_RSP_NAK); rlen = 1; } else { response[0] = p[0] | VDO_CMDT(CMDT_RSP_BUSY); rlen = 1; } response[0] = (response[0] & ~VDO_SVDM_VERS_MASK) | (VDO_SVDM_VERS(typec_get_negotiated_svdm_version(typec))); break; case CMDT_RSP_ACK: /* * Silently drop message if we are not connected, but can process * if SOP' Discover Identity prior to explicit contract. */ if (IS_ERR_OR_NULL(port->partner) && !(rx_sop_type == TCPC_TX_SOP_PRIME && cmd == CMD_DISCOVER_IDENT)) break; tcpm_ams_finish(port); switch (cmd) { /* * SVDM Command Flow for SOP and SOP': * SOP Discover Identity * SOP' Discover Identity * SOP Discover SVIDs * Discover Modes * (Active Cables) * SOP' Discover SVIDs * Discover Modes * * Perform Discover SOP' if the port can communicate with cable * plug. */ case CMD_DISCOVER_IDENT: switch (rx_sop_type) { case TCPC_TX_SOP: if (PD_VDO_SVDM_VER(p[0]) < svdm_version) { typec_partner_set_svdm_version(port->partner, PD_VDO_SVDM_VER(p[0])); /* If cable is discovered before partner, downgrade svdm */ if (!IS_ERR_OR_NULL(port->cable) && (typec_get_cable_svdm_version(port->typec_port) > svdm_version)) typec_cable_set_svdm_version(port->cable, svdm_version); } /* 6.4.4.3.1 */ svdm_consume_identity(port, p, cnt); /* Attempt Vconn swap, delay SOP' discovery if necessary */ if (tcpm_attempt_vconn_swap_discovery(port)) { port->send_discover_prime = true; port->upcoming_state = VCONN_SWAP_SEND; ret = tcpm_ams_start(port, VCONN_SWAP); if (!ret) return 0; /* Cannot perform Vconn swap */ port->upcoming_state = INVALID_STATE; port->send_discover_prime = false; } /* * Attempt Discover Identity on SOP' if the * cable was not discovered previously, and use * the SVDM version of the partner to probe. */ if (IS_ERR_OR_NULL(port->cable) && tcpm_can_communicate_sop_prime(port)) { *response_tx_sop_type = TCPC_TX_SOP_PRIME; port->send_discover_prime = true; response[0] = VDO(USB_SID_PD, 1, typec_get_negotiated_svdm_version(typec), CMD_DISCOVER_IDENT); rlen = 1; } else { *response_tx_sop_type = TCPC_TX_SOP; response[0] = VDO(USB_SID_PD, 1, typec_get_negotiated_svdm_version(typec), CMD_DISCOVER_SVID); rlen = 1; } break; case TCPC_TX_SOP_PRIME: /* * svdm_consume_identity_sop_prime will determine * the svdm_version for the cable moving forward. */ svdm_consume_identity_sop_prime(port, p, cnt); /* * If received in SRC_VDM_IDENTITY_REQUEST, continue * to SRC_SEND_CAPABILITIES */ if (port->state == SRC_VDM_IDENTITY_REQUEST) { tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0); return 0; } *response_tx_sop_type = TCPC_TX_SOP; response[0] = VDO(USB_SID_PD, 1, typec_get_negotiated_svdm_version(typec), CMD_DISCOVER_SVID); rlen = 1; break; default: return 0; } break; case CMD_DISCOVER_SVID: *response_tx_sop_type = rx_sop_type; /* 6.4.4.3.2 */ if (svdm_consume_svids(port, p, cnt, rx_sop_type)) { response[0] = VDO(USB_SID_PD, 1, svdm_version, CMD_DISCOVER_SVID); rlen = 1; } else { if (rx_sop_type == TCPC_TX_SOP) { if (modep->nsvids && supports_modal(port)) { response[0] = VDO(modep->svids[0], 1, svdm_version, CMD_DISCOVER_MODES); rlen = 1; } } else if (rx_sop_type == TCPC_TX_SOP_PRIME) { if (modep_prime->nsvids) { response[0] = VDO(modep_prime->svids[0], 1, svdm_version, CMD_DISCOVER_MODES); rlen = 1; } } } break; case CMD_DISCOVER_MODES: if (rx_sop_type == TCPC_TX_SOP) { /* 6.4.4.3.3 */ svdm_consume_modes(port, p, cnt, rx_sop_type); modep->svid_index++; if (modep->svid_index < modep->nsvids) { u16 svid = modep->svids[modep->svid_index]; *response_tx_sop_type = TCPC_TX_SOP; response[0] = VDO(svid, 1, svdm_version, CMD_DISCOVER_MODES); rlen = 1; } else if (tcpm_cable_vdm_supported(port)) { *response_tx_sop_type = TCPC_TX_SOP_PRIME; response[0] = VDO(USB_SID_PD, 1, typec_get_cable_svdm_version(typec), CMD_DISCOVER_SVID); rlen = 1; } else { tcpm_register_partner_altmodes(port); } } else if (rx_sop_type == TCPC_TX_SOP_PRIME) { /* 6.4.4.3.3 */ svdm_consume_modes(port, p, cnt, rx_sop_type); modep_prime->svid_index++; if (modep_prime->svid_index < modep_prime->nsvids) { u16 svid = modep_prime->svids[modep_prime->svid_index]; *response_tx_sop_type = TCPC_TX_SOP_PRIME; response[0] = VDO(svid, 1, typec_get_cable_svdm_version(typec), CMD_DISCOVER_MODES); rlen = 1; } else { tcpm_register_plug_altmodes(port); tcpm_register_partner_altmodes(port); } } break; case CMD_ENTER_MODE: *response_tx_sop_type = rx_sop_type; if (rx_sop_type == TCPC_TX_SOP) { if (adev && pdev) { typec_altmode_update_active(pdev, true); *adev_action = ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL; } } else if (rx_sop_type == TCPC_TX_SOP_PRIME) { if (adev && pdev_prime) { typec_altmode_update_active(pdev_prime, true); *adev_action = ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL; } } return 0; case CMD_EXIT_MODE: *response_tx_sop_type = rx_sop_type; if (rx_sop_type == TCPC_TX_SOP) { if (adev && pdev) { typec_altmode_update_active(pdev, false); /* Back to USB Operation */ *adev_action = ADEV_NOTIFY_USB_AND_QUEUE_VDM; return 0; } } break; case VDO_CMD_VENDOR(0) ... VDO_CMD_VENDOR(15): break; default: /* Unrecognized SVDM */ response[0] = p[0] | VDO_CMDT(CMDT_RSP_NAK); rlen = 1; response[0] = (response[0] & ~VDO_SVDM_VERS_MASK) | (VDO_SVDM_VERS(svdm_version)); break; } break; case CMDT_RSP_NAK: tcpm_ams_finish(port); switch (cmd) { case CMD_DISCOVER_IDENT: case CMD_DISCOVER_SVID: case CMD_DISCOVER_MODES: case VDO_CMD_VENDOR(0) ... VDO_CMD_VENDOR(15): break; case CMD_ENTER_MODE: /* Back to USB Operation */ *adev_action = ADEV_NOTIFY_USB_AND_QUEUE_VDM; return 0; default: /* Unrecognized SVDM */ response[0] = p[0] | VDO_CMDT(CMDT_RSP_NAK); rlen = 1; response[0] = (response[0] & ~VDO_SVDM_VERS_MASK) | (VDO_SVDM_VERS(svdm_version)); break; } break; default: response[0] = p[0] | VDO_CMDT(CMDT_RSP_NAK); rlen = 1; response[0] = (response[0] & ~VDO_SVDM_VERS_MASK) | (VDO_SVDM_VERS(svdm_version)); break; } /* Informing the alternate mode drivers about everything */ *adev_action = ADEV_QUEUE_VDM; return rlen; } static void tcpm_pd_handle_msg(struct tcpm_port *port, enum pd_msg_request message, enum tcpm_ams ams); static void tcpm_handle_vdm_request(struct tcpm_port *port, const __le32 *payload, int cnt, enum tcpm_transmit_type rx_sop_type) { enum adev_actions adev_action = ADEV_NONE; struct typec_altmode *adev; u32 p[PD_MAX_PAYLOAD]; u32 response[8] = { }; int i, rlen = 0; enum tcpm_transmit_type response_tx_sop_type = TCPC_TX_SOP; for (i = 0; i < cnt; i++) p[i] = le32_to_cpu(payload[i]); adev = typec_match_altmode(port->port_altmode, ALTMODE_DISCOVERY_MAX, PD_VDO_VID(p[0]), PD_VDO_OPOS(p[0])); if (port->vdm_state == VDM_STATE_BUSY) { /* If UFP responded busy retry after timeout */ if (PD_VDO_CMDT(p[0]) == CMDT_RSP_BUSY) { port->vdm_state = VDM_STATE_WAIT_RSP_BUSY; port->vdo_retry = (p[0] & ~VDO_CMDT_MASK) | CMDT_INIT; mod_vdm_delayed_work(port, PD_T_VDM_BUSY); return; } port->vdm_state = VDM_STATE_DONE; } if (PD_VDO_SVDM(p[0]) && (adev || tcpm_vdm_ams(port) || port->nr_snk_vdo)) { /* * Here a SVDM is received (INIT or RSP or unknown). Set the vdm_sm_running in * advance because we are dropping the lock but may send VDMs soon. * For the cases of INIT received: * - If no response to send, it will be cleared later in this function. * - If there are responses to send, it will be cleared in the state machine. * For the cases of RSP received: * - If no further INIT to send, it will be cleared later in this function. * - Otherwise, it will be cleared in the state machine if timeout or it will go * back here until no further INIT to send. * For the cases of unknown type received: * - We will send NAK and the flag will be cleared in the state machine. */ port->vdm_sm_running = true; rlen = tcpm_pd_svdm(port, adev, p, cnt, response, &adev_action, rx_sop_type, &response_tx_sop_type); } else { if (port->negotiated_rev >= PD_REV30) tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS); } /* * We are done with any state stored in the port struct now, except * for any port struct changes done by the tcpm_queue_vdm() call * below, which is a separate operation. * * So we can safely release the lock here; and we MUST release the * lock here to avoid an AB BA lock inversion: * * If we keep the lock here then the lock ordering in this path is: * 1. tcpm_pd_rx_handler take the tcpm port lock * 2. One of the typec_altmode_* calls below takes the alt-mode's lock * * And we also have this ordering: * 1. alt-mode driver takes the alt-mode's lock * 2. alt-mode driver calls tcpm_altmode_enter which takes the * tcpm port lock * * Dropping our lock here avoids this. */ mutex_unlock(&port->lock); if (adev) { switch (adev_action) { case ADEV_NONE: break; case ADEV_NOTIFY_USB_AND_QUEUE_VDM: WARN_ON(typec_altmode_notify(adev, TYPEC_STATE_USB, NULL)); typec_altmode_vdm(adev, p[0], &p[1], cnt); break; case ADEV_QUEUE_VDM: if (response_tx_sop_type == TCPC_TX_SOP_PRIME) typec_cable_altmode_vdm(adev, TYPEC_PLUG_SOP_P, p[0], &p[1], cnt); else typec_altmode_vdm(adev, p[0], &p[1], cnt); break; case ADEV_QUEUE_VDM_SEND_EXIT_MODE_ON_FAIL: if (response_tx_sop_type == TCPC_TX_SOP_PRIME) { if (typec_cable_altmode_vdm(adev, TYPEC_PLUG_SOP_P, p[0], &p[1], cnt)) { int svdm_version = typec_get_cable_svdm_version( port->typec_port); if (svdm_version < 0) break; response[0] = VDO(adev->svid, 1, svdm_version, CMD_EXIT_MODE); response[0] |= VDO_OPOS(adev->mode); rlen = 1; } } else { if (typec_altmode_vdm(adev, p[0], &p[1], cnt)) { int svdm_version = typec_get_negotiated_svdm_version( port->typec_port); if (svdm_version < 0) break; response[0] = VDO(adev->svid, 1, svdm_version, CMD_EXIT_MODE); response[0] |= VDO_OPOS(adev->mode); rlen = 1; } } break; case ADEV_ATTENTION: if (typec_altmode_attention(adev, p[1])) tcpm_log(port, "typec_altmode_attention no port partner altmode"); break; } } /* * We must re-take the lock here to balance the unlock in * tcpm_pd_rx_handler, note that no changes, other then the * tcpm_queue_vdm call, are made while the lock is held again. * All that is done after the call is unwinding the call stack until * we return to tcpm_pd_rx_handler and do the unlock there. */ mutex_lock(&port->lock); if (rlen > 0) tcpm_queue_vdm(port, response[0], &response[1], rlen - 1, response_tx_sop_type); else port->vdm_sm_running = false; } static void tcpm_send_vdm(struct tcpm_port *port, u32 vid, int cmd, const u32 *data, int count, enum tcpm_transmit_type tx_sop_type) { int svdm_version; u32 header; switch (tx_sop_type) { case TCPC_TX_SOP_PRIME: /* * If the port partner is discovered, then the port partner's * SVDM Version will be returned */ svdm_version = typec_get_cable_svdm_version(port->typec_port); if (svdm_version < 0) svdm_version = SVDM_VER_MAX; break; case TCPC_TX_SOP: svdm_version = typec_get_negotiated_svdm_version(port->typec_port); if (svdm_version < 0) return; break; default: svdm_version = typec_get_negotiated_svdm_version(port->typec_port); if (svdm_version < 0) return; break; } if (WARN_ON(count > VDO_MAX_SIZE - 1)) count = VDO_MAX_SIZE - 1; /* set VDM header with VID & CMD */ header = VDO(vid, ((vid & USB_SID_PD) == USB_SID_PD) ? 1 : (PD_VDO_CMD(cmd) <= CMD_ATTENTION), svdm_version, cmd); tcpm_queue_vdm(port, header, data, count, tx_sop_type); } static unsigned int vdm_ready_timeout(u32 vdm_hdr) { unsigned int timeout; int cmd = PD_VDO_CMD(vdm_hdr); /* its not a structured VDM command */ if (!PD_VDO_SVDM(vdm_hdr)) return PD_T_VDM_UNSTRUCTURED; switch (PD_VDO_CMDT(vdm_hdr)) { case CMDT_INIT: if (cmd == CMD_ENTER_MODE || cmd == CMD_EXIT_MODE) timeout = PD_T_VDM_WAIT_MODE_E; else timeout = PD_T_VDM_SNDR_RSP; break; default: if (cmd == CMD_ENTER_MODE || cmd == CMD_EXIT_MODE) timeout = PD_T_VDM_E_MODE; else timeout = PD_T_VDM_RCVR_RSP; break; } return timeout; } static void vdm_run_state_machine(struct tcpm_port *port) { struct pd_message msg; int i, res = 0; u32 vdo_hdr = port->vdo_data[0]; u32 response[8] = { }; switch (port->vdm_state) { case VDM_STATE_READY: /* Only transmit VDM if attached */ if (!port->attached) { port->vdm_state = VDM_STATE_ERR_BUSY; break; } /* * if there's traffic or we're not in PDO ready state don't send * a VDM. */ if (port->state != SRC_READY && port->state != SNK_READY && port->state != SRC_VDM_IDENTITY_REQUEST) { port->vdm_sm_running = false; break; } /* TODO: AMS operation for Unstructured VDM */ if (PD_VDO_SVDM(vdo_hdr) && PD_VDO_CMDT(vdo_hdr) == CMDT_INIT) { switch (PD_VDO_CMD(vdo_hdr)) { case CMD_DISCOVER_IDENT: res = tcpm_ams_start(port, DISCOVER_IDENTITY); if (res == 0) { switch (port->tx_sop_type) { case TCPC_TX_SOP_PRIME: port->send_discover_prime = false; break; case TCPC_TX_SOP: port->send_discover = false; break; default: port->send_discover = false; break; } } else if (res == -EAGAIN) { port->vdo_data[0] = 0; mod_send_discover_delayed_work(port, SEND_DISCOVER_RETRY_MS); } break; case CMD_DISCOVER_SVID: res = tcpm_ams_start(port, DISCOVER_SVIDS); break; case CMD_DISCOVER_MODES: res = tcpm_ams_start(port, DISCOVER_MODES); break; case CMD_ENTER_MODE: res = tcpm_ams_start(port, DFP_TO_UFP_ENTER_MODE); break; case CMD_EXIT_MODE: res = tcpm_ams_start(port, DFP_TO_UFP_EXIT_MODE); break; case CMD_ATTENTION: res = tcpm_ams_start(port, ATTENTION); break; case VDO_CMD_VENDOR(0) ... VDO_CMD_VENDOR(15): res = tcpm_ams_start(port, STRUCTURED_VDMS); break; default: res = -EOPNOTSUPP; break; } if (res < 0) { port->vdm_state = VDM_STATE_ERR_BUSY; return; } } port->vdm_state = VDM_STATE_SEND_MESSAGE; mod_vdm_delayed_work(port, (port->negotiated_rev >= PD_REV30 && port->pwr_role == TYPEC_SOURCE && PD_VDO_SVDM(vdo_hdr) && PD_VDO_CMDT(vdo_hdr) == CMDT_INIT) ? PD_T_SINK_TX : 0); break; case VDM_STATE_WAIT_RSP_BUSY: port->vdo_data[0] = port->vdo_retry; port->vdo_count = 1; port->vdm_state = VDM_STATE_READY; tcpm_ams_finish(port); break; case VDM_STATE_BUSY: port->vdm_state = VDM_STATE_ERR_TMOUT; if (port->ams != NONE_AMS) tcpm_ams_finish(port); break; case VDM_STATE_ERR_SEND: /* * When sending Discover Identity to SOP' before establishing an * explicit contract, do not retry. Instead, weave sending * Source_Capabilities over SOP and Discover Identity over SOP'. */ if (port->state == SRC_VDM_IDENTITY_REQUEST) { tcpm_ams_finish(port); port->vdm_state = VDM_STATE_DONE; tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0); /* * A partner which does not support USB PD will not reply, * so this is not a fatal error. At the same time, some * devices may not return GoodCRC under some circumstances, * so we need to retry. */ } else if (port->vdm_retries < 3) { tcpm_log(port, "VDM Tx error, retry"); port->vdm_retries++; port->vdm_state = VDM_STATE_READY; if (PD_VDO_SVDM(vdo_hdr) && PD_VDO_CMDT(vdo_hdr) == CMDT_INIT) tcpm_ams_finish(port); } else { tcpm_ams_finish(port); if (port->tx_sop_type == TCPC_TX_SOP) break; /* Handle SOP' Transmission Errors */ switch (PD_VDO_CMD(vdo_hdr)) { /* * If Discover Identity fails on SOP', then resume * discovery process on SOP only. */ case CMD_DISCOVER_IDENT: port->vdo_data[0] = 0; response[0] = VDO(USB_SID_PD, 1, typec_get_negotiated_svdm_version( port->typec_port), CMD_DISCOVER_SVID); tcpm_queue_vdm(port, response[0], &response[1], 0, TCPC_TX_SOP); break; /* * If Discover SVIDs or Discover Modes fail, then * proceed with Alt Mode discovery process on SOP. */ case CMD_DISCOVER_SVID: tcpm_register_partner_altmodes(port); break; case CMD_DISCOVER_MODES: tcpm_register_partner_altmodes(port); break; default: break; } } break; case VDM_STATE_SEND_MESSAGE: /* Prepare and send VDM */ memset(&msg, 0, sizeof(msg)); if (port->tx_sop_type == TCPC_TX_SOP_PRIME) { msg.header = PD_HEADER_LE(PD_DATA_VENDOR_DEF, 0, /* Cable Plug Indicator for DFP/UFP */ 0, /* Reserved */ port->negotiated_rev_prime, port->message_id_prime, port->vdo_count); } else { msg.header = PD_HEADER_LE(PD_DATA_VENDOR_DEF, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, port->vdo_count); } for (i = 0; i < port->vdo_count; i++) msg.payload[i] = cpu_to_le32(port->vdo_data[i]); res = tcpm_pd_transmit(port, port->tx_sop_type, &msg); if (res < 0) { port->vdm_state = VDM_STATE_ERR_SEND; } else { unsigned long timeout; port->vdm_retries = 0; port->vdo_data[0] = 0; port->vdm_state = VDM_STATE_BUSY; timeout = vdm_ready_timeout(vdo_hdr); mod_vdm_delayed_work(port, timeout); } break; default: break; } } static void vdm_state_machine_work(struct kthread_work *work) { struct tcpm_port *port = container_of(work, struct tcpm_port, vdm_state_machine); enum vdm_states prev_state; mutex_lock(&port->lock); /* * Continue running as long as the port is not busy and there was * a state change. */ do { prev_state = port->vdm_state; vdm_run_state_machine(port); } while (port->vdm_state != prev_state && port->vdm_state != VDM_STATE_BUSY && port->vdm_state != VDM_STATE_SEND_MESSAGE); if (port->vdm_state < VDM_STATE_READY) port->vdm_sm_running = false; mutex_unlock(&port->lock); } enum pdo_err { PDO_NO_ERR, PDO_ERR_NO_VSAFE5V, PDO_ERR_VSAFE5V_NOT_FIRST, PDO_ERR_PDO_TYPE_NOT_IN_ORDER, PDO_ERR_FIXED_NOT_SORTED, PDO_ERR_VARIABLE_BATT_NOT_SORTED, PDO_ERR_DUPE_PDO, PDO_ERR_PPS_APDO_NOT_SORTED, PDO_ERR_DUPE_PPS_APDO, }; static const char * const pdo_err_msg[] = { [PDO_ERR_NO_VSAFE5V] = " err: source/sink caps should at least have vSafe5V", [PDO_ERR_VSAFE5V_NOT_FIRST] = " err: vSafe5V Fixed Supply Object Shall always be the first object", [PDO_ERR_PDO_TYPE_NOT_IN_ORDER] = " err: PDOs should be in the following order: Fixed; Battery; Variable", [PDO_ERR_FIXED_NOT_SORTED] = " err: Fixed supply pdos should be in increasing order of their fixed voltage", [PDO_ERR_VARIABLE_BATT_NOT_SORTED] = " err: Variable/Battery supply pdos should be in increasing order of their minimum voltage", [PDO_ERR_DUPE_PDO] = " err: Variable/Batt supply pdos cannot have same min/max voltage", [PDO_ERR_PPS_APDO_NOT_SORTED] = " err: Programmable power supply apdos should be in increasing order of their maximum voltage", [PDO_ERR_DUPE_PPS_APDO] = " err: Programmable power supply apdos cannot have same min/max voltage and max current", }; static enum pdo_err tcpm_caps_err(struct tcpm_port *port, const u32 *pdo, unsigned int nr_pdo) { unsigned int i; /* Should at least contain vSafe5v */ if (nr_pdo < 1) return PDO_ERR_NO_VSAFE5V; /* The vSafe5V Fixed Supply Object Shall always be the first object */ if (pdo_type(pdo[0]) != PDO_TYPE_FIXED || pdo_fixed_voltage(pdo[0]) != VSAFE5V) return PDO_ERR_VSAFE5V_NOT_FIRST; for (i = 1; i < nr_pdo; i++) { if (pdo_type(pdo[i]) < pdo_type(pdo[i - 1])) { return PDO_ERR_PDO_TYPE_NOT_IN_ORDER; } else if (pdo_type(pdo[i]) == pdo_type(pdo[i - 1])) { enum pd_pdo_type type = pdo_type(pdo[i]); switch (type) { /* * The remaining Fixed Supply Objects, if * present, shall be sent in voltage order; * lowest to highest. */ case PDO_TYPE_FIXED: if (pdo_fixed_voltage(pdo[i]) <= pdo_fixed_voltage(pdo[i - 1])) return PDO_ERR_FIXED_NOT_SORTED; break; /* * The Battery Supply Objects and Variable * supply, if present shall be sent in Minimum * Voltage order; lowest to highest. */ case PDO_TYPE_VAR: case PDO_TYPE_BATT: if (pdo_min_voltage(pdo[i]) < pdo_min_voltage(pdo[i - 1])) return PDO_ERR_VARIABLE_BATT_NOT_SORTED; else if ((pdo_min_voltage(pdo[i]) == pdo_min_voltage(pdo[i - 1])) && (pdo_max_voltage(pdo[i]) == pdo_max_voltage(pdo[i - 1]))) return PDO_ERR_DUPE_PDO; break; /* * The Programmable Power Supply APDOs, if present, * shall be sent in Maximum Voltage order; * lowest to highest. */ case PDO_TYPE_APDO: if (pdo_apdo_type(pdo[i]) != APDO_TYPE_PPS) break; if (pdo_pps_apdo_max_voltage(pdo[i]) < pdo_pps_apdo_max_voltage(pdo[i - 1])) return PDO_ERR_PPS_APDO_NOT_SORTED; else if (pdo_pps_apdo_min_voltage(pdo[i]) == pdo_pps_apdo_min_voltage(pdo[i - 1]) && pdo_pps_apdo_max_voltage(pdo[i]) == pdo_pps_apdo_max_voltage(pdo[i - 1]) && pdo_pps_apdo_max_current(pdo[i]) == pdo_pps_apdo_max_current(pdo[i - 1])) return PDO_ERR_DUPE_PPS_APDO; break; default: tcpm_log_force(port, " Unknown pdo type"); } } } return PDO_NO_ERR; } static int tcpm_validate_caps(struct tcpm_port *port, const u32 *pdo, unsigned int nr_pdo) { enum pdo_err err_index = tcpm_caps_err(port, pdo, nr_pdo); if (err_index != PDO_NO_ERR) { tcpm_log_force(port, " %s", pdo_err_msg[err_index]); return -EINVAL; } return 0; } static int tcpm_altmode_enter(struct typec_altmode *altmode, u32 *vdo) { struct tcpm_port *port = typec_altmode_get_drvdata(altmode); int svdm_version; u32 header; svdm_version = typec_get_negotiated_svdm_version(port->typec_port); if (svdm_version < 0) return svdm_version; header = VDO(altmode->svid, vdo ? 2 : 1, svdm_version, CMD_ENTER_MODE); header |= VDO_OPOS(altmode->mode); tcpm_queue_vdm_unlocked(port, header, vdo, vdo ? 1 : 0, TCPC_TX_SOP); return 0; } static int tcpm_altmode_exit(struct typec_altmode *altmode) { struct tcpm_port *port = typec_altmode_get_drvdata(altmode); int svdm_version; u32 header; svdm_version = typec_get_negotiated_svdm_version(port->typec_port); if (svdm_version < 0) return svdm_version; header = VDO(altmode->svid, 1, svdm_version, CMD_EXIT_MODE); header |= VDO_OPOS(altmode->mode); tcpm_queue_vdm_unlocked(port, header, NULL, 0, TCPC_TX_SOP); return 0; } static int tcpm_altmode_vdm(struct typec_altmode *altmode, u32 header, const u32 *data, int count) { struct tcpm_port *port = typec_altmode_get_drvdata(altmode); tcpm_queue_vdm_unlocked(port, header, data, count - 1, TCPC_TX_SOP); return 0; } static const struct typec_altmode_ops tcpm_altmode_ops = { .enter = tcpm_altmode_enter, .exit = tcpm_altmode_exit, .vdm = tcpm_altmode_vdm, }; static int tcpm_cable_altmode_enter(struct typec_altmode *altmode, enum typec_plug_index sop, u32 *vdo) { struct tcpm_port *port = typec_altmode_get_drvdata(altmode); int svdm_version; u32 header; svdm_version = typec_get_cable_svdm_version(port->typec_port); if (svdm_version < 0) return svdm_version; header = VDO(altmode->svid, vdo ? 2 : 1, svdm_version, CMD_ENTER_MODE); header |= VDO_OPOS(altmode->mode); tcpm_queue_vdm_unlocked(port, header, vdo, vdo ? 1 : 0, TCPC_TX_SOP_PRIME); return 0; } static int tcpm_cable_altmode_exit(struct typec_altmode *altmode, enum typec_plug_index sop) { struct tcpm_port *port = typec_altmode_get_drvdata(altmode); int svdm_version; u32 header; svdm_version = typec_get_cable_svdm_version(port->typec_port); if (svdm_version < 0) return svdm_version; header = VDO(altmode->svid, 1, svdm_version, CMD_EXIT_MODE); header |= VDO_OPOS(altmode->mode); tcpm_queue_vdm_unlocked(port, header, NULL, 0, TCPC_TX_SOP_PRIME); return 0; } static int tcpm_cable_altmode_vdm(struct typec_altmode *altmode, enum typec_plug_index sop, u32 header, const u32 *data, int count) { struct tcpm_port *port = typec_altmode_get_drvdata(altmode); tcpm_queue_vdm_unlocked(port, header, data, count - 1, TCPC_TX_SOP_PRIME); return 0; } static const struct typec_cable_ops tcpm_cable_ops = { .enter = tcpm_cable_altmode_enter, .exit = tcpm_cable_altmode_exit, .vdm = tcpm_cable_altmode_vdm, }; /* * PD (data, control) command handling functions */ static inline enum tcpm_state ready_state(struct tcpm_port *port) { if (port->pwr_role == TYPEC_SOURCE) return SRC_READY; else return SNK_READY; } static int tcpm_pd_send_control(struct tcpm_port *port, enum pd_ctrl_msg_type type, enum tcpm_transmit_type tx_sop_type); static void tcpm_handle_alert(struct tcpm_port *port, const __le32 *payload, int cnt) { u32 p0 = le32_to_cpu(payload[0]); unsigned int type = usb_pd_ado_type(p0); if (!type) { tcpm_log(port, "Alert message received with no type"); tcpm_queue_message(port, PD_MSG_CTRL_NOT_SUPP); return; } /* Just handling non-battery alerts for now */ if (!(type & USB_PD_ADO_TYPE_BATT_STATUS_CHANGE)) { if (port->pwr_role == TYPEC_SOURCE) { port->upcoming_state = GET_STATUS_SEND; tcpm_ams_start(port, GETTING_SOURCE_SINK_STATUS); } else { /* * Do not check SinkTxOk here in case the Source doesn't set its Rp to * SinkTxOk in time. */ port->ams = GETTING_SOURCE_SINK_STATUS; tcpm_set_state(port, GET_STATUS_SEND, 0); } } else { tcpm_queue_message(port, PD_MSG_CTRL_NOT_SUPP); } } static int tcpm_set_auto_vbus_discharge_threshold(struct tcpm_port *port, enum typec_pwr_opmode mode, bool pps_active, u32 requested_vbus_voltage) { int ret; if (!port->tcpc->set_auto_vbus_discharge_threshold) return 0; ret = port->tcpc->set_auto_vbus_discharge_threshold(port->tcpc, mode, pps_active, requested_vbus_voltage); tcpm_log_force(port, "set_auto_vbus_discharge_threshold mode:%d pps_active:%c vbus:%u ret:%d", mode, pps_active ? 'y' : 'n', requested_vbus_voltage, ret); return ret; } static void tcpm_pd_handle_state(struct tcpm_port *port, enum tcpm_state state, enum tcpm_ams ams, unsigned int delay_ms) { switch (port->state) { case SRC_READY: case SNK_READY: port->ams = ams; tcpm_set_state(port, state, delay_ms); break; /* 8.3.3.4.1.1 and 6.8.1 power transitioning */ case SNK_TRANSITION_SINK: case SNK_TRANSITION_SINK_VBUS: case SRC_TRANSITION_SUPPLY: tcpm_set_state(port, HARD_RESET_SEND, 0); break; default: if (!tcpm_ams_interruptible(port)) { tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET, 0); } else { /* process the Message 6.8.1 */ port->upcoming_state = state; port->next_ams = ams; tcpm_set_state(port, ready_state(port), delay_ms); } break; } } static void tcpm_pd_handle_msg(struct tcpm_port *port, enum pd_msg_request message, enum tcpm_ams ams) { switch (port->state) { case SRC_READY: case SNK_READY: port->ams = ams; tcpm_queue_message(port, message); break; /* PD 3.0 Spec 8.3.3.4.1.1 and 6.8.1 */ case SNK_TRANSITION_SINK: case SNK_TRANSITION_SINK_VBUS: case SRC_TRANSITION_SUPPLY: tcpm_set_state(port, HARD_RESET_SEND, 0); break; default: if (!tcpm_ams_interruptible(port)) { tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET, 0); } else { port->next_ams = ams; tcpm_set_state(port, ready_state(port), 0); /* 6.8.1 process the Message */ tcpm_queue_message(port, message); } break; } } static int tcpm_register_source_caps(struct tcpm_port *port) { struct usb_power_delivery_desc desc = { port->negotiated_rev }; struct usb_power_delivery_capabilities_desc caps = { }; struct usb_power_delivery_capabilities *cap = port->partner_source_caps; if (!port->partner_pd) port->partner_pd = usb_power_delivery_register(NULL, &desc); if (IS_ERR(port->partner_pd)) return PTR_ERR(port->partner_pd); memcpy(caps.pdo, port->source_caps, sizeof(u32) * port->nr_source_caps); caps.role = TYPEC_SOURCE; if (cap) { usb_power_delivery_unregister_capabilities(cap); port->partner_source_caps = NULL; } cap = usb_power_delivery_register_capabilities(port->partner_pd, &caps); if (IS_ERR(cap)) return PTR_ERR(cap); port->partner_source_caps = cap; return 0; } static int tcpm_register_sink_caps(struct tcpm_port *port) { struct usb_power_delivery_desc desc = { port->negotiated_rev }; struct usb_power_delivery_capabilities_desc caps = { }; struct usb_power_delivery_capabilities *cap; if (!port->partner_pd) port->partner_pd = usb_power_delivery_register(NULL, &desc); if (IS_ERR(port->partner_pd)) return PTR_ERR(port->partner_pd); memcpy(caps.pdo, port->sink_caps, sizeof(u32) * port->nr_sink_caps); caps.role = TYPEC_SINK; cap = usb_power_delivery_register_capabilities(port->partner_pd, &caps); if (IS_ERR(cap)) return PTR_ERR(cap); port->partner_sink_caps = cap; return 0; } static void tcpm_pd_data_request(struct tcpm_port *port, const struct pd_message *msg, enum tcpm_transmit_type rx_sop_type) { enum pd_data_msg_type type = pd_header_type_le(msg->header); unsigned int cnt = pd_header_cnt_le(msg->header); unsigned int rev = pd_header_rev_le(msg->header); unsigned int i; enum frs_typec_current partner_frs_current; bool frs_enable; int ret; if (tcpm_vdm_ams(port) && type != PD_DATA_VENDOR_DEF) { port->vdm_state = VDM_STATE_ERR_BUSY; tcpm_ams_finish(port); mod_vdm_delayed_work(port, 0); } switch (type) { case PD_DATA_SOURCE_CAP: for (i = 0; i < cnt; i++) port->source_caps[i] = le32_to_cpu(msg->payload[i]); port->nr_source_caps = cnt; tcpm_log_source_caps(port); tcpm_validate_caps(port, port->source_caps, port->nr_source_caps); tcpm_register_source_caps(port); /* * Adjust revision in subsequent message headers, as required, * to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't * support Rev 1.0 so just do nothing in that scenario. */ if (rev == PD_REV10) { if (port->ams == GET_SOURCE_CAPABILITIES) tcpm_ams_finish(port); break; } if (rev < PD_MAX_REV) { port->negotiated_rev = rev; if (port->negotiated_rev_prime > port->negotiated_rev) port->negotiated_rev_prime = port->negotiated_rev; } if (port->pwr_role == TYPEC_SOURCE) { if (port->ams == GET_SOURCE_CAPABILITIES) tcpm_pd_handle_state(port, SRC_READY, NONE_AMS, 0); /* Unexpected Source Capabilities */ else tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); } else if (port->state == SNK_WAIT_CAPABILITIES || port->state == SNK_WAIT_CAPABILITIES_TIMEOUT) { /* * This message may be received even if VBUS is not * present. This is quite unexpected; see USB PD * specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2. * However, at the same time, we must be ready to * receive this message and respond to it 15ms after * receiving PS_RDY during power swap operations, no matter * if VBUS is available or not (USB PD specification, * section 6.5.9.2). * So we need to accept the message either way, * but be prepared to keep waiting for VBUS after it was * handled. */ port->ams = POWER_NEGOTIATION; port->in_ams = true; tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0); } else { if (port->ams == GET_SOURCE_CAPABILITIES) tcpm_ams_finish(port); tcpm_pd_handle_state(port, SNK_NEGOTIATE_CAPABILITIES, POWER_NEGOTIATION, 0); } break; case PD_DATA_REQUEST: /* * Adjust revision in subsequent message headers, as required, * to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't * support Rev 1.0 so just reject in that scenario. */ if (rev == PD_REV10) { tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); break; } if (rev < PD_MAX_REV) { port->negotiated_rev = rev; if (port->negotiated_rev_prime > port->negotiated_rev) port->negotiated_rev_prime = port->negotiated_rev; } if (port->pwr_role != TYPEC_SOURCE || cnt != 1) { tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); break; } port->sink_request = le32_to_cpu(msg->payload[0]); if (port->vdm_sm_running && port->explicit_contract) { tcpm_pd_handle_msg(port, PD_MSG_CTRL_WAIT, port->ams); break; } if (port->state == SRC_SEND_CAPABILITIES) tcpm_set_state(port, SRC_NEGOTIATE_CAPABILITIES, 0); else tcpm_pd_handle_state(port, SRC_NEGOTIATE_CAPABILITIES, POWER_NEGOTIATION, 0); break; case PD_DATA_SINK_CAP: /* We don't do anything with this at the moment... */ for (i = 0; i < cnt; i++) port->sink_caps[i] = le32_to_cpu(msg->payload[i]); partner_frs_current = (port->sink_caps[0] & PDO_FIXED_FRS_CURR_MASK) >> PDO_FIXED_FRS_CURR_SHIFT; frs_enable = partner_frs_current && (partner_frs_current <= port->new_source_frs_current); tcpm_log(port, "Port partner FRS capable partner_frs_current:%u port_frs_current:%u enable:%c", partner_frs_current, port->new_source_frs_current, frs_enable ? 'y' : 'n'); if (frs_enable) { ret = port->tcpc->enable_frs(port->tcpc, true); tcpm_log(port, "Enable FRS %s, ret:%d\n", ret ? "fail" : "success", ret); } port->nr_sink_caps = cnt; port->sink_cap_done = true; tcpm_register_sink_caps(port); if (port->ams == GET_SINK_CAPABILITIES) tcpm_set_state(port, ready_state(port), 0); /* Unexpected Sink Capabilities */ else tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); break; case PD_DATA_VENDOR_DEF: tcpm_handle_vdm_request(port, msg->payload, cnt, rx_sop_type); break; case PD_DATA_BIST: port->bist_request = le32_to_cpu(msg->payload[0]); tcpm_pd_handle_state(port, BIST_RX, BIST, 0); break; case PD_DATA_ALERT: if (port->state != SRC_READY && port->state != SNK_READY) tcpm_pd_handle_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET, NONE_AMS, 0); else tcpm_handle_alert(port, msg->payload, cnt); break; case PD_DATA_BATT_STATUS: case PD_DATA_GET_COUNTRY_INFO: /* Currently unsupported */ tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); break; default: tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); tcpm_log(port, "Unrecognized data message type %#x", type); break; } } static void tcpm_pps_complete(struct tcpm_port *port, int result) { if (port->pps_pending) { port->pps_status = result; port->pps_pending = false; complete(&port->pps_complete); } } static void tcpm_pd_ctrl_request(struct tcpm_port *port, const struct pd_message *msg, enum tcpm_transmit_type rx_sop_type) { enum pd_ctrl_msg_type type = pd_header_type_le(msg->header); enum tcpm_state next_state; unsigned int rev = pd_header_rev_le(msg->header); /* * Stop VDM state machine if interrupted by other Messages while NOT_SUPP is allowed in * VDM AMS if waiting for VDM responses and will be handled later. */ if (tcpm_vdm_ams(port) && type != PD_CTRL_NOT_SUPP && type != PD_CTRL_GOOD_CRC) { port->vdm_state = VDM_STATE_ERR_BUSY; tcpm_ams_finish(port); mod_vdm_delayed_work(port, 0); } switch (type) { case PD_CTRL_GOOD_CRC: case PD_CTRL_PING: break; case PD_CTRL_GET_SOURCE_CAP: tcpm_pd_handle_msg(port, PD_MSG_DATA_SOURCE_CAP, GET_SOURCE_CAPABILITIES); break; case PD_CTRL_GET_SINK_CAP: tcpm_pd_handle_msg(port, PD_MSG_DATA_SINK_CAP, GET_SINK_CAPABILITIES); break; case PD_CTRL_GOTO_MIN: break; case PD_CTRL_PS_RDY: switch (port->state) { case SNK_TRANSITION_SINK: if (port->vbus_present) { tcpm_set_current_limit(port, port->req_current_limit, port->req_supply_voltage); port->explicit_contract = true; tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_PD, port->pps_data.active, port->supply_voltage); tcpm_set_state(port, SNK_READY, 0); } else { /* * Seen after power swap. Keep waiting for VBUS * in a transitional state. */ tcpm_set_state(port, SNK_TRANSITION_SINK_VBUS, 0); } break; case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED: tcpm_set_state(port, PR_SWAP_SRC_SNK_SINK_ON, 0); break; case PR_SWAP_SNK_SRC_SINK_OFF: tcpm_set_state(port, PR_SWAP_SNK_SRC_SOURCE_ON, 0); break; case VCONN_SWAP_WAIT_FOR_VCONN: tcpm_set_state(port, VCONN_SWAP_TURN_OFF_VCONN, 0); break; case FR_SWAP_SNK_SRC_TRANSITION_TO_OFF: tcpm_set_state(port, FR_SWAP_SNK_SRC_NEW_SINK_READY, 0); break; default: tcpm_pd_handle_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET, NONE_AMS, 0); break; } break; case PD_CTRL_REJECT: case PD_CTRL_WAIT: case PD_CTRL_NOT_SUPP: switch (port->state) { case SNK_NEGOTIATE_CAPABILITIES: /* USB PD specification, Figure 8-43 */ if (port->explicit_contract) next_state = SNK_READY; else next_state = SNK_WAIT_CAPABILITIES; /* Threshold was relaxed before sending Request. Restore it back. */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_PD, port->pps_data.active, port->supply_voltage); tcpm_set_state(port, next_state, 0); break; case SNK_NEGOTIATE_PPS_CAPABILITIES: /* Revert data back from any requested PPS updates */ port->pps_data.req_out_volt = port->supply_voltage; port->pps_data.req_op_curr = port->current_limit; port->pps_status = (type == PD_CTRL_WAIT ? -EAGAIN : -EOPNOTSUPP); /* Threshold was relaxed before sending Request. Restore it back. */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_PD, port->pps_data.active, port->supply_voltage); tcpm_set_state(port, SNK_READY, 0); break; case DR_SWAP_SEND: port->swap_status = (type == PD_CTRL_WAIT ? -EAGAIN : -EOPNOTSUPP); tcpm_set_state(port, DR_SWAP_CANCEL, 0); break; case PR_SWAP_SEND: port->swap_status = (type == PD_CTRL_WAIT ? -EAGAIN : -EOPNOTSUPP); tcpm_set_state(port, PR_SWAP_CANCEL, 0); break; case VCONN_SWAP_SEND: port->swap_status = (type == PD_CTRL_WAIT ? -EAGAIN : -EOPNOTSUPP); tcpm_set_state(port, VCONN_SWAP_CANCEL, 0); break; case FR_SWAP_SEND: tcpm_set_state(port, FR_SWAP_CANCEL, 0); break; case GET_SINK_CAP: port->sink_cap_done = true; tcpm_set_state(port, ready_state(port), 0); break; /* * Some port partners do not support GET_STATUS, avoid soft reset the link to * prevent redundant power re-negotiation */ case GET_STATUS_SEND: tcpm_set_state(port, ready_state(port), 0); break; case SRC_READY: case SNK_READY: if (port->vdm_state > VDM_STATE_READY) { port->vdm_state = VDM_STATE_DONE; if (tcpm_vdm_ams(port)) tcpm_ams_finish(port); mod_vdm_delayed_work(port, 0); break; } fallthrough; default: tcpm_pd_handle_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET, NONE_AMS, 0); break; } break; case PD_CTRL_ACCEPT: switch (port->state) { case SNK_NEGOTIATE_CAPABILITIES: port->pps_data.active = false; tcpm_set_state(port, SNK_TRANSITION_SINK, 0); break; case SNK_NEGOTIATE_PPS_CAPABILITIES: port->pps_data.active = true; port->pps_data.min_volt = port->pps_data.req_min_volt; port->pps_data.max_volt = port->pps_data.req_max_volt; port->pps_data.max_curr = port->pps_data.req_max_curr; port->req_supply_voltage = port->pps_data.req_out_volt; port->req_current_limit = port->pps_data.req_op_curr; power_supply_changed(port->psy); tcpm_set_state(port, SNK_TRANSITION_SINK, 0); break; case SOFT_RESET_SEND: if (port->ams == SOFT_RESET_AMS) tcpm_ams_finish(port); /* * SOP' Soft Reset is done after Vconn Swap, * which returns to ready state */ if (rx_sop_type == TCPC_TX_SOP_PRIME) { if (rev < port->negotiated_rev_prime) port->negotiated_rev_prime = rev; tcpm_set_state(port, ready_state(port), 0); break; } if (port->pwr_role == TYPEC_SOURCE) { port->upcoming_state = SRC_SEND_CAPABILITIES; tcpm_ams_start(port, POWER_NEGOTIATION); } else { tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0); } break; case DR_SWAP_SEND: tcpm_set_state(port, DR_SWAP_CHANGE_DR, 0); break; case PR_SWAP_SEND: tcpm_set_state(port, PR_SWAP_START, 0); break; case VCONN_SWAP_SEND: tcpm_set_state(port, VCONN_SWAP_START, 0); break; case FR_SWAP_SEND: tcpm_set_state(port, FR_SWAP_SNK_SRC_TRANSITION_TO_OFF, 0); break; default: tcpm_pd_handle_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET, NONE_AMS, 0); break; } break; case PD_CTRL_SOFT_RESET: port->ams = SOFT_RESET_AMS; tcpm_set_state(port, SOFT_RESET, 0); break; case PD_CTRL_DR_SWAP: /* * XXX * 6.3.9: If an alternate mode is active, a request to swap * alternate modes shall trigger a port reset. */ if (port->typec_caps.data != TYPEC_PORT_DRD) { tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); } else { if (port->send_discover && port->negotiated_rev < PD_REV30) { tcpm_queue_message(port, PD_MSG_CTRL_WAIT); break; } tcpm_pd_handle_state(port, DR_SWAP_ACCEPT, DATA_ROLE_SWAP, 0); } break; case PD_CTRL_PR_SWAP: if (port->port_type != TYPEC_PORT_DRP) { tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); } else { if (port->send_discover && port->negotiated_rev < PD_REV30) { tcpm_queue_message(port, PD_MSG_CTRL_WAIT); break; } tcpm_pd_handle_state(port, PR_SWAP_ACCEPT, POWER_ROLE_SWAP, 0); } break; case PD_CTRL_VCONN_SWAP: if (port->send_discover && port->negotiated_rev < PD_REV30) { tcpm_queue_message(port, PD_MSG_CTRL_WAIT); break; } tcpm_pd_handle_state(port, VCONN_SWAP_ACCEPT, VCONN_SWAP, 0); break; case PD_CTRL_GET_SOURCE_CAP_EXT: case PD_CTRL_GET_STATUS: case PD_CTRL_FR_SWAP: case PD_CTRL_GET_PPS_STATUS: case PD_CTRL_GET_COUNTRY_CODES: /* Currently not supported */ tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); break; default: tcpm_pd_handle_msg(port, port->negotiated_rev < PD_REV30 ? PD_MSG_CTRL_REJECT : PD_MSG_CTRL_NOT_SUPP, NONE_AMS); tcpm_log(port, "Unrecognized ctrl message type %#x", type); break; } } static void tcpm_pd_ext_msg_request(struct tcpm_port *port, const struct pd_message *msg) { enum pd_ext_msg_type type = pd_header_type_le(msg->header); unsigned int data_size = pd_ext_header_data_size_le(msg->ext_msg.header); /* stopping VDM state machine if interrupted by other Messages */ if (tcpm_vdm_ams(port)) { port->vdm_state = VDM_STATE_ERR_BUSY; tcpm_ams_finish(port); mod_vdm_delayed_work(port, 0); } if (!(le16_to_cpu(msg->ext_msg.header) & PD_EXT_HDR_CHUNKED)) { tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS); tcpm_log(port, "Unchunked extended messages unsupported"); return; } if (data_size > PD_EXT_MAX_CHUNK_DATA) { tcpm_pd_handle_state(port, CHUNK_NOT_SUPP, NONE_AMS, PD_T_CHUNK_NOT_SUPP); tcpm_log(port, "Chunk handling not yet supported"); return; } switch (type) { case PD_EXT_STATUS: case PD_EXT_PPS_STATUS: if (port->ams == GETTING_SOURCE_SINK_STATUS) { tcpm_ams_finish(port); tcpm_set_state(port, ready_state(port), 0); } else { /* unexpected Status or PPS_Status Message */ tcpm_pd_handle_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_SOFT_RESET_WAIT_SNK_TX : SNK_SOFT_RESET, NONE_AMS, 0); } break; case PD_EXT_SOURCE_CAP_EXT: case PD_EXT_GET_BATT_CAP: case PD_EXT_GET_BATT_STATUS: case PD_EXT_BATT_CAP: case PD_EXT_GET_MANUFACTURER_INFO: case PD_EXT_MANUFACTURER_INFO: case PD_EXT_SECURITY_REQUEST: case PD_EXT_SECURITY_RESPONSE: case PD_EXT_FW_UPDATE_REQUEST: case PD_EXT_FW_UPDATE_RESPONSE: case PD_EXT_COUNTRY_INFO: case PD_EXT_COUNTRY_CODES: tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS); break; default: tcpm_pd_handle_msg(port, PD_MSG_CTRL_NOT_SUPP, NONE_AMS); tcpm_log(port, "Unrecognized extended message type %#x", type); break; } } static void tcpm_pd_rx_handler(struct kthread_work *work) { struct pd_rx_event *event = container_of(work, struct pd_rx_event, work); const struct pd_message *msg = &event->msg; unsigned int cnt = pd_header_cnt_le(msg->header); struct tcpm_port *port = event->port; enum tcpm_transmit_type rx_sop_type = event->rx_sop_type; mutex_lock(&port->lock); tcpm_log(port, "PD RX, header: %#x [%d]", le16_to_cpu(msg->header), port->attached); if (port->attached) { enum pd_ctrl_msg_type type = pd_header_type_le(msg->header); unsigned int msgid = pd_header_msgid_le(msg->header); /* * Drop SOP' messages if cannot receive via * tcpm_can_communicate_sop_prime */ if (rx_sop_type == TCPC_TX_SOP_PRIME && !tcpm_can_communicate_sop_prime(port)) goto done; /* * USB PD standard, 6.6.1.2: * "... if MessageID value in a received Message is the * same as the stored value, the receiver shall return a * GoodCRC Message with that MessageID value and drop * the Message (this is a retry of an already received * Message). Note: this shall not apply to the Soft_Reset * Message which always has a MessageID value of zero." */ switch (rx_sop_type) { case TCPC_TX_SOP_PRIME: if (msgid == port->rx_msgid_prime) goto done; port->rx_msgid_prime = msgid; break; case TCPC_TX_SOP: default: if (msgid == port->rx_msgid && type != PD_CTRL_SOFT_RESET) goto done; port->rx_msgid = msgid; break; } /* * If both ends believe to be DFP/host, we have a data role * mismatch. */ if (!!(le16_to_cpu(msg->header) & PD_HEADER_DATA_ROLE) == (port->data_role == TYPEC_HOST) && rx_sop_type == TCPC_TX_SOP) { tcpm_log(port, "Data role mismatch, initiating error recovery"); tcpm_set_state(port, ERROR_RECOVERY, 0); } else { if (le16_to_cpu(msg->header) & PD_HEADER_EXT_HDR) tcpm_pd_ext_msg_request(port, msg); else if (cnt) tcpm_pd_data_request(port, msg, rx_sop_type); else tcpm_pd_ctrl_request(port, msg, rx_sop_type); } } done: mutex_unlock(&port->lock); kfree(event); } void tcpm_pd_receive(struct tcpm_port *port, const struct pd_message *msg, enum tcpm_transmit_type rx_sop_type) { struct pd_rx_event *event; event = kzalloc(sizeof(*event), GFP_ATOMIC); if (!event) return; kthread_init_work(&event->work, tcpm_pd_rx_handler); event->port = port; event->rx_sop_type = rx_sop_type; memcpy(&event->msg, msg, sizeof(*msg)); kthread_queue_work(port->wq, &event->work); } EXPORT_SYMBOL_GPL(tcpm_pd_receive); static int tcpm_pd_send_control(struct tcpm_port *port, enum pd_ctrl_msg_type type, enum tcpm_transmit_type tx_sop_type) { struct pd_message msg; memset(&msg, 0, sizeof(msg)); switch (tx_sop_type) { case TCPC_TX_SOP_PRIME: msg.header = PD_HEADER_LE(type, 0, /* Cable Plug Indicator for DFP/UFP */ 0, /* Reserved */ port->negotiated_rev, port->message_id_prime, 0); break; case TCPC_TX_SOP: msg.header = PD_HEADER_LE(type, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); break; default: msg.header = PD_HEADER_LE(type, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 0); break; } return tcpm_pd_transmit(port, tx_sop_type, &msg); } /* * Send queued message without affecting state. * Return true if state machine should go back to sleep, * false otherwise. */ static bool tcpm_send_queued_message(struct tcpm_port *port) { enum pd_msg_request queued_message; int ret; do { queued_message = port->queued_message; port->queued_message = PD_MSG_NONE; switch (queued_message) { case PD_MSG_CTRL_WAIT: tcpm_pd_send_control(port, PD_CTRL_WAIT, TCPC_TX_SOP); break; case PD_MSG_CTRL_REJECT: tcpm_pd_send_control(port, PD_CTRL_REJECT, TCPC_TX_SOP); break; case PD_MSG_CTRL_NOT_SUPP: tcpm_pd_send_control(port, PD_CTRL_NOT_SUPP, TCPC_TX_SOP); break; case PD_MSG_DATA_SINK_CAP: ret = tcpm_pd_send_sink_caps(port); if (ret < 0) { tcpm_log(port, "Unable to send snk caps, ret=%d", ret); tcpm_set_state(port, SNK_SOFT_RESET, 0); } tcpm_ams_finish(port); break; case PD_MSG_DATA_SOURCE_CAP: ret = tcpm_pd_send_source_caps(port); if (ret < 0) { tcpm_log(port, "Unable to send src caps, ret=%d", ret); tcpm_set_state(port, SOFT_RESET_SEND, 0); } else if (port->pwr_role == TYPEC_SOURCE) { tcpm_ams_finish(port); tcpm_set_state(port, HARD_RESET_SEND, PD_T_SENDER_RESPONSE); } else { tcpm_ams_finish(port); } break; default: break; } } while (port->queued_message != PD_MSG_NONE); if (port->delayed_state != INVALID_STATE) { if (ktime_after(port->delayed_runtime, ktime_get())) { mod_tcpm_delayed_work(port, ktime_to_ms(ktime_sub(port->delayed_runtime, ktime_get()))); return true; } port->delayed_state = INVALID_STATE; } return false; } static int tcpm_pd_check_request(struct tcpm_port *port) { u32 pdo, rdo = port->sink_request; unsigned int max, op, pdo_max, index; enum pd_pdo_type type; index = rdo_index(rdo); if (!index || index > port->nr_src_pdo) return -EINVAL; pdo = port->src_pdo[index - 1]; type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: case PDO_TYPE_VAR: max = rdo_max_current(rdo); op = rdo_op_current(rdo); pdo_max = pdo_max_current(pdo); if (op > pdo_max) return -EINVAL; if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH)) return -EINVAL; if (type == PDO_TYPE_FIXED) tcpm_log(port, "Requested %u mV, %u mA for %u / %u mA", pdo_fixed_voltage(pdo), pdo_max, op, max); else tcpm_log(port, "Requested %u -> %u mV, %u mA for %u / %u mA", pdo_min_voltage(pdo), pdo_max_voltage(pdo), pdo_max, op, max); break; case PDO_TYPE_BATT: max = rdo_max_power(rdo); op = rdo_op_power(rdo); pdo_max = pdo_max_power(pdo); if (op > pdo_max) return -EINVAL; if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH)) return -EINVAL; tcpm_log(port, "Requested %u -> %u mV, %u mW for %u / %u mW", pdo_min_voltage(pdo), pdo_max_voltage(pdo), pdo_max, op, max); break; default: return -EINVAL; } port->op_vsafe5v = index == 1; return 0; } #define min_power(x, y) min(pdo_max_power(x), pdo_max_power(y)) #define min_current(x, y) min(pdo_max_current(x), pdo_max_current(y)) static int tcpm_pd_select_pdo(struct tcpm_port *port, int *sink_pdo, int *src_pdo) { unsigned int i, j, max_src_mv = 0, min_src_mv = 0, max_mw = 0, max_mv = 0, src_mw = 0, src_ma = 0, max_snk_mv = 0, min_snk_mv = 0; int ret = -EINVAL; port->pps_data.supported = false; port->usb_type = POWER_SUPPLY_USB_TYPE_PD; power_supply_changed(port->psy); /* * Select the source PDO providing the most power which has a * matchig sink cap. */ for (i = 0; i < port->nr_source_caps; i++) { u32 pdo = port->source_caps[i]; enum pd_pdo_type type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: max_src_mv = pdo_fixed_voltage(pdo); min_src_mv = max_src_mv; break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: max_src_mv = pdo_max_voltage(pdo); min_src_mv = pdo_min_voltage(pdo); break; case PDO_TYPE_APDO: if (pdo_apdo_type(pdo) == APDO_TYPE_PPS) { port->pps_data.supported = true; port->usb_type = POWER_SUPPLY_USB_TYPE_PD_PPS; power_supply_changed(port->psy); } continue; default: tcpm_log(port, "Invalid source PDO type, ignoring"); continue; } switch (type) { case PDO_TYPE_FIXED: case PDO_TYPE_VAR: src_ma = pdo_max_current(pdo); src_mw = src_ma * min_src_mv / 1000; break; case PDO_TYPE_BATT: src_mw = pdo_max_power(pdo); break; case PDO_TYPE_APDO: continue; default: tcpm_log(port, "Invalid source PDO type, ignoring"); continue; } for (j = 0; j < port->nr_snk_pdo; j++) { pdo = port->snk_pdo[j]; switch (pdo_type(pdo)) { case PDO_TYPE_FIXED: max_snk_mv = pdo_fixed_voltage(pdo); min_snk_mv = max_snk_mv; break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: max_snk_mv = pdo_max_voltage(pdo); min_snk_mv = pdo_min_voltage(pdo); break; case PDO_TYPE_APDO: continue; default: tcpm_log(port, "Invalid sink PDO type, ignoring"); continue; } if (max_src_mv <= max_snk_mv && min_src_mv >= min_snk_mv) { /* Prefer higher voltages if available */ if ((src_mw == max_mw && min_src_mv > max_mv) || src_mw > max_mw) { *src_pdo = i; *sink_pdo = j; max_mw = src_mw; max_mv = min_src_mv; ret = 0; } } } } return ret; } static unsigned int tcpm_pd_select_pps_apdo(struct tcpm_port *port) { unsigned int i, src_ma, max_temp_mw = 0, max_op_ma, op_mw; unsigned int src_pdo = 0; u32 pdo, src; for (i = 1; i < port->nr_source_caps; ++i) { pdo = port->source_caps[i]; switch (pdo_type(pdo)) { case PDO_TYPE_APDO: if (pdo_apdo_type(pdo) != APDO_TYPE_PPS) { tcpm_log(port, "Not PPS APDO (source), ignoring"); continue; } if (port->pps_data.req_out_volt > pdo_pps_apdo_max_voltage(pdo) || port->pps_data.req_out_volt < pdo_pps_apdo_min_voltage(pdo)) continue; src_ma = pdo_pps_apdo_max_current(pdo); max_op_ma = min(src_ma, port->pps_data.req_op_curr); op_mw = max_op_ma * port->pps_data.req_out_volt / 1000; if (op_mw > max_temp_mw) { src_pdo = i; max_temp_mw = op_mw; } break; default: tcpm_log(port, "Not APDO type (source), ignoring"); continue; } } if (src_pdo) { src = port->source_caps[src_pdo]; port->pps_data.req_min_volt = pdo_pps_apdo_min_voltage(src); port->pps_data.req_max_volt = pdo_pps_apdo_max_voltage(src); port->pps_data.req_max_curr = pdo_pps_apdo_max_current(src); port->pps_data.req_op_curr = min(port->pps_data.req_max_curr, port->pps_data.req_op_curr); } return src_pdo; } static int tcpm_pd_build_request(struct tcpm_port *port, u32 *rdo) { unsigned int mv, ma, mw, flags; unsigned int max_ma, max_mw; enum pd_pdo_type type; u32 pdo, matching_snk_pdo; int src_pdo_index = 0; int snk_pdo_index = 0; int ret; ret = tcpm_pd_select_pdo(port, &snk_pdo_index, &src_pdo_index); if (ret < 0) return ret; pdo = port->source_caps[src_pdo_index]; matching_snk_pdo = port->snk_pdo[snk_pdo_index]; type = pdo_type(pdo); switch (type) { case PDO_TYPE_FIXED: mv = pdo_fixed_voltage(pdo); break; case PDO_TYPE_BATT: case PDO_TYPE_VAR: mv = pdo_min_voltage(pdo); break; default: tcpm_log(port, "Invalid PDO selected!"); return -EINVAL; } /* Select maximum available current within the sink pdo's limit */ if (type == PDO_TYPE_BATT) { mw = min_power(pdo, matching_snk_pdo); ma = 1000 * mw / mv; } else { ma = min_current(pdo, matching_snk_pdo); mw = ma * mv / 1000; } flags = RDO_USB_COMM | RDO_NO_SUSPEND; /* Set mismatch bit if offered power is less than operating power */ max_ma = ma; max_mw = mw; if (mw < port->operating_snk_mw) { flags |= RDO_CAP_MISMATCH; if (type == PDO_TYPE_BATT && (pdo_max_power(matching_snk_pdo) > pdo_max_power(pdo))) max_mw = pdo_max_power(matching_snk_pdo); else if (pdo_max_current(matching_snk_pdo) > pdo_max_current(pdo)) max_ma = pdo_max_current(matching_snk_pdo); } tcpm_log(port, "cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d", port->cc_req, port->cc1, port->cc2, port->vbus_source, port->vconn_role == TYPEC_SOURCE ? "source" : "sink", port->polarity); if (type == PDO_TYPE_BATT) { *rdo = RDO_BATT(src_pdo_index + 1, mw, max_mw, flags); tcpm_log(port, "Requesting PDO %d: %u mV, %u mW%s", src_pdo_index, mv, mw, flags & RDO_CAP_MISMATCH ? " [mismatch]" : ""); } else { *rdo = RDO_FIXED(src_pdo_index + 1, ma, max_ma, flags); tcpm_log(port, "Requesting PDO %d: %u mV, %u mA%s", src_pdo_index, mv, ma, flags & RDO_CAP_MISMATCH ? " [mismatch]" : ""); } port->req_current_limit = ma; port->req_supply_voltage = mv; return 0; } static int tcpm_pd_send_request(struct tcpm_port *port) { struct pd_message msg; int ret; u32 rdo; ret = tcpm_pd_build_request(port, &rdo); if (ret < 0) return ret; /* * Relax the threshold as voltage will be adjusted after Accept Message plus tSrcTransition. * It is safer to modify the threshold here. */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, false, 0); memset(&msg, 0, sizeof(msg)); msg.header = PD_HEADER_LE(PD_DATA_REQUEST, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 1); msg.payload[0] = cpu_to_le32(rdo); return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } static int tcpm_pd_build_pps_request(struct tcpm_port *port, u32 *rdo) { unsigned int out_mv, op_ma, op_mw, max_mv, max_ma, flags; unsigned int src_pdo_index; src_pdo_index = tcpm_pd_select_pps_apdo(port); if (!src_pdo_index) return -EOPNOTSUPP; max_mv = port->pps_data.req_max_volt; max_ma = port->pps_data.req_max_curr; out_mv = port->pps_data.req_out_volt; op_ma = port->pps_data.req_op_curr; flags = RDO_USB_COMM | RDO_NO_SUSPEND; op_mw = (op_ma * out_mv) / 1000; if (op_mw < port->operating_snk_mw) { /* * Try raising current to meet power needs. If that's not enough * then try upping the voltage. If that's still not enough * then we've obviously chosen a PPS APDO which really isn't * suitable so abandon ship. */ op_ma = (port->operating_snk_mw * 1000) / out_mv; if ((port->operating_snk_mw * 1000) % out_mv) ++op_ma; op_ma += RDO_PROG_CURR_MA_STEP - (op_ma % RDO_PROG_CURR_MA_STEP); if (op_ma > max_ma) { op_ma = max_ma; out_mv = (port->operating_snk_mw * 1000) / op_ma; if ((port->operating_snk_mw * 1000) % op_ma) ++out_mv; out_mv += RDO_PROG_VOLT_MV_STEP - (out_mv % RDO_PROG_VOLT_MV_STEP); if (out_mv > max_mv) { tcpm_log(port, "Invalid PPS APDO selected!"); return -EINVAL; } } } tcpm_log(port, "cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d", port->cc_req, port->cc1, port->cc2, port->vbus_source, port->vconn_role == TYPEC_SOURCE ? "source" : "sink", port->polarity); *rdo = RDO_PROG(src_pdo_index + 1, out_mv, op_ma, flags); tcpm_log(port, "Requesting APDO %d: %u mV, %u mA", src_pdo_index, out_mv, op_ma); port->pps_data.req_op_curr = op_ma; port->pps_data.req_out_volt = out_mv; return 0; } static int tcpm_pd_send_pps_request(struct tcpm_port *port) { struct pd_message msg; int ret; u32 rdo; ret = tcpm_pd_build_pps_request(port, &rdo); if (ret < 0) return ret; /* Relax the threshold as voltage will be adjusted right after Accept Message. */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, false, 0); memset(&msg, 0, sizeof(msg)); msg.header = PD_HEADER_LE(PD_DATA_REQUEST, port->pwr_role, port->data_role, port->negotiated_rev, port->message_id, 1); msg.payload[0] = cpu_to_le32(rdo); return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg); } static int tcpm_set_vbus(struct tcpm_port *port, bool enable) { int ret; if (enable && port->vbus_charge) return -EINVAL; tcpm_log(port, "vbus:=%d charge=%d", enable, port->vbus_charge); ret = port->tcpc->set_vbus(port->tcpc, enable, port->vbus_charge); if (ret < 0) return ret; port->vbus_source = enable; return 0; } static int tcpm_set_charge(struct tcpm_port *port, bool charge) { int ret; if (charge && port->vbus_source) return -EINVAL; if (charge != port->vbus_charge) { tcpm_log(port, "vbus=%d charge:=%d", port->vbus_source, charge); ret = port->tcpc->set_vbus(port->tcpc, port->vbus_source, charge); if (ret < 0) return ret; } port->vbus_charge = charge; power_supply_changed(port->psy); return 0; } static bool tcpm_start_toggling(struct tcpm_port *port, enum typec_cc_status cc) { int ret; if (!port->tcpc->start_toggling) return false; tcpm_log_force(port, "Start toggling"); ret = port->tcpc->start_toggling(port->tcpc, port->port_type, cc); return ret == 0; } static int tcpm_init_vbus(struct tcpm_port *port) { int ret; ret = port->tcpc->set_vbus(port->tcpc, false, false); port->vbus_source = false; port->vbus_charge = false; return ret; } static int tcpm_init_vconn(struct tcpm_port *port) { int ret; ret = port->tcpc->set_vconn(port->tcpc, false); port->vconn_role = TYPEC_SINK; return ret; } static void tcpm_typec_connect(struct tcpm_port *port) { struct typec_partner *partner; if (!port->connected) { port->connected = true; /* Make sure we don't report stale identity information */ memset(&port->partner_ident, 0, sizeof(port->partner_ident)); port->partner_desc.usb_pd = port->pd_capable; if (tcpm_port_is_debug(port)) port->partner_desc.accessory = TYPEC_ACCESSORY_DEBUG; else if (tcpm_port_is_audio(port)) port->partner_desc.accessory = TYPEC_ACCESSORY_AUDIO; else port->partner_desc.accessory = TYPEC_ACCESSORY_NONE; partner = typec_register_partner(port->typec_port, &port->partner_desc); if (IS_ERR(partner)) { dev_err(port->dev, "Failed to register partner (%ld)\n", PTR_ERR(partner)); return; } port->partner = partner; typec_partner_set_usb_power_delivery(port->partner, port->partner_pd); } } static int tcpm_src_attach(struct tcpm_port *port) { enum typec_cc_polarity polarity = port->cc2 == TYPEC_CC_RD ? TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1; int ret; if (port->attached) return 0; ret = tcpm_set_polarity(port, polarity); if (ret < 0) return ret; tcpm_enable_auto_vbus_discharge(port, true); ret = tcpm_set_roles(port, true, TYPEC_SOURCE, tcpm_data_role_for_source(port)); if (ret < 0) return ret; if (port->pd_supported) { ret = port->tcpc->set_pd_rx(port->tcpc, true); if (ret < 0) goto out_disable_mux; } /* * USB Type-C specification, version 1.2, * chapter 4.5.2.2.8.1 (Attached.SRC Requirements) * Enable VCONN only if the non-RD port is set to RA. */ if ((polarity == TYPEC_POLARITY_CC1 && port->cc2 == TYPEC_CC_RA) || (polarity == TYPEC_POLARITY_CC2 && port->cc1 == TYPEC_CC_RA)) { ret = tcpm_set_vconn(port, true); if (ret < 0) goto out_disable_pd; } ret = tcpm_set_vbus(port, true); if (ret < 0) goto out_disable_vconn; port->pd_capable = false; port->partner = NULL; port->attached = true; port->send_discover = true; port->send_discover_prime = false; return 0; out_disable_vconn: tcpm_set_vconn(port, false); out_disable_pd: if (port->pd_supported) port->tcpc->set_pd_rx(port->tcpc, false); out_disable_mux: tcpm_mux_set(port, TYPEC_STATE_SAFE, USB_ROLE_NONE, TYPEC_ORIENTATION_NONE); return ret; } static void tcpm_typec_disconnect(struct tcpm_port *port) { /* * Unregister plug/cable outside of port->connected because cable can * be discovered before SRC_READY/SNK_READY states where port->connected * is set. */ typec_unregister_plug(port->plug_prime); typec_unregister_cable(port->cable); port->plug_prime = NULL; port->cable = NULL; if (port->connected) { if (port->partner) { typec_partner_set_usb_power_delivery(port->partner, NULL); typec_unregister_partner(port->partner); port->partner = NULL; } port->connected = false; } } static void tcpm_unregister_altmodes(struct tcpm_port *port) { struct pd_mode_data *modep = &port->mode_data; struct pd_mode_data *modep_prime = &port->mode_data_prime; int i; for (i = 0; i < modep->altmodes; i++) { typec_unregister_altmode(port->partner_altmode[i]); port->partner_altmode[i] = NULL; } for (i = 0; i < modep_prime->altmodes; i++) { typec_unregister_altmode(port->plug_prime_altmode[i]); port->plug_prime_altmode[i] = NULL; } memset(modep, 0, sizeof(*modep)); memset(modep_prime, 0, sizeof(*modep_prime)); } static void tcpm_set_partner_usb_comm_capable(struct tcpm_port *port, bool capable) { tcpm_log(port, "Setting usb_comm capable %s", capable ? "true" : "false"); if (port->tcpc->set_partner_usb_comm_capable) port->tcpc->set_partner_usb_comm_capable(port->tcpc, capable); } static void tcpm_reset_port(struct tcpm_port *port) { tcpm_enable_auto_vbus_discharge(port, false); port->in_ams = false; port->ams = NONE_AMS; port->vdm_sm_running = false; tcpm_unregister_altmodes(port); tcpm_typec_disconnect(port); port->attached = false; port->pd_capable = false; port->pps_data.supported = false; tcpm_set_partner_usb_comm_capable(port, false); /* * First Rx ID should be 0; set this to a sentinel of -1 so that * we can check tcpm_pd_rx_handler() if we had seen it before. */ port->rx_msgid = -1; port->rx_msgid_prime = -1; port->tcpc->set_pd_rx(port->tcpc, false); tcpm_init_vbus(port); /* also disables charging */ tcpm_init_vconn(port); tcpm_set_current_limit(port, 0, 0); tcpm_set_polarity(port, TYPEC_POLARITY_CC1); tcpm_mux_set(port, TYPEC_STATE_SAFE, USB_ROLE_NONE, TYPEC_ORIENTATION_NONE); tcpm_set_attached_state(port, false); port->try_src_count = 0; port->try_snk_count = 0; port->usb_type = POWER_SUPPLY_USB_TYPE_C; power_supply_changed(port->psy); port->nr_sink_caps = 0; port->sink_cap_done = false; if (port->tcpc->enable_frs) port->tcpc->enable_frs(port->tcpc, false); usb_power_delivery_unregister_capabilities(port->partner_sink_caps); port->partner_sink_caps = NULL; usb_power_delivery_unregister_capabilities(port->partner_source_caps); port->partner_source_caps = NULL; usb_power_delivery_unregister(port->partner_pd); port->partner_pd = NULL; } static void tcpm_detach(struct tcpm_port *port) { if (tcpm_port_is_disconnected(port)) port->hard_reset_count = 0; if (!port->attached) return; if (port->tcpc->set_bist_data) { tcpm_log(port, "disable BIST MODE TESTDATA"); port->tcpc->set_bist_data(port->tcpc, false); } tcpm_reset_port(port); } static void tcpm_src_detach(struct tcpm_port *port) { tcpm_detach(port); } static int tcpm_snk_attach(struct tcpm_port *port) { int ret; if (port->attached) return 0; ret = tcpm_set_polarity(port, port->cc2 != TYPEC_CC_OPEN ? TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1); if (ret < 0) return ret; tcpm_enable_auto_vbus_discharge(port, true); ret = tcpm_set_roles(port, true, TYPEC_SINK, tcpm_data_role_for_sink(port)); if (ret < 0) return ret; port->pd_capable = false; port->partner = NULL; port->attached = true; port->send_discover = true; port->send_discover_prime = false; return 0; } static void tcpm_snk_detach(struct tcpm_port *port) { tcpm_detach(port); } static int tcpm_acc_attach(struct tcpm_port *port) { int ret; if (port->attached) return 0; ret = tcpm_set_roles(port, true, TYPEC_SOURCE, tcpm_data_role_for_source(port)); if (ret < 0) return ret; port->partner = NULL; tcpm_typec_connect(port); port->attached = true; return 0; } static void tcpm_acc_detach(struct tcpm_port *port) { tcpm_detach(port); } static inline enum tcpm_state hard_reset_state(struct tcpm_port *port) { if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) return HARD_RESET_SEND; if (port->pd_capable) return ERROR_RECOVERY; if (port->pwr_role == TYPEC_SOURCE) return SRC_UNATTACHED; if (port->state == SNK_WAIT_CAPABILITIES || port->state == SNK_WAIT_CAPABILITIES_TIMEOUT) return SNK_READY; return SNK_UNATTACHED; } static inline enum tcpm_state unattached_state(struct tcpm_port *port) { if (port->port_type == TYPEC_PORT_DRP) { if (port->pwr_role == TYPEC_SOURCE) return SRC_UNATTACHED; else return SNK_UNATTACHED; } else if (port->port_type == TYPEC_PORT_SRC) { return SRC_UNATTACHED; } return SNK_UNATTACHED; } static void tcpm_swap_complete(struct tcpm_port *port, int result) { if (port->swap_pending) { port->swap_status = result; port->swap_pending = false; port->non_pd_role_swap = false; complete(&port->swap_complete); } } static enum typec_pwr_opmode tcpm_get_pwr_opmode(enum typec_cc_status cc) { switch (cc) { case TYPEC_CC_RP_1_5: return TYPEC_PWR_MODE_1_5A; case TYPEC_CC_RP_3_0: return TYPEC_PWR_MODE_3_0A; case TYPEC_CC_RP_DEF: default: return TYPEC_PWR_MODE_USB; } } static enum typec_cc_status tcpm_pwr_opmode_to_rp(enum typec_pwr_opmode opmode) { switch (opmode) { case TYPEC_PWR_MODE_USB: return TYPEC_CC_RP_DEF; case TYPEC_PWR_MODE_1_5A: return TYPEC_CC_RP_1_5; case TYPEC_PWR_MODE_3_0A: case TYPEC_PWR_MODE_PD: default: return TYPEC_CC_RP_3_0; } } static void tcpm_set_initial_svdm_version(struct tcpm_port *port) { if (!port->partner) return; switch (port->negotiated_rev) { case PD_REV30: break; /* * 6.4.4.2.3 Structured VDM Version * 2.0 states "At this time, there is only one version (1.0) defined. * This field Shall be set to zero to indicate Version 1.0." * 3.0 states "This field Shall be set to 01b to indicate Version 2.0." * To ensure that we follow the Power Delivery revision we are currently * operating on, downgrade the SVDM version to the highest one supported * by the Power Delivery revision. */ case PD_REV20: typec_partner_set_svdm_version(port->partner, SVDM_VER_1_0); break; default: typec_partner_set_svdm_version(port->partner, SVDM_VER_1_0); break; } } static void run_state_machine(struct tcpm_port *port) { int ret; enum typec_pwr_opmode opmode; unsigned int msecs; enum tcpm_state upcoming_state; if (port->tcpc->check_contaminant && port->state != CHECK_CONTAMINANT) port->potential_contaminant = ((port->enter_state == SRC_ATTACH_WAIT && port->state == SRC_UNATTACHED) || (port->enter_state == SNK_ATTACH_WAIT && port->state == SNK_UNATTACHED) || (port->enter_state == SNK_DEBOUNCED && port->state == SNK_UNATTACHED)); port->enter_state = port->state; switch (port->state) { case TOGGLING: break; case CHECK_CONTAMINANT: port->tcpc->check_contaminant(port->tcpc); break; /* SRC states */ case SRC_UNATTACHED: if (!port->non_pd_role_swap) tcpm_swap_complete(port, -ENOTCONN); tcpm_src_detach(port); if (port->potential_contaminant) { tcpm_set_state(port, CHECK_CONTAMINANT, 0); break; } if (tcpm_start_toggling(port, tcpm_rp_cc(port))) { tcpm_set_state(port, TOGGLING, 0); break; } tcpm_set_cc(port, tcpm_rp_cc(port)); if (port->port_type == TYPEC_PORT_DRP) tcpm_set_state(port, SNK_UNATTACHED, PD_T_DRP_SNK); break; case SRC_ATTACH_WAIT: if (tcpm_port_is_debug(port)) tcpm_set_state(port, DEBUG_ACC_ATTACHED, PD_T_CC_DEBOUNCE); else if (tcpm_port_is_audio(port)) tcpm_set_state(port, AUDIO_ACC_ATTACHED, PD_T_CC_DEBOUNCE); else if (tcpm_port_is_source(port) && port->vbus_vsafe0v) tcpm_set_state(port, tcpm_try_snk(port) ? SNK_TRY : SRC_ATTACHED, PD_T_CC_DEBOUNCE); break; case SNK_TRY: port->try_snk_count++; /* * Requirements: * - Do not drive vconn or vbus * - Terminate CC pins (both) to Rd * Action: * - Wait for tDRPTry (PD_T_DRP_TRY). * Until then, ignore any state changes. */ tcpm_set_cc(port, TYPEC_CC_RD); tcpm_set_state(port, SNK_TRY_WAIT, PD_T_DRP_TRY); break; case SNK_TRY_WAIT: if (tcpm_port_is_sink(port)) { tcpm_set_state(port, SNK_TRY_WAIT_DEBOUNCE, 0); } else { tcpm_set_state(port, SRC_TRYWAIT, 0); port->max_wait = 0; } break; case SNK_TRY_WAIT_DEBOUNCE: tcpm_set_state(port, SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS, PD_T_TRY_CC_DEBOUNCE); break; case SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS: if (port->vbus_present && tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_ATTACHED, 0); else port->max_wait = 0; break; case SRC_TRYWAIT: tcpm_set_cc(port, tcpm_rp_cc(port)); if (port->max_wait == 0) { port->max_wait = jiffies + msecs_to_jiffies(PD_T_DRP_TRY); tcpm_set_state(port, SRC_TRYWAIT_UNATTACHED, PD_T_DRP_TRY); } else { if (time_is_after_jiffies(port->max_wait)) tcpm_set_state(port, SRC_TRYWAIT_UNATTACHED, jiffies_to_msecs(port->max_wait - jiffies)); else tcpm_set_state(port, SNK_UNATTACHED, 0); } break; case SRC_TRYWAIT_DEBOUNCE: tcpm_set_state(port, SRC_ATTACHED, PD_T_CC_DEBOUNCE); break; case SRC_TRYWAIT_UNATTACHED: tcpm_set_state(port, SNK_UNATTACHED, 0); break; case SRC_ATTACHED: ret = tcpm_src_attach(port); tcpm_set_state(port, SRC_UNATTACHED, ret < 0 ? 0 : PD_T_PS_SOURCE_ON); break; case SRC_STARTUP: opmode = tcpm_get_pwr_opmode(tcpm_rp_cc(port)); typec_set_pwr_opmode(port->typec_port, opmode); port->pwr_opmode = TYPEC_PWR_MODE_USB; port->caps_count = 0; port->negotiated_rev = PD_MAX_REV; port->negotiated_rev_prime = PD_MAX_REV; port->message_id = 0; port->message_id_prime = 0; port->rx_msgid = -1; port->rx_msgid_prime = -1; port->explicit_contract = false; /* SNK -> SRC POWER/FAST_ROLE_SWAP finished */ if (port->ams == POWER_ROLE_SWAP || port->ams == FAST_ROLE_SWAP) tcpm_ams_finish(port); if (!port->pd_supported) { tcpm_set_state(port, SRC_READY, 0); break; } port->upcoming_state = SRC_SEND_CAPABILITIES; tcpm_ams_start(port, POWER_NEGOTIATION); break; case SRC_SEND_CAPABILITIES: port->caps_count++; if (port->caps_count > PD_N_CAPS_COUNT) { tcpm_set_state(port, SRC_READY, 0); break; } ret = tcpm_pd_send_source_caps(port); if (ret < 0) { if (tcpm_can_communicate_sop_prime(port) && IS_ERR_OR_NULL(port->cable)) tcpm_set_state(port, SRC_VDM_IDENTITY_REQUEST, 0); else tcpm_set_state(port, SRC_SEND_CAPABILITIES, PD_T_SEND_SOURCE_CAP); } else { /* * Per standard, we should clear the reset counter here. * However, that can result in state machine hang-ups. * Reset it only in READY state to improve stability. */ /* port->hard_reset_count = 0; */ port->caps_count = 0; port->pd_capable = true; tcpm_set_state_cond(port, SRC_SEND_CAPABILITIES_TIMEOUT, PD_T_SEND_SOURCE_CAP); } break; case SRC_SEND_CAPABILITIES_TIMEOUT: /* * Error recovery for a PD_DATA_SOURCE_CAP reply timeout. * * PD 2.0 sinks are supposed to accept src-capabilities with a * 3.0 header and simply ignore any src PDOs which the sink does * not understand such as PPS but some 2.0 sinks instead ignore * the entire PD_DATA_SOURCE_CAP message, causing contract * negotiation to fail. * * After PD_N_HARD_RESET_COUNT hard-reset attempts, we try * sending src-capabilities with a lower PD revision to * make these broken sinks work. */ if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) { tcpm_set_state(port, HARD_RESET_SEND, 0); } else if (port->negotiated_rev > PD_REV20) { port->negotiated_rev--; port->hard_reset_count = 0; tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0); } else { tcpm_set_state(port, hard_reset_state(port), 0); } break; case SRC_NEGOTIATE_CAPABILITIES: ret = tcpm_pd_check_request(port); if (ret < 0) { tcpm_pd_send_control(port, PD_CTRL_REJECT, TCPC_TX_SOP); if (!port->explicit_contract) { tcpm_set_state(port, SRC_WAIT_NEW_CAPABILITIES, 0); } else { tcpm_set_state(port, SRC_READY, 0); } } else { tcpm_pd_send_control(port, PD_CTRL_ACCEPT, TCPC_TX_SOP); tcpm_set_partner_usb_comm_capable(port, !!(port->sink_request & RDO_USB_COMM)); tcpm_set_state(port, SRC_TRANSITION_SUPPLY, PD_T_SRC_TRANSITION); } break; case SRC_TRANSITION_SUPPLY: /* XXX: regulator_set_voltage(vbus, ...) */ tcpm_pd_send_control(port, PD_CTRL_PS_RDY, TCPC_TX_SOP); port->explicit_contract = true; typec_set_pwr_opmode(port->typec_port, TYPEC_PWR_MODE_PD); port->pwr_opmode = TYPEC_PWR_MODE_PD; tcpm_set_state_cond(port, SRC_READY, 0); break; case SRC_READY: #if 1 port->hard_reset_count = 0; #endif port->try_src_count = 0; tcpm_swap_complete(port, 0); tcpm_typec_connect(port); if (port->ams != NONE_AMS) tcpm_ams_finish(port); if (port->next_ams != NONE_AMS) { port->ams = port->next_ams; port->next_ams = NONE_AMS; } /* * If previous AMS is interrupted, switch to the upcoming * state. */ if (port->upcoming_state != INVALID_STATE) { upcoming_state = port->upcoming_state; port->upcoming_state = INVALID_STATE; tcpm_set_state(port, upcoming_state, 0); break; } /* * 6.4.4.3.1 Discover Identity * "The Discover Identity Command Shall only be sent to SOP when there is an * Explicit Contract." * * Discover Identity on SOP' should be discovered prior to the * ready state, but if done after a Vconn Swap following Discover * Identity on SOP then the discovery process can be run here * as well. */ if (port->explicit_contract) { if (port->send_discover_prime) { port->tx_sop_type = TCPC_TX_SOP_PRIME; } else { port->tx_sop_type = TCPC_TX_SOP; tcpm_set_initial_svdm_version(port); } mod_send_discover_delayed_work(port, 0); } else { port->send_discover = false; port->send_discover_prime = false; } /* * 6.3.5 * Sending ping messages is not necessary if * - the source operates at vSafe5V * or * - The system is not operating in PD mode * or * - Both partners are connected using a Type-C connector * * There is no actual need to send PD messages since the local * port type-c and the spec does not clearly say whether PD is * possible when type-c is connected to Type-A/B */ break; case SRC_WAIT_NEW_CAPABILITIES: /* Nothing to do... */ break; /* SNK states */ case SNK_UNATTACHED: if (!port->non_pd_role_swap) tcpm_swap_complete(port, -ENOTCONN); tcpm_pps_complete(port, -ENOTCONN); tcpm_snk_detach(port); if (port->potential_contaminant) { tcpm_set_state(port, CHECK_CONTAMINANT, 0); break; } if (tcpm_start_toggling(port, TYPEC_CC_RD)) { tcpm_set_state(port, TOGGLING, 0); break; } tcpm_set_cc(port, TYPEC_CC_RD); if (port->port_type == TYPEC_PORT_DRP) tcpm_set_state(port, SRC_UNATTACHED, PD_T_DRP_SRC); break; case SNK_ATTACH_WAIT: if ((port->cc1 == TYPEC_CC_OPEN && port->cc2 != TYPEC_CC_OPEN) || (port->cc1 != TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN)) tcpm_set_state(port, SNK_DEBOUNCED, PD_T_CC_DEBOUNCE); else if (tcpm_port_is_disconnected(port)) tcpm_set_state(port, SNK_UNATTACHED, PD_T_PD_DEBOUNCE); break; case SNK_DEBOUNCED: if (tcpm_port_is_disconnected(port)) tcpm_set_state(port, SNK_UNATTACHED, PD_T_PD_DEBOUNCE); else if (port->vbus_present) tcpm_set_state(port, tcpm_try_src(port) ? SRC_TRY : SNK_ATTACHED, 0); break; case SRC_TRY: port->try_src_count++; tcpm_set_cc(port, tcpm_rp_cc(port)); port->max_wait = 0; tcpm_set_state(port, SRC_TRY_WAIT, 0); break; case SRC_TRY_WAIT: if (port->max_wait == 0) { port->max_wait = jiffies + msecs_to_jiffies(PD_T_DRP_TRY); msecs = PD_T_DRP_TRY; } else { if (time_is_after_jiffies(port->max_wait)) msecs = jiffies_to_msecs(port->max_wait - jiffies); else msecs = 0; } tcpm_set_state(port, SNK_TRYWAIT, msecs); break; case SRC_TRY_DEBOUNCE: tcpm_set_state(port, SRC_ATTACHED, PD_T_PD_DEBOUNCE); break; case SNK_TRYWAIT: tcpm_set_cc(port, TYPEC_CC_RD); tcpm_set_state(port, SNK_TRYWAIT_VBUS, PD_T_CC_DEBOUNCE); break; case SNK_TRYWAIT_VBUS: /* * TCPM stays in this state indefinitely until VBUS * is detected as long as Rp is not detected for * more than a time period of tPDDebounce. */ if (port->vbus_present && tcpm_port_is_sink(port)) { tcpm_set_state(port, SNK_ATTACHED, 0); break; } if (!tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_TRYWAIT_DEBOUNCE, 0); break; case SNK_TRYWAIT_DEBOUNCE: tcpm_set_state(port, SNK_UNATTACHED, PD_T_PD_DEBOUNCE); break; case SNK_ATTACHED: ret = tcpm_snk_attach(port); if (ret < 0) tcpm_set_state(port, SNK_UNATTACHED, 0); else tcpm_set_state(port, SNK_STARTUP, 0); break; case SNK_STARTUP: opmode = tcpm_get_pwr_opmode(port->polarity ? port->cc2 : port->cc1); typec_set_pwr_opmode(port->typec_port, opmode); port->pwr_opmode = TYPEC_PWR_MODE_USB; port->negotiated_rev = PD_MAX_REV; port->negotiated_rev_prime = PD_MAX_REV; port->message_id = 0; port->message_id_prime = 0; port->rx_msgid = -1; port->rx_msgid_prime = -1; port->explicit_contract = false; if (port->ams == POWER_ROLE_SWAP || port->ams == FAST_ROLE_SWAP) /* SRC -> SNK POWER/FAST_ROLE_SWAP finished */ tcpm_ams_finish(port); tcpm_set_state(port, SNK_DISCOVERY, 0); break; case SNK_DISCOVERY: if (port->vbus_present) { u32 current_lim = tcpm_get_current_limit(port); if (port->slow_charger_loop && (current_lim > PD_P_SNK_STDBY_MW / 5)) current_lim = PD_P_SNK_STDBY_MW / 5; tcpm_set_current_limit(port, current_lim, 5000); /* Not sink vbus if operational current is 0mA */ tcpm_set_charge(port, !port->pd_supported || pdo_max_current(port->snk_pdo[0])); if (!port->pd_supported) tcpm_set_state(port, SNK_READY, 0); else tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0); break; } /* * For DRP, timeouts differ. Also, handling is supposed to be * different and much more complex (dead battery detection; * see USB power delivery specification, section 8.3.3.6.1.5.1). */ tcpm_set_state(port, hard_reset_state(port), port->port_type == TYPEC_PORT_DRP ? PD_T_DB_DETECT : PD_T_NO_RESPONSE); break; case SNK_DISCOVERY_DEBOUNCE: tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE_DONE, PD_T_CC_DEBOUNCE); break; case SNK_DISCOVERY_DEBOUNCE_DONE: if (!tcpm_port_is_disconnected(port) && tcpm_port_is_sink(port) && ktime_after(port->delayed_runtime, ktime_get())) { tcpm_set_state(port, SNK_DISCOVERY, ktime_to_ms(ktime_sub(port->delayed_runtime, ktime_get()))); break; } tcpm_set_state(port, unattached_state(port), 0); break; case SNK_WAIT_CAPABILITIES: ret = port->tcpc->set_pd_rx(port->tcpc, true); if (ret < 0) { tcpm_set_state(port, SNK_READY, 0); break; } /* * If VBUS has never been low, and we time out waiting * for source cap, try a soft reset first, in case we * were already in a stable contract before this boot. * Do this only once. */ if (port->vbus_never_low) { port->vbus_never_low = false; tcpm_set_state(port, SNK_SOFT_RESET, PD_T_SINK_WAIT_CAP); } else { if (!port->self_powered) upcoming_state = SNK_WAIT_CAPABILITIES_TIMEOUT; else upcoming_state = hard_reset_state(port); tcpm_set_state(port, upcoming_state, PD_T_SINK_WAIT_CAP); } break; case SNK_WAIT_CAPABILITIES_TIMEOUT: /* * There are some USB PD sources in the field, which do not * properly implement the specification and fail to start * sending Source Capability messages after a soft reset. The * specification suggests to do a hard reset when no Source * capability message is received within PD_T_SINK_WAIT_CAP, * but that might effectively kil the machine's power source. * * This slightly diverges from the specification and tries to * recover from this by explicitly asking for the capabilities * using the Get_Source_Cap control message before falling back * to a hard reset. The control message should also be supported * and handled by all USB PD source and dual role devices * according to the specification. */ if (tcpm_pd_send_control(port, PD_CTRL_GET_SOURCE_CAP, TCPC_TX_SOP)) tcpm_set_state_cond(port, hard_reset_state(port), 0); else tcpm_set_state(port, hard_reset_state(port), PD_T_SINK_WAIT_CAP); break; case SNK_NEGOTIATE_CAPABILITIES: port->pd_capable = true; tcpm_set_partner_usb_comm_capable(port, !!(port->source_caps[0] & PDO_FIXED_USB_COMM)); port->hard_reset_count = 0; ret = tcpm_pd_send_request(port); if (ret < 0) { /* Restore back to the original state */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_PD, port->pps_data.active, port->supply_voltage); /* Let the Source send capabilities again. */ tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0); } else { tcpm_set_state_cond(port, hard_reset_state(port), PD_T_SENDER_RESPONSE); } break; case SNK_NEGOTIATE_PPS_CAPABILITIES: ret = tcpm_pd_send_pps_request(port); if (ret < 0) { /* Restore back to the original state */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_PD, port->pps_data.active, port->supply_voltage); port->pps_status = ret; /* * If this was called due to updates to sink * capabilities, and pps is no longer valid, we should * safely fall back to a standard PDO. */ if (port->update_sink_caps) tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0); else tcpm_set_state(port, SNK_READY, 0); } else { tcpm_set_state_cond(port, hard_reset_state(port), PD_T_SENDER_RESPONSE); } break; case SNK_TRANSITION_SINK: /* From the USB PD spec: * "The Sink Shall transition to Sink Standby before a positive or * negative voltage transition of VBUS. During Sink Standby * the Sink Shall reduce its power draw to pSnkStdby." * * This is not applicable to PPS though as the port can continue * to draw negotiated power without switching to standby. */ if (port->supply_voltage != port->req_supply_voltage && !port->pps_data.active && port->current_limit * port->supply_voltage / 1000 > PD_P_SNK_STDBY_MW) { u32 stdby_ma = PD_P_SNK_STDBY_MW * 1000 / port->supply_voltage; tcpm_log(port, "Setting standby current %u mV @ %u mA", port->supply_voltage, stdby_ma); tcpm_set_current_limit(port, stdby_ma, port->supply_voltage); } fallthrough; case SNK_TRANSITION_SINK_VBUS: tcpm_set_state(port, hard_reset_state(port), PD_T_PS_TRANSITION); break; case SNK_READY: port->try_snk_count = 0; port->update_sink_caps = false; if (port->explicit_contract) { typec_set_pwr_opmode(port->typec_port, TYPEC_PWR_MODE_PD); port->pwr_opmode = TYPEC_PWR_MODE_PD; } if (!port->pd_capable && port->slow_charger_loop) tcpm_set_current_limit(port, tcpm_get_current_limit(port), 5000); tcpm_swap_complete(port, 0); tcpm_typec_connect(port); if (port->pd_capable && port->source_caps[0] & PDO_FIXED_DUAL_ROLE) mod_enable_frs_delayed_work(port, 0); tcpm_pps_complete(port, port->pps_status); if (port->ams != NONE_AMS) tcpm_ams_finish(port); if (port->next_ams != NONE_AMS) { port->ams = port->next_ams; port->next_ams = NONE_AMS; } /* * If previous AMS is interrupted, switch to the upcoming * state. */ if (port->upcoming_state != INVALID_STATE) { upcoming_state = port->upcoming_state; port->upcoming_state = INVALID_STATE; tcpm_set_state(port, upcoming_state, 0); break; } /* * 6.4.4.3.1 Discover Identity * "The Discover Identity Command Shall only be sent to SOP when there is an * Explicit Contract." * * Discover Identity on SOP' should be discovered prior to the * ready state, but if done after a Vconn Swap following Discover * Identity on SOP then the discovery process can be run here * as well. */ if (port->explicit_contract) { if (port->send_discover_prime) { port->tx_sop_type = TCPC_TX_SOP_PRIME; } else { port->tx_sop_type = TCPC_TX_SOP; tcpm_set_initial_svdm_version(port); } mod_send_discover_delayed_work(port, 0); } else { port->send_discover = false; port->send_discover_prime = false; } power_supply_changed(port->psy); break; /* Accessory states */ case ACC_UNATTACHED: tcpm_acc_detach(port); tcpm_set_state(port, SRC_UNATTACHED, 0); break; case DEBUG_ACC_ATTACHED: case AUDIO_ACC_ATTACHED: ret = tcpm_acc_attach(port); if (ret < 0) tcpm_set_state(port, ACC_UNATTACHED, 0); break; case AUDIO_ACC_DEBOUNCE: tcpm_set_state(port, ACC_UNATTACHED, PD_T_CC_DEBOUNCE); break; /* Hard_Reset states */ case HARD_RESET_SEND: if (port->ams != NONE_AMS) tcpm_ams_finish(port); if (!port->self_powered && port->port_type == TYPEC_PORT_SNK) dev_err(port->dev, "Initiating hard-reset, which might result in machine power-loss.\n"); /* * State machine will be directed to HARD_RESET_START, * thus set upcoming_state to INVALID_STATE. */ port->upcoming_state = INVALID_STATE; tcpm_ams_start(port, HARD_RESET); break; case HARD_RESET_START: port->sink_cap_done = false; if (port->tcpc->enable_frs) port->tcpc->enable_frs(port->tcpc, false); port->hard_reset_count++; port->tcpc->set_pd_rx(port->tcpc, false); tcpm_unregister_altmodes(port); port->nr_sink_caps = 0; port->send_discover = true; port->send_discover_prime = false; if (port->pwr_role == TYPEC_SOURCE) tcpm_set_state(port, SRC_HARD_RESET_VBUS_OFF, PD_T_PS_HARD_RESET); else tcpm_set_state(port, SNK_HARD_RESET_SINK_OFF, 0); break; case SRC_HARD_RESET_VBUS_OFF: /* * 7.1.5 Response to Hard Resets * Hard Reset Signaling indicates a communication failure has occurred and the * Source Shall stop driving VCONN, Shall remove Rp from the VCONN pin and Shall * drive VBUS to vSafe0V as shown in Figure 7-9. */ tcpm_set_vconn(port, false); tcpm_set_vbus(port, false); tcpm_set_roles(port, port->self_powered, TYPEC_SOURCE, tcpm_data_role_for_source(port)); /* * If tcpc fails to notify vbus off, TCPM will wait for PD_T_SAFE_0V + * PD_T_SRC_RECOVER before turning vbus back on. * From Table 7-12 Sequence Description for a Source Initiated Hard Reset: * 4. Policy Engine waits tPSHardReset after sending Hard Reset Signaling and then * tells the Device Policy Manager to instruct the power supply to perform a * Hard Reset. The transition to vSafe0V Shall occur within tSafe0V (t2). * 5. After tSrcRecover the Source applies power to VBUS in an attempt to * re-establish communication with the Sink and resume USB Default Operation. * The transition to vSafe5V Shall occur within tSrcTurnOn(t4). */ tcpm_set_state(port, SRC_HARD_RESET_VBUS_ON, PD_T_SAFE_0V + PD_T_SRC_RECOVER); break; case SRC_HARD_RESET_VBUS_ON: tcpm_set_vconn(port, true); tcpm_set_vbus(port, true); if (port->ams == HARD_RESET) tcpm_ams_finish(port); if (port->pd_supported) port->tcpc->set_pd_rx(port->tcpc, true); tcpm_set_attached_state(port, true); tcpm_set_state(port, SRC_UNATTACHED, PD_T_PS_SOURCE_ON); break; case SNK_HARD_RESET_SINK_OFF: /* Do not discharge/disconnect during hard reseet */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, false, 0); memset(&port->pps_data, 0, sizeof(port->pps_data)); tcpm_set_vconn(port, false); if (port->pd_capable) tcpm_set_charge(port, false); tcpm_set_roles(port, port->self_powered, TYPEC_SINK, tcpm_data_role_for_sink(port)); /* * VBUS may or may not toggle, depending on the adapter. * If it doesn't toggle, transition to SNK_HARD_RESET_SINK_ON * directly after timeout. */ tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, PD_T_SAFE_0V); break; case SNK_HARD_RESET_WAIT_VBUS: if (port->ams == HARD_RESET) tcpm_ams_finish(port); /* Assume we're disconnected if VBUS doesn't come back. */ tcpm_set_state(port, SNK_UNATTACHED, PD_T_SRC_RECOVER_MAX + PD_T_SRC_TURN_ON); break; case SNK_HARD_RESET_SINK_ON: /* Note: There is no guarantee that VBUS is on in this state */ /* * XXX: * The specification suggests that dual mode ports in sink * mode should transition to state PE_SRC_Transition_to_default. * See USB power delivery specification chapter 8.3.3.6.1.3. * This would mean to * - turn off VCONN, reset power supply * - request hardware reset * - turn on VCONN * - Transition to state PE_Src_Startup * SNK only ports shall transition to state Snk_Startup * (see chapter 8.3.3.3.8). * Similar, dual-mode ports in source mode should transition * to PE_SNK_Transition_to_default. */ if (port->pd_capable) { tcpm_set_current_limit(port, tcpm_get_current_limit(port), 5000); /* Not sink vbus if operational current is 0mA */ tcpm_set_charge(port, !!pdo_max_current(port->snk_pdo[0])); } if (port->ams == HARD_RESET) tcpm_ams_finish(port); tcpm_set_attached_state(port, true); tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, false, VSAFE5V); tcpm_set_state(port, SNK_STARTUP, 0); break; /* Soft_Reset states */ case SOFT_RESET: port->message_id = 0; port->rx_msgid = -1; /* remove existing capabilities */ usb_power_delivery_unregister_capabilities(port->partner_source_caps); port->partner_source_caps = NULL; tcpm_pd_send_control(port, PD_CTRL_ACCEPT, TCPC_TX_SOP); tcpm_ams_finish(port); if (port->pwr_role == TYPEC_SOURCE) { port->upcoming_state = SRC_SEND_CAPABILITIES; tcpm_ams_start(port, POWER_NEGOTIATION); } else { tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0); } break; case SRC_SOFT_RESET_WAIT_SNK_TX: case SNK_SOFT_RESET: if (port->ams != NONE_AMS) tcpm_ams_finish(port); port->upcoming_state = SOFT_RESET_SEND; tcpm_ams_start(port, SOFT_RESET_AMS); break; case SOFT_RESET_SEND: /* * Power Delivery 3.0 Section 6.3.13 * * A Soft_Reset Message Shall be targeted at a specific entity * depending on the type of SOP* packet used. */ if (port->tx_sop_type == TCPC_TX_SOP_PRIME) { port->message_id_prime = 0; port->rx_msgid_prime = -1; tcpm_pd_send_control(port, PD_CTRL_SOFT_RESET, TCPC_TX_SOP_PRIME); tcpm_set_state_cond(port, ready_state(port), PD_T_SENDER_RESPONSE); } else { port->message_id = 0; port->rx_msgid = -1; /* remove existing capabilities */ usb_power_delivery_unregister_capabilities(port->partner_source_caps); port->partner_source_caps = NULL; if (tcpm_pd_send_control(port, PD_CTRL_SOFT_RESET, TCPC_TX_SOP)) tcpm_set_state_cond(port, hard_reset_state(port), 0); else tcpm_set_state_cond(port, hard_reset_state(port), PD_T_SENDER_RESPONSE); } break; /* DR_Swap states */ case DR_SWAP_SEND: tcpm_pd_send_control(port, PD_CTRL_DR_SWAP, TCPC_TX_SOP); if (port->data_role == TYPEC_DEVICE || port->negotiated_rev > PD_REV20) { port->send_discover = true; port->send_discover_prime = false; } tcpm_set_state_cond(port, DR_SWAP_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case DR_SWAP_ACCEPT: tcpm_pd_send_control(port, PD_CTRL_ACCEPT, TCPC_TX_SOP); if (port->data_role == TYPEC_DEVICE || port->negotiated_rev > PD_REV20) { port->send_discover = true; port->send_discover_prime = false; } tcpm_set_state_cond(port, DR_SWAP_CHANGE_DR, 0); break; case DR_SWAP_SEND_TIMEOUT: tcpm_swap_complete(port, -ETIMEDOUT); port->send_discover = false; port->send_discover_prime = false; tcpm_ams_finish(port); tcpm_set_state(port, ready_state(port), 0); break; case DR_SWAP_CHANGE_DR: tcpm_unregister_altmodes(port); if (port->data_role == TYPEC_HOST) tcpm_set_roles(port, true, port->pwr_role, TYPEC_DEVICE); else tcpm_set_roles(port, true, port->pwr_role, TYPEC_HOST); tcpm_ams_finish(port); tcpm_set_state(port, ready_state(port), 0); break; case FR_SWAP_SEND: if (tcpm_pd_send_control(port, PD_CTRL_FR_SWAP, TCPC_TX_SOP)) { tcpm_set_state(port, ERROR_RECOVERY, 0); break; } tcpm_set_state_cond(port, FR_SWAP_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case FR_SWAP_SEND_TIMEOUT: tcpm_set_state(port, ERROR_RECOVERY, 0); break; case FR_SWAP_SNK_SRC_TRANSITION_TO_OFF: tcpm_set_state(port, ERROR_RECOVERY, PD_T_PS_SOURCE_OFF); break; case FR_SWAP_SNK_SRC_NEW_SINK_READY: if (port->vbus_source) tcpm_set_state(port, FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED, 0); else tcpm_set_state(port, ERROR_RECOVERY, PD_T_RECEIVER_RESPONSE); break; case FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED: tcpm_set_pwr_role(port, TYPEC_SOURCE); if (tcpm_pd_send_control(port, PD_CTRL_PS_RDY, TCPC_TX_SOP)) { tcpm_set_state(port, ERROR_RECOVERY, 0); break; } tcpm_set_cc(port, tcpm_rp_cc(port)); tcpm_set_state(port, SRC_STARTUP, PD_T_SWAP_SRC_START); break; /* PR_Swap states */ case PR_SWAP_ACCEPT: tcpm_pd_send_control(port, PD_CTRL_ACCEPT, TCPC_TX_SOP); tcpm_set_state(port, PR_SWAP_START, 0); break; case PR_SWAP_SEND: tcpm_pd_send_control(port, PD_CTRL_PR_SWAP, TCPC_TX_SOP); tcpm_set_state_cond(port, PR_SWAP_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case PR_SWAP_SEND_TIMEOUT: tcpm_swap_complete(port, -ETIMEDOUT); tcpm_set_state(port, ready_state(port), 0); break; case PR_SWAP_START: tcpm_apply_rc(port); if (port->pwr_role == TYPEC_SOURCE) tcpm_set_state(port, PR_SWAP_SRC_SNK_TRANSITION_OFF, PD_T_SRC_TRANSITION); else tcpm_set_state(port, PR_SWAP_SNK_SRC_SINK_OFF, 0); break; case PR_SWAP_SRC_SNK_TRANSITION_OFF: /* * Prevent vbus discharge circuit from turning on during PR_SWAP * as this is not a disconnect. */ tcpm_set_vbus(port, false); port->explicit_contract = false; /* allow time for Vbus discharge, must be < tSrcSwapStdby */ tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF, PD_T_SRCSWAPSTDBY); break; case PR_SWAP_SRC_SNK_SOURCE_OFF: tcpm_set_cc(port, TYPEC_CC_RD); /* allow CC debounce */ tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED, PD_T_CC_DEBOUNCE); break; case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED: /* * USB-PD standard, 6.2.1.4, Port Power Role: * "During the Power Role Swap Sequence, for the initial Source * Port, the Port Power Role field shall be set to Sink in the * PS_RDY Message indicating that the initial Source’s power * supply is turned off" */ tcpm_set_pwr_role(port, TYPEC_SINK); if (tcpm_pd_send_control(port, PD_CTRL_PS_RDY, TCPC_TX_SOP)) { tcpm_set_state(port, ERROR_RECOVERY, 0); break; } tcpm_set_state(port, ERROR_RECOVERY, PD_T_PS_SOURCE_ON_PRS); break; case PR_SWAP_SRC_SNK_SINK_ON: tcpm_enable_auto_vbus_discharge(port, true); /* Set the vbus disconnect threshold for implicit contract */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, false, VSAFE5V); tcpm_set_state(port, SNK_STARTUP, 0); break; case PR_SWAP_SNK_SRC_SINK_OFF: /* will be source, remove existing capabilities */ usb_power_delivery_unregister_capabilities(port->partner_source_caps); port->partner_source_caps = NULL; /* * Prevent vbus discharge circuit from turning on during PR_SWAP * as this is not a disconnect. */ tcpm_set_auto_vbus_discharge_threshold(port, TYPEC_PWR_MODE_USB, port->pps_data.active, 0); tcpm_set_charge(port, false); tcpm_set_state(port, hard_reset_state(port), PD_T_PS_SOURCE_OFF); break; case PR_SWAP_SNK_SRC_SOURCE_ON: tcpm_enable_auto_vbus_discharge(port, true); tcpm_set_cc(port, tcpm_rp_cc(port)); tcpm_set_vbus(port, true); /* * allow time VBUS ramp-up, must be < tNewSrc * Also, this window overlaps with CC debounce as well. * So, Wait for the max of two which is PD_T_NEWSRC */ tcpm_set_state(port, PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP, PD_T_NEWSRC); break; case PR_SWAP_SNK_SRC_SOURCE_ON_VBUS_RAMPED_UP: /* * USB PD standard, 6.2.1.4: * "Subsequent Messages initiated by the Policy Engine, * such as the PS_RDY Message sent to indicate that Vbus * is ready, will have the Port Power Role field set to * Source." */ tcpm_set_pwr_role(port, TYPEC_SOURCE); tcpm_pd_send_control(port, PD_CTRL_PS_RDY, TCPC_TX_SOP); tcpm_set_state(port, SRC_STARTUP, PD_T_SWAP_SRC_START); break; case VCONN_SWAP_ACCEPT: tcpm_pd_send_control(port, PD_CTRL_ACCEPT, TCPC_TX_SOP); tcpm_ams_finish(port); tcpm_set_state(port, VCONN_SWAP_START, 0); break; case VCONN_SWAP_SEND: tcpm_pd_send_control(port, PD_CTRL_VCONN_SWAP, TCPC_TX_SOP); tcpm_set_state(port, VCONN_SWAP_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case VCONN_SWAP_SEND_TIMEOUT: tcpm_swap_complete(port, -ETIMEDOUT); tcpm_set_state(port, ready_state(port), 0); break; case VCONN_SWAP_START: if (port->vconn_role == TYPEC_SOURCE) tcpm_set_state(port, VCONN_SWAP_WAIT_FOR_VCONN, 0); else tcpm_set_state(port, VCONN_SWAP_TURN_ON_VCONN, 0); break; case VCONN_SWAP_WAIT_FOR_VCONN: tcpm_set_state(port, hard_reset_state(port), PD_T_VCONN_SOURCE_ON); break; case VCONN_SWAP_TURN_ON_VCONN: ret = tcpm_set_vconn(port, true); tcpm_pd_send_control(port, PD_CTRL_PS_RDY, TCPC_TX_SOP); /* * USB PD 3.0 Section 6.4.4.3.1 * * Note that a Cable Plug or VPD will not be ready for PD * Communication until tVCONNStable after VCONN has been applied */ if (!ret) tcpm_set_state(port, VCONN_SWAP_SEND_SOFT_RESET, PD_T_VCONN_STABLE); else tcpm_set_state(port, ready_state(port), 0); break; case VCONN_SWAP_TURN_OFF_VCONN: tcpm_set_vconn(port, false); tcpm_set_state(port, ready_state(port), 0); break; case VCONN_SWAP_SEND_SOFT_RESET: tcpm_swap_complete(port, port->swap_status); if (tcpm_can_communicate_sop_prime(port)) { port->tx_sop_type = TCPC_TX_SOP_PRIME; port->upcoming_state = SOFT_RESET_SEND; tcpm_ams_start(port, SOFT_RESET_AMS); } else { tcpm_set_state(port, ready_state(port), 0); } break; case DR_SWAP_CANCEL: case PR_SWAP_CANCEL: case VCONN_SWAP_CANCEL: tcpm_swap_complete(port, port->swap_status); if (port->pwr_role == TYPEC_SOURCE) tcpm_set_state(port, SRC_READY, 0); else tcpm_set_state(port, SNK_READY, 0); break; case FR_SWAP_CANCEL: if (port->pwr_role == TYPEC_SOURCE) tcpm_set_state(port, SRC_READY, 0); else tcpm_set_state(port, SNK_READY, 0); break; case BIST_RX: switch (BDO_MODE_MASK(port->bist_request)) { case BDO_MODE_CARRIER2: tcpm_pd_transmit(port, TCPC_TX_BIST_MODE_2, NULL); tcpm_set_state(port, unattached_state(port), PD_T_BIST_CONT_MODE); break; case BDO_MODE_TESTDATA: if (port->tcpc->set_bist_data) { tcpm_log(port, "Enable BIST MODE TESTDATA"); port->tcpc->set_bist_data(port->tcpc, true); } break; default: break; } break; case GET_STATUS_SEND: tcpm_pd_send_control(port, PD_CTRL_GET_STATUS, TCPC_TX_SOP); tcpm_set_state(port, GET_STATUS_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case GET_STATUS_SEND_TIMEOUT: tcpm_set_state(port, ready_state(port), 0); break; case GET_PPS_STATUS_SEND: tcpm_pd_send_control(port, PD_CTRL_GET_PPS_STATUS, TCPC_TX_SOP); tcpm_set_state(port, GET_PPS_STATUS_SEND_TIMEOUT, PD_T_SENDER_RESPONSE); break; case GET_PPS_STATUS_SEND_TIMEOUT: tcpm_set_state(port, ready_state(port), 0); break; case GET_SINK_CAP: tcpm_pd_send_control(port, PD_CTRL_GET_SINK_CAP, TCPC_TX_SOP); tcpm_set_state(port, GET_SINK_CAP_TIMEOUT, PD_T_SENDER_RESPONSE); break; case GET_SINK_CAP_TIMEOUT: port->sink_cap_done = true; tcpm_set_state(port, ready_state(port), 0); break; case ERROR_RECOVERY: tcpm_swap_complete(port, -EPROTO); tcpm_pps_complete(port, -EPROTO); tcpm_set_state(port, PORT_RESET, 0); break; case PORT_RESET: tcpm_reset_port(port); if (port->self_powered) tcpm_set_cc(port, TYPEC_CC_OPEN); else tcpm_set_cc(port, tcpm_default_state(port) == SNK_UNATTACHED ? TYPEC_CC_RD : tcpm_rp_cc(port)); tcpm_set_state(port, PORT_RESET_WAIT_OFF, PD_T_ERROR_RECOVERY); break; case PORT_RESET_WAIT_OFF: tcpm_set_state(port, tcpm_default_state(port), port->vbus_present ? PD_T_PS_SOURCE_OFF : 0); break; /* AMS intermediate state */ case AMS_START: if (port->upcoming_state == INVALID_STATE) { tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_READY : SNK_READY, 0); break; } upcoming_state = port->upcoming_state; port->upcoming_state = INVALID_STATE; tcpm_set_state(port, upcoming_state, 0); break; /* Chunk state */ case CHUNK_NOT_SUPP: tcpm_pd_send_control(port, PD_CTRL_NOT_SUPP, TCPC_TX_SOP); tcpm_set_state(port, port->pwr_role == TYPEC_SOURCE ? SRC_READY : SNK_READY, 0); break; /* Cable states */ case SRC_VDM_IDENTITY_REQUEST: port->send_discover_prime = true; port->tx_sop_type = TCPC_TX_SOP_PRIME; mod_send_discover_delayed_work(port, 0); port->upcoming_state = SRC_SEND_CAPABILITIES; break; default: WARN(1, "Unexpected port state %d\n", port->state); break; } } static void tcpm_state_machine_work(struct kthread_work *work) { struct tcpm_port *port = container_of(work, struct tcpm_port, state_machine); enum tcpm_state prev_state; mutex_lock(&port->lock); port->state_machine_running = true; if (port->queued_message && tcpm_send_queued_message(port)) goto done; /* If we were queued due to a delayed state change, update it now */ if (port->delayed_state) { tcpm_log(port, "state change %s -> %s [delayed %ld ms]", tcpm_states[port->state], tcpm_states[port->delayed_state], port->delay_ms); port->prev_state = port->state; port->state = port->delayed_state; port->delayed_state = INVALID_STATE; } /* * Continue running as long as we have (non-delayed) state changes * to make. */ do { prev_state = port->state; run_state_machine(port); if (port->queued_message) tcpm_send_queued_message(port); } while (port->state != prev_state && !port->delayed_state); done: port->state_machine_running = false; mutex_unlock(&port->lock); } static void _tcpm_cc_change(struct tcpm_port *port, enum typec_cc_status cc1, enum typec_cc_status cc2) { enum typec_cc_status old_cc1, old_cc2; enum tcpm_state new_state; old_cc1 = port->cc1; old_cc2 = port->cc2; port->cc1 = cc1; port->cc2 = cc2; tcpm_log_force(port, "CC1: %u -> %u, CC2: %u -> %u [state %s, polarity %d, %s]", old_cc1, cc1, old_cc2, cc2, tcpm_states[port->state], port->polarity, tcpm_port_is_disconnected(port) ? "disconnected" : "connected"); switch (port->state) { case TOGGLING: if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) || tcpm_port_is_source(port)) tcpm_set_state(port, SRC_ATTACH_WAIT, 0); else if (tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_ATTACH_WAIT, 0); break; case CHECK_CONTAMINANT: /* Wait for Toggling to be resumed */ break; case SRC_UNATTACHED: case ACC_UNATTACHED: if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) || tcpm_port_is_source(port)) tcpm_set_state(port, SRC_ATTACH_WAIT, 0); break; case SRC_ATTACH_WAIT: if (tcpm_port_is_disconnected(port) || tcpm_port_is_audio_detached(port)) tcpm_set_state(port, SRC_UNATTACHED, 0); else if (cc1 != old_cc1 || cc2 != old_cc2) tcpm_set_state(port, SRC_ATTACH_WAIT, 0); break; case SRC_ATTACHED: case SRC_STARTUP: case SRC_SEND_CAPABILITIES: case SRC_READY: if (tcpm_port_is_disconnected(port) || !tcpm_port_is_source(port)) { if (port->port_type == TYPEC_PORT_SRC) tcpm_set_state(port, SRC_UNATTACHED, tcpm_wait_for_discharge(port)); else tcpm_set_state(port, SNK_UNATTACHED, tcpm_wait_for_discharge(port)); } break; case SNK_UNATTACHED: if (tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_ATTACH_WAIT, 0); break; case SNK_ATTACH_WAIT: if ((port->cc1 == TYPEC_CC_OPEN && port->cc2 != TYPEC_CC_OPEN) || (port->cc1 != TYPEC_CC_OPEN && port->cc2 == TYPEC_CC_OPEN)) new_state = SNK_DEBOUNCED; else if (tcpm_port_is_disconnected(port)) new_state = SNK_UNATTACHED; else break; if (new_state != port->delayed_state) tcpm_set_state(port, SNK_ATTACH_WAIT, 0); break; case SNK_DEBOUNCED: if (tcpm_port_is_disconnected(port)) new_state = SNK_UNATTACHED; else if (port->vbus_present) new_state = tcpm_try_src(port) ? SRC_TRY : SNK_ATTACHED; else new_state = SNK_UNATTACHED; if (new_state != port->delayed_state) tcpm_set_state(port, SNK_DEBOUNCED, 0); break; case SNK_READY: /* * EXIT condition is based primarily on vbus disconnect and CC is secondary. * "A port that has entered into USB PD communications with the Source and * has seen the CC voltage exceed vRd-USB may monitor the CC pin to detect * cable disconnect in addition to monitoring VBUS. * * A port that is monitoring the CC voltage for disconnect (but is not in * the process of a USB PD PR_Swap or USB PD FR_Swap) shall transition to * Unattached.SNK within tSinkDisconnect after the CC voltage remains below * vRd-USB for tPDDebounce." * * When set_auto_vbus_discharge_threshold is enabled, CC pins go * away before vbus decays to disconnect threshold. Allow * disconnect to be driven by vbus disconnect when auto vbus * discharge is enabled. */ if (!port->auto_vbus_discharge_enabled && tcpm_port_is_disconnected(port)) tcpm_set_state(port, unattached_state(port), 0); else if (!port->pd_capable && (cc1 != old_cc1 || cc2 != old_cc2)) tcpm_set_current_limit(port, tcpm_get_current_limit(port), 5000); break; case AUDIO_ACC_ATTACHED: if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN) tcpm_set_state(port, AUDIO_ACC_DEBOUNCE, 0); break; case AUDIO_ACC_DEBOUNCE: if (tcpm_port_is_audio(port)) tcpm_set_state(port, AUDIO_ACC_ATTACHED, 0); break; case DEBUG_ACC_ATTACHED: if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN) tcpm_set_state(port, ACC_UNATTACHED, 0); break; case SNK_TRY: /* Do nothing, waiting for timeout */ break; case SNK_DISCOVERY: /* CC line is unstable, wait for debounce */ if (tcpm_port_is_disconnected(port)) tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE, 0); break; case SNK_DISCOVERY_DEBOUNCE: break; case SRC_TRYWAIT: /* Hand over to state machine if needed */ if (!port->vbus_present && tcpm_port_is_source(port)) tcpm_set_state(port, SRC_TRYWAIT_DEBOUNCE, 0); break; case SRC_TRYWAIT_DEBOUNCE: if (port->vbus_present || !tcpm_port_is_source(port)) tcpm_set_state(port, SRC_TRYWAIT, 0); break; case SNK_TRY_WAIT_DEBOUNCE: if (!tcpm_port_is_sink(port)) { port->max_wait = 0; tcpm_set_state(port, SRC_TRYWAIT, 0); } break; case SRC_TRY_WAIT: if (tcpm_port_is_source(port)) tcpm_set_state(port, SRC_TRY_DEBOUNCE, 0); break; case SRC_TRY_DEBOUNCE: tcpm_set_state(port, SRC_TRY_WAIT, 0); break; case SNK_TRYWAIT_DEBOUNCE: if (tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_TRYWAIT_VBUS, 0); break; case SNK_TRYWAIT_VBUS: if (!tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_TRYWAIT_DEBOUNCE, 0); break; case SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS: if (!tcpm_port_is_sink(port)) tcpm_set_state(port, SRC_TRYWAIT, PD_T_TRY_CC_DEBOUNCE); else tcpm_set_state(port, SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS, 0); break; case SNK_TRYWAIT: /* Do nothing, waiting for tCCDebounce */ break; case PR_SWAP_SNK_SRC_SINK_OFF: case PR_SWAP_SRC_SNK_TRANSITION_OFF: case PR_SWAP_SRC_SNK_SOURCE_OFF: case PR_SWAP_SRC_SNK_SOURCE_OFF_CC_DEBOUNCED: case PR_SWAP_SNK_SRC_SOURCE_ON: /* * CC state change is expected in PR_SWAP * Ignore it. */ break; case FR_SWAP_SEND: case FR_SWAP_SEND_TIMEOUT: case FR_SWAP_SNK_SRC_TRANSITION_TO_OFF: case FR_SWAP_SNK_SRC_NEW_SINK_READY: case FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED: /* Do nothing, CC change expected */ break; case PORT_RESET: case PORT_RESET_WAIT_OFF: /* * State set back to default mode once the timer completes. * Ignore CC changes here. */ break; default: /* * While acting as sink and auto vbus discharge is enabled, Allow disconnect * to be driven by vbus disconnect. */ if (tcpm_port_is_disconnected(port) && !(port->pwr_role == TYPEC_SINK && port->auto_vbus_discharge_enabled)) tcpm_set_state(port, unattached_state(port), 0); break; } } static void _tcpm_pd_vbus_on(struct tcpm_port *port) { tcpm_log_force(port, "VBUS on"); port->vbus_present = true; /* * When vbus_present is true i.e. Voltage at VBUS is greater than VSAFE5V implicitly * states that vbus is not at VSAFE0V, hence clear the vbus_vsafe0v flag here. */ port->vbus_vsafe0v = false; switch (port->state) { case SNK_TRANSITION_SINK_VBUS: port->explicit_contract = true; tcpm_set_state(port, SNK_READY, 0); break; case SNK_DISCOVERY: tcpm_set_state(port, SNK_DISCOVERY, 0); break; case SNK_DEBOUNCED: tcpm_set_state(port, tcpm_try_src(port) ? SRC_TRY : SNK_ATTACHED, 0); break; case SNK_HARD_RESET_WAIT_VBUS: tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, 0); break; case SRC_ATTACHED: tcpm_set_state(port, SRC_STARTUP, 0); break; case SRC_HARD_RESET_VBUS_ON: tcpm_set_state(port, SRC_STARTUP, 0); break; case SNK_TRY: /* Do nothing, waiting for timeout */ break; case SRC_TRYWAIT: /* Do nothing, Waiting for Rd to be detected */ break; case SRC_TRYWAIT_DEBOUNCE: tcpm_set_state(port, SRC_TRYWAIT, 0); break; case SNK_TRY_WAIT_DEBOUNCE: /* Do nothing, waiting for PD_DEBOUNCE to do be done */ break; case SNK_TRYWAIT: /* Do nothing, waiting for tCCDebounce */ break; case SNK_TRYWAIT_VBUS: if (tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_ATTACHED, 0); break; case SNK_TRYWAIT_DEBOUNCE: /* Do nothing, waiting for Rp */ break; case SNK_TRY_WAIT_DEBOUNCE_CHECK_VBUS: if (port->vbus_present && tcpm_port_is_sink(port)) tcpm_set_state(port, SNK_ATTACHED, 0); break; case SRC_TRY_WAIT: case SRC_TRY_DEBOUNCE: /* Do nothing, waiting for sink detection */ break; case FR_SWAP_SEND: case FR_SWAP_SEND_TIMEOUT: case FR_SWAP_SNK_SRC_TRANSITION_TO_OFF: case FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED: if (port->tcpc->frs_sourcing_vbus) port->tcpc->frs_sourcing_vbus(port->tcpc); break; case FR_SWAP_SNK_SRC_NEW_SINK_READY: if (port->tcpc->frs_sourcing_vbus) port->tcpc->frs_sourcing_vbus(port->tcpc); tcpm_set_state(port, FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED, 0); break; case PORT_RESET: case PORT_RESET_WAIT_OFF: /* * State set back to default mode once the timer completes. * Ignore vbus changes here. */ break; default: break; } } static void _tcpm_pd_vbus_off(struct tcpm_port *port) { tcpm_log_force(port, "VBUS off"); port->vbus_present = false; port->vbus_never_low = false; switch (port->state) { case SNK_HARD_RESET_SINK_OFF: tcpm_set_state(port, SNK_HARD_RESET_WAIT_VBUS, 0); break; case HARD_RESET_SEND: break; case SNK_TRY: /* Do nothing, waiting for timeout */ break; case SRC_TRYWAIT: /* Hand over to state machine if needed */ if (tcpm_port_is_source(port)) tcpm_set_state(port, SRC_TRYWAIT_DEBOUNCE, 0); break; case SNK_TRY_WAIT_DEBOUNCE: /* Do nothing, waiting for PD_DEBOUNCE to do be done */ break; case SNK_TRYWAIT: case SNK_TRYWAIT_VBUS: case SNK_TRYWAIT_DEBOUNCE: break; case SNK_ATTACH_WAIT: case SNK_DEBOUNCED: /* Do nothing, as TCPM is still waiting for vbus to reaach VSAFE5V to connect */ break; case SNK_NEGOTIATE_CAPABILITIES: break; case PR_SWAP_SRC_SNK_TRANSITION_OFF: tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF, 0); break; case PR_SWAP_SNK_SRC_SINK_OFF: /* Do nothing, expected */ break; case PR_SWAP_SNK_SRC_SOURCE_ON: /* * Do nothing when vbus off notification is received. * TCPM can wait for PD_T_NEWSRC in PR_SWAP_SNK_SRC_SOURCE_ON * for the vbus source to ramp up. */ break; case PORT_RESET_WAIT_OFF: tcpm_set_state(port, tcpm_default_state(port), 0); break; case SRC_TRY_WAIT: case SRC_TRY_DEBOUNCE: /* Do nothing, waiting for sink detection */ break; case SRC_STARTUP: case SRC_SEND_CAPABILITIES: case SRC_SEND_CAPABILITIES_TIMEOUT: case SRC_NEGOTIATE_CAPABILITIES: case SRC_TRANSITION_SUPPLY: case SRC_READY: case SRC_WAIT_NEW_CAPABILITIES: /* * Force to unattached state to re-initiate connection. * DRP port should move to Unattached.SNK instead of Unattached.SRC if * sink removed. Although sink removal here is due to source's vbus collapse, * treat it the same way for consistency. */ if (port->port_type == TYPEC_PORT_SRC) tcpm_set_state(port, SRC_UNATTACHED, tcpm_wait_for_discharge(port)); else tcpm_set_state(port, SNK_UNATTACHED, tcpm_wait_for_discharge(port)); break; case PORT_RESET: /* * State set back to default mode once the timer completes. * Ignore vbus changes here. */ break; case FR_SWAP_SEND: case FR_SWAP_SEND_TIMEOUT: case FR_SWAP_SNK_SRC_TRANSITION_TO_OFF: case FR_SWAP_SNK_SRC_NEW_SINK_READY: case FR_SWAP_SNK_SRC_SOURCE_VBUS_APPLIED: /* Do nothing, vbus drop expected */ break; case SNK_HARD_RESET_WAIT_VBUS: /* Do nothing, its OK to receive vbus off events */ break; default: if (port->pwr_role == TYPEC_SINK && port->attached) tcpm_set_state(port, SNK_UNATTACHED, tcpm_wait_for_discharge(port)); break; } } static void _tcpm_pd_vbus_vsafe0v(struct tcpm_port *port) { tcpm_log_force(port, "VBUS VSAFE0V"); port->vbus_vsafe0v = true; switch (port->state) { case SRC_HARD_RESET_VBUS_OFF: /* * After establishing the vSafe0V voltage condition on VBUS, the Source Shall wait * tSrcRecover before re-applying VCONN and restoring VBUS to vSafe5V. */ tcpm_set_state(port, SRC_HARD_RESET_VBUS_ON, PD_T_SRC_RECOVER); break; case SRC_ATTACH_WAIT: if (tcpm_port_is_source(port)) tcpm_set_state(port, tcpm_try_snk(port) ? SNK_TRY : SRC_ATTACHED, PD_T_CC_DEBOUNCE); break; case SRC_STARTUP: case SRC_SEND_CAPABILITIES: case SRC_SEND_CAPABILITIES_TIMEOUT: case SRC_NEGOTIATE_CAPABILITIES: case SRC_TRANSITION_SUPPLY: case SRC_READY: case SRC_WAIT_NEW_CAPABILITIES: if (port->auto_vbus_discharge_enabled) { if (port->port_type == TYPEC_PORT_SRC) tcpm_set_state(port, SRC_UNATTACHED, 0); else tcpm_set_state(port, SNK_UNATTACHED, 0); } break; case PR_SWAP_SNK_SRC_SINK_OFF: case PR_SWAP_SNK_SRC_SOURCE_ON: /* Do nothing, vsafe0v is expected during transition */ break; case SNK_ATTACH_WAIT: case SNK_DEBOUNCED: /*Do nothing, still waiting for VSAFE5V for connect */ break; case SNK_HARD_RESET_WAIT_VBUS: /* Do nothing, its OK to receive vbus off events */ break; default: if (port->pwr_role == TYPEC_SINK && port->auto_vbus_discharge_enabled) tcpm_set_state(port, SNK_UNATTACHED, 0); break; } } static void _tcpm_pd_hard_reset(struct tcpm_port *port) { tcpm_log_force(port, "Received hard reset"); if (port->bist_request == BDO_MODE_TESTDATA && port->tcpc->set_bist_data) port->tcpc->set_bist_data(port->tcpc, false); switch (port->state) { case TOGGLING: case ERROR_RECOVERY: case PORT_RESET: case PORT_RESET_WAIT_OFF: return; default: break; } if (port->ams != NONE_AMS) port->ams = NONE_AMS; if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) port->ams = HARD_RESET; /* * If we keep receiving hard reset requests, executing the hard reset * must have failed. Revert to error recovery if that happens. */ tcpm_set_state(port, port->hard_reset_count < PD_N_HARD_RESET_COUNT ? HARD_RESET_START : ERROR_RECOVERY, 0); } static void tcpm_pd_event_handler(struct kthread_work *work) { struct tcpm_port *port = container_of(work, struct tcpm_port, event_work); u32 events; mutex_lock(&port->lock); spin_lock(&port->pd_event_lock); while (port->pd_events) { events = port->pd_events; port->pd_events = 0; spin_unlock(&port->pd_event_lock); if (events & TCPM_RESET_EVENT) _tcpm_pd_hard_reset(port); if (events & TCPM_VBUS_EVENT) { bool vbus; vbus = port->tcpc->get_vbus(port->tcpc); if (vbus) { _tcpm_pd_vbus_on(port); } else { _tcpm_pd_vbus_off(port); /* * When TCPC does not support detecting vsafe0v voltage level, * treat vbus absent as vsafe0v. Else invoke is_vbus_vsafe0v * to see if vbus has discharge to VSAFE0V. */ if (!port->tcpc->is_vbus_vsafe0v || port->tcpc->is_vbus_vsafe0v(port->tcpc)) _tcpm_pd_vbus_vsafe0v(port); } } if (events & TCPM_CC_EVENT) { enum typec_cc_status cc1, cc2; if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0) _tcpm_cc_change(port, cc1, cc2); } if (events & TCPM_FRS_EVENT) { if (port->state == SNK_READY) { int ret; port->upcoming_state = FR_SWAP_SEND; ret = tcpm_ams_start(port, FAST_ROLE_SWAP); if (ret == -EAGAIN) port->upcoming_state = INVALID_STATE; } else { tcpm_log(port, "Discarding FRS_SIGNAL! Not in sink ready"); } } if (events & TCPM_SOURCING_VBUS) { tcpm_log(port, "sourcing vbus"); /* * In fast role swap case TCPC autonomously sources vbus. Set vbus_source * true as TCPM wouldn't have called tcpm_set_vbus. * * When vbus is sourced on the command on TCPM i.e. TCPM called * tcpm_set_vbus to source vbus, vbus_source would already be true. */ port->vbus_source = true; _tcpm_pd_vbus_on(port); } if (events & TCPM_PORT_CLEAN) { tcpm_log(port, "port clean"); if (port->state == CHECK_CONTAMINANT) { if (tcpm_start_toggling(port, tcpm_rp_cc(port))) tcpm_set_state(port, TOGGLING, 0); else tcpm_set_state(port, tcpm_default_state(port), 0); } } if (events & TCPM_PORT_ERROR) { tcpm_log(port, "port triggering error recovery"); tcpm_set_state(port, ERROR_RECOVERY, 0); } spin_lock(&port->pd_event_lock); } spin_unlock(&port->pd_event_lock); mutex_unlock(&port->lock); } void tcpm_cc_change(struct tcpm_port *port) { spin_lock(&port->pd_event_lock); port->pd_events |= TCPM_CC_EVENT; spin_unlock(&port->pd_event_lock); kthread_queue_work(port->wq, &port->event_work); } EXPORT_SYMBOL_GPL(tcpm_cc_change); void tcpm_vbus_change(struct tcpm_port *port) { spin_lock(&port->pd_event_lock); port->pd_events |= TCPM_VBUS_EVENT; spin_unlock(&port->pd_event_lock); kthread_queue_work(port->wq, &port->event_work); } EXPORT_SYMBOL_GPL(tcpm_vbus_change); void tcpm_pd_hard_reset(struct tcpm_port *port) { spin_lock(&port->pd_event_lock); port->pd_events = TCPM_RESET_EVENT; spin_unlock(&port->pd_event_lock); kthread_queue_work(port->wq, &port->event_work); } EXPORT_SYMBOL_GPL(tcpm_pd_hard_reset); void tcpm_sink_frs(struct tcpm_port *port) { spin_lock(&port->pd_event_lock); port->pd_events |= TCPM_FRS_EVENT; spin_unlock(&port->pd_event_lock); kthread_queue_work(port->wq, &port->event_work); } EXPORT_SYMBOL_GPL(tcpm_sink_frs); void tcpm_sourcing_vbus(struct tcpm_port *port) { spin_lock(&port->pd_event_lock); port->pd_events |= TCPM_SOURCING_VBUS; spin_unlock(&port->pd_event_lock); kthread_queue_work(port->wq, &port->event_work); } EXPORT_SYMBOL_GPL(tcpm_sourcing_vbus); void tcpm_port_clean(struct tcpm_port *port) { spin_lock(&port->pd_event_lock); port->pd_events |= TCPM_PORT_CLEAN; spin_unlock(&port->pd_event_lock); kthread_queue_work(port->wq, &port->event_work); } EXPORT_SYMBOL_GPL(tcpm_port_clean); bool tcpm_port_is_toggling(struct tcpm_port *port) { return port->port_type == TYPEC_PORT_DRP && port->state == TOGGLING; } EXPORT_SYMBOL_GPL(tcpm_port_is_toggling); void tcpm_port_error_recovery(struct tcpm_port *port) { spin_lock(&port->pd_event_lock); port->pd_events |= TCPM_PORT_ERROR; spin_unlock(&port->pd_event_lock); kthread_queue_work(port->wq, &port->event_work); } EXPORT_SYMBOL_GPL(tcpm_port_error_recovery); static void tcpm_enable_frs_work(struct kthread_work *work) { struct tcpm_port *port = container_of(work, struct tcpm_port, enable_frs); int ret; mutex_lock(&port->lock); /* Not FRS capable */ if (!port->connected || port->port_type != TYPEC_PORT_DRP || port->pwr_opmode != TYPEC_PWR_MODE_PD || !port->tcpc->enable_frs || /* Sink caps queried */ port->sink_cap_done || port->negotiated_rev < PD_REV30) goto unlock; /* Send when the state machine is idle */ if (port->state != SNK_READY || port->vdm_sm_running || port->send_discover || port->send_discover_prime) goto resched; port->upcoming_state = GET_SINK_CAP; ret = tcpm_ams_start(port, GET_SINK_CAPABILITIES); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; } else { port->sink_cap_done = true; goto unlock; } resched: mod_enable_frs_delayed_work(port, GET_SINK_CAP_RETRY_MS); unlock: mutex_unlock(&port->lock); } static void tcpm_send_discover_work(struct kthread_work *work) { struct tcpm_port *port = container_of(work, struct tcpm_port, send_discover_work); mutex_lock(&port->lock); /* No need to send DISCOVER_IDENTITY anymore */ if (!port->send_discover && !port->send_discover_prime) goto unlock; if (port->data_role == TYPEC_DEVICE && port->negotiated_rev < PD_REV30) { port->send_discover = false; port->send_discover_prime = false; goto unlock; } /* Retry if the port is not idle */ if ((port->state != SRC_READY && port->state != SNK_READY && port->state != SRC_VDM_IDENTITY_REQUEST) || port->vdm_sm_running) { mod_send_discover_delayed_work(port, SEND_DISCOVER_RETRY_MS); goto unlock; } tcpm_send_vdm(port, USB_SID_PD, CMD_DISCOVER_IDENT, NULL, 0, port->tx_sop_type); unlock: mutex_unlock(&port->lock); } static int tcpm_dr_set(struct typec_port *p, enum typec_data_role data) { struct tcpm_port *port = typec_get_drvdata(p); int ret; mutex_lock(&port->swap_lock); mutex_lock(&port->lock); if (port->typec_caps.data != TYPEC_PORT_DRD) { ret = -EINVAL; goto port_unlock; } if (port->state != SRC_READY && port->state != SNK_READY) { ret = -EAGAIN; goto port_unlock; } if (port->data_role == data) { ret = 0; goto port_unlock; } /* * XXX * 6.3.9: If an alternate mode is active, a request to swap * alternate modes shall trigger a port reset. * Reject data role swap request in this case. */ if (!port->pd_capable) { /* * If the partner is not PD capable, reset the port to * trigger a role change. This can only work if a preferred * role is configured, and if it matches the requested role. */ if (port->try_role == TYPEC_NO_PREFERRED_ROLE || port->try_role == port->pwr_role) { ret = -EINVAL; goto port_unlock; } port->non_pd_role_swap = true; tcpm_set_state(port, PORT_RESET, 0); } else { port->upcoming_state = DR_SWAP_SEND; ret = tcpm_ams_start(port, DATA_ROLE_SWAP); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; goto port_unlock; } } port->swap_status = 0; port->swap_pending = true; reinit_completion(&port->swap_complete); mutex_unlock(&port->lock); if (!wait_for_completion_timeout(&port->swap_complete, msecs_to_jiffies(PD_ROLE_SWAP_TIMEOUT))) ret = -ETIMEDOUT; else ret = port->swap_status; port->non_pd_role_swap = false; goto swap_unlock; port_unlock: mutex_unlock(&port->lock); swap_unlock: mutex_unlock(&port->swap_lock); return ret; } static int tcpm_pr_set(struct typec_port *p, enum typec_role role) { struct tcpm_port *port = typec_get_drvdata(p); int ret; mutex_lock(&port->swap_lock); mutex_lock(&port->lock); if (port->port_type != TYPEC_PORT_DRP) { ret = -EINVAL; goto port_unlock; } if (port->state != SRC_READY && port->state != SNK_READY) { ret = -EAGAIN; goto port_unlock; } if (role == port->pwr_role) { ret = 0; goto port_unlock; } port->upcoming_state = PR_SWAP_SEND; ret = tcpm_ams_start(port, POWER_ROLE_SWAP); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; goto port_unlock; } port->swap_status = 0; port->swap_pending = true; reinit_completion(&port->swap_complete); mutex_unlock(&port->lock); if (!wait_for_completion_timeout(&port->swap_complete, msecs_to_jiffies(PD_ROLE_SWAP_TIMEOUT))) ret = -ETIMEDOUT; else ret = port->swap_status; goto swap_unlock; port_unlock: mutex_unlock(&port->lock); swap_unlock: mutex_unlock(&port->swap_lock); return ret; } static int tcpm_vconn_set(struct typec_port *p, enum typec_role role) { struct tcpm_port *port = typec_get_drvdata(p); int ret; mutex_lock(&port->swap_lock); mutex_lock(&port->lock); if (port->state != SRC_READY && port->state != SNK_READY) { ret = -EAGAIN; goto port_unlock; } if (role == port->vconn_role) { ret = 0; goto port_unlock; } port->upcoming_state = VCONN_SWAP_SEND; ret = tcpm_ams_start(port, VCONN_SWAP); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; goto port_unlock; } port->swap_status = 0; port->swap_pending = true; reinit_completion(&port->swap_complete); mutex_unlock(&port->lock); if (!wait_for_completion_timeout(&port->swap_complete, msecs_to_jiffies(PD_ROLE_SWAP_TIMEOUT))) ret = -ETIMEDOUT; else ret = port->swap_status; goto swap_unlock; port_unlock: mutex_unlock(&port->lock); swap_unlock: mutex_unlock(&port->swap_lock); return ret; } static int tcpm_try_role(struct typec_port *p, int role) { struct tcpm_port *port = typec_get_drvdata(p); struct tcpc_dev *tcpc = port->tcpc; int ret = 0; mutex_lock(&port->lock); if (tcpc->try_role) ret = tcpc->try_role(tcpc, role); if (!ret) port->try_role = role; port->try_src_count = 0; port->try_snk_count = 0; mutex_unlock(&port->lock); return ret; } static int tcpm_pps_set_op_curr(struct tcpm_port *port, u16 req_op_curr) { unsigned int target_mw; int ret; mutex_lock(&port->swap_lock); mutex_lock(&port->lock); if (!port->pps_data.active) { ret = -EOPNOTSUPP; goto port_unlock; } if (port->state != SNK_READY) { ret = -EAGAIN; goto port_unlock; } if (req_op_curr > port->pps_data.max_curr) { ret = -EINVAL; goto port_unlock; } target_mw = (req_op_curr * port->supply_voltage) / 1000; if (target_mw < port->operating_snk_mw) { ret = -EINVAL; goto port_unlock; } port->upcoming_state = SNK_NEGOTIATE_PPS_CAPABILITIES; ret = tcpm_ams_start(port, POWER_NEGOTIATION); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; goto port_unlock; } /* Round down operating current to align with PPS valid steps */ req_op_curr = req_op_curr - (req_op_curr % RDO_PROG_CURR_MA_STEP); reinit_completion(&port->pps_complete); port->pps_data.req_op_curr = req_op_curr; port->pps_status = 0; port->pps_pending = true; mutex_unlock(&port->lock); if (!wait_for_completion_timeout(&port->pps_complete, msecs_to_jiffies(PD_PPS_CTRL_TIMEOUT))) ret = -ETIMEDOUT; else ret = port->pps_status; goto swap_unlock; port_unlock: mutex_unlock(&port->lock); swap_unlock: mutex_unlock(&port->swap_lock); return ret; } static int tcpm_pps_set_out_volt(struct tcpm_port *port, u16 req_out_volt) { unsigned int target_mw; int ret; mutex_lock(&port->swap_lock); mutex_lock(&port->lock); if (!port->pps_data.active) { ret = -EOPNOTSUPP; goto port_unlock; } if (port->state != SNK_READY) { ret = -EAGAIN; goto port_unlock; } target_mw = (port->current_limit * req_out_volt) / 1000; if (target_mw < port->operating_snk_mw) { ret = -EINVAL; goto port_unlock; } port->upcoming_state = SNK_NEGOTIATE_PPS_CAPABILITIES; ret = tcpm_ams_start(port, POWER_NEGOTIATION); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; goto port_unlock; } /* Round down output voltage to align with PPS valid steps */ req_out_volt = req_out_volt - (req_out_volt % RDO_PROG_VOLT_MV_STEP); reinit_completion(&port->pps_complete); port->pps_data.req_out_volt = req_out_volt; port->pps_status = 0; port->pps_pending = true; mutex_unlock(&port->lock); if (!wait_for_completion_timeout(&port->pps_complete, msecs_to_jiffies(PD_PPS_CTRL_TIMEOUT))) ret = -ETIMEDOUT; else ret = port->pps_status; goto swap_unlock; port_unlock: mutex_unlock(&port->lock); swap_unlock: mutex_unlock(&port->swap_lock); return ret; } static int tcpm_pps_activate(struct tcpm_port *port, bool activate) { int ret = 0; mutex_lock(&port->swap_lock); mutex_lock(&port->lock); if (!port->pps_data.supported) { ret = -EOPNOTSUPP; goto port_unlock; } /* Trying to deactivate PPS when already deactivated so just bail */ if (!port->pps_data.active && !activate) goto port_unlock; if (port->state != SNK_READY) { ret = -EAGAIN; goto port_unlock; } if (activate) port->upcoming_state = SNK_NEGOTIATE_PPS_CAPABILITIES; else port->upcoming_state = SNK_NEGOTIATE_CAPABILITIES; ret = tcpm_ams_start(port, POWER_NEGOTIATION); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; goto port_unlock; } reinit_completion(&port->pps_complete); port->pps_status = 0; port->pps_pending = true; /* Trigger PPS request or move back to standard PDO contract */ if (activate) { port->pps_data.req_out_volt = port->supply_voltage; port->pps_data.req_op_curr = port->current_limit; } mutex_unlock(&port->lock); if (!wait_for_completion_timeout(&port->pps_complete, msecs_to_jiffies(PD_PPS_CTRL_TIMEOUT))) ret = -ETIMEDOUT; else ret = port->pps_status; goto swap_unlock; port_unlock: mutex_unlock(&port->lock); swap_unlock: mutex_unlock(&port->swap_lock); return ret; } static void tcpm_init(struct tcpm_port *port) { enum typec_cc_status cc1, cc2; port->tcpc->init(port->tcpc); tcpm_reset_port(port); /* * XXX * Should possibly wait for VBUS to settle if it was enabled locally * since tcpm_reset_port() will disable VBUS. */ port->vbus_present = port->tcpc->get_vbus(port->tcpc); if (port->vbus_present) port->vbus_never_low = true; /* * 1. When vbus_present is true, voltage on VBUS is already at VSAFE5V. * So implicitly vbus_vsafe0v = false. * * 2. When vbus_present is false and TCPC does NOT support querying * vsafe0v status, then, it's best to assume vbus is at VSAFE0V i.e. * vbus_vsafe0v is true. * * 3. When vbus_present is false and TCPC does support querying vsafe0v, * then, query tcpc for vsafe0v status. */ if (port->vbus_present) port->vbus_vsafe0v = false; else if (!port->tcpc->is_vbus_vsafe0v) port->vbus_vsafe0v = true; else port->vbus_vsafe0v = port->tcpc->is_vbus_vsafe0v(port->tcpc); tcpm_set_state(port, tcpm_default_state(port), 0); if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0) _tcpm_cc_change(port, cc1, cc2); /* * Some adapters need a clean slate at startup, and won't recover * otherwise. So do not try to be fancy and force a clean disconnect. */ tcpm_set_state(port, PORT_RESET, 0); } static int tcpm_port_type_set(struct typec_port *p, enum typec_port_type type) { struct tcpm_port *port = typec_get_drvdata(p); mutex_lock(&port->lock); if (type == port->port_type) goto port_unlock; port->port_type = type; if (!port->connected) { tcpm_set_state(port, PORT_RESET, 0); } else if (type == TYPEC_PORT_SNK) { if (!(port->pwr_role == TYPEC_SINK && port->data_role == TYPEC_DEVICE)) tcpm_set_state(port, PORT_RESET, 0); } else if (type == TYPEC_PORT_SRC) { if (!(port->pwr_role == TYPEC_SOURCE && port->data_role == TYPEC_HOST)) tcpm_set_state(port, PORT_RESET, 0); } port_unlock: mutex_unlock(&port->lock); return 0; } static struct pd_data *tcpm_find_pd_data(struct tcpm_port *port, struct usb_power_delivery *pd) { int i; for (i = 0; port->pd_list[i]; i++) { if (port->pd_list[i]->pd == pd) return port->pd_list[i]; } return ERR_PTR(-ENODATA); } static struct usb_power_delivery **tcpm_pd_get(struct typec_port *p) { struct tcpm_port *port = typec_get_drvdata(p); return port->pds; } static int tcpm_pd_set(struct typec_port *p, struct usb_power_delivery *pd) { struct tcpm_port *port = typec_get_drvdata(p); struct pd_data *data; int i, ret = 0; mutex_lock(&port->lock); if (port->selected_pd == pd) goto unlock; data = tcpm_find_pd_data(port, pd); if (IS_ERR(data)) { ret = PTR_ERR(data); goto unlock; } if (data->sink_desc.pdo[0]) { for (i = 0; i < PDO_MAX_OBJECTS && data->sink_desc.pdo[i]; i++) port->snk_pdo[i] = data->sink_desc.pdo[i]; port->nr_snk_pdo = i; port->operating_snk_mw = data->operating_snk_mw; } if (data->source_desc.pdo[0]) { for (i = 0; i < PDO_MAX_OBJECTS && data->source_desc.pdo[i]; i++) port->src_pdo[i] = data->source_desc.pdo[i]; port->nr_src_pdo = i; } switch (port->state) { case SRC_UNATTACHED: case SRC_ATTACH_WAIT: case SRC_TRYWAIT: tcpm_set_cc(port, tcpm_rp_cc(port)); break; case SRC_SEND_CAPABILITIES: case SRC_SEND_CAPABILITIES_TIMEOUT: case SRC_NEGOTIATE_CAPABILITIES: case SRC_READY: case SRC_WAIT_NEW_CAPABILITIES: port->caps_count = 0; port->upcoming_state = SRC_SEND_CAPABILITIES; ret = tcpm_ams_start(port, POWER_NEGOTIATION); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; goto unlock; } break; case SNK_NEGOTIATE_CAPABILITIES: case SNK_NEGOTIATE_PPS_CAPABILITIES: case SNK_READY: case SNK_TRANSITION_SINK: case SNK_TRANSITION_SINK_VBUS: if (port->pps_data.active) port->upcoming_state = SNK_NEGOTIATE_PPS_CAPABILITIES; else if (port->pd_capable) port->upcoming_state = SNK_NEGOTIATE_CAPABILITIES; else break; port->update_sink_caps = true; ret = tcpm_ams_start(port, POWER_NEGOTIATION); if (ret == -EAGAIN) { port->upcoming_state = INVALID_STATE; goto unlock; } break; default: break; } port->port_source_caps = data->source_cap; port->port_sink_caps = data->sink_cap; typec_port_set_usb_power_delivery(p, NULL); port->selected_pd = pd; typec_port_set_usb_power_delivery(p, port->selected_pd); unlock: mutex_unlock(&port->lock); return ret; } static const struct typec_operations tcpm_ops = { .try_role = tcpm_try_role, .dr_set = tcpm_dr_set, .pr_set = tcpm_pr_set, .vconn_set = tcpm_vconn_set, .port_type_set = tcpm_port_type_set, .pd_get = tcpm_pd_get, .pd_set = tcpm_pd_set }; void tcpm_tcpc_reset(struct tcpm_port *port) { mutex_lock(&port->lock); /* XXX: Maintain PD connection if possible? */ tcpm_init(port); mutex_unlock(&port->lock); } EXPORT_SYMBOL_GPL(tcpm_tcpc_reset); static void tcpm_port_unregister_pd(struct tcpm_port *port) { int i; port->port_sink_caps = NULL; port->port_source_caps = NULL; for (i = 0; i < port->pd_count; i++) { usb_power_delivery_unregister_capabilities(port->pd_list[i]->sink_cap); usb_power_delivery_unregister_capabilities(port->pd_list[i]->source_cap); devm_kfree(port->dev, port->pd_list[i]); port->pd_list[i] = NULL; usb_power_delivery_unregister(port->pds[i]); port->pds[i] = NULL; } } static int tcpm_port_register_pd(struct tcpm_port *port) { struct usb_power_delivery_desc desc = { port->typec_caps.pd_revision }; struct usb_power_delivery_capabilities *cap; int ret, i; if (!port->nr_src_pdo && !port->nr_snk_pdo) return 0; for (i = 0; i < port->pd_count; i++) { port->pds[i] = usb_power_delivery_register(port->dev, &desc); if (IS_ERR(port->pds[i])) { ret = PTR_ERR(port->pds[i]); goto err_unregister; } port->pd_list[i]->pd = port->pds[i]; if (port->pd_list[i]->source_desc.pdo[0]) { cap = usb_power_delivery_register_capabilities(port->pds[i], &port->pd_list[i]->source_desc); if (IS_ERR(cap)) { ret = PTR_ERR(cap); goto err_unregister; } port->pd_list[i]->source_cap = cap; } if (port->pd_list[i]->sink_desc.pdo[0]) { cap = usb_power_delivery_register_capabilities(port->pds[i], &port->pd_list[i]->sink_desc); if (IS_ERR(cap)) { ret = PTR_ERR(cap); goto err_unregister; } port->pd_list[i]->sink_cap = cap; } } port->port_source_caps = port->pd_list[0]->source_cap; port->port_sink_caps = port->pd_list[0]->sink_cap; port->selected_pd = port->pds[0]; return 0; err_unregister: tcpm_port_unregister_pd(port); return ret; } static int tcpm_fw_get_caps(struct tcpm_port *port, struct fwnode_handle *fwnode) { struct fwnode_handle *capabilities, *child, *caps = NULL; unsigned int nr_src_pdo, nr_snk_pdo; const char *opmode_str; u32 *src_pdo, *snk_pdo; u32 uw, frs_current; int ret = 0, i; int mode; if (!fwnode) return -EINVAL; /* * This fwnode has a "compatible" property, but is never populated as a * struct device. Instead we simply parse it to read the properties. * This it breaks fw_devlink=on. To maintain backward compatibility * with existing DT files, we work around this by deleting any * fwnode_links to/from this fwnode. */ fw_devlink_purge_absent_suppliers(fwnode); ret = typec_get_fw_cap(&port->typec_caps, fwnode); if (ret < 0) return ret; mode = 0; if (fwnode_property_read_bool(fwnode, "accessory-mode-audio")) port->typec_caps.accessory[mode++] = TYPEC_ACCESSORY_AUDIO; if (fwnode_property_read_bool(fwnode, "accessory-mode-debug")) port->typec_caps.accessory[mode++] = TYPEC_ACCESSORY_DEBUG; port->port_type = port->typec_caps.type; port->pd_supported = !fwnode_property_read_bool(fwnode, "pd-disable"); port->slow_charger_loop = fwnode_property_read_bool(fwnode, "slow-charger-loop"); port->self_powered = fwnode_property_read_bool(fwnode, "self-powered"); if (!port->pd_supported) { ret = fwnode_property_read_string(fwnode, "typec-power-opmode", &opmode_str); if (ret) return ret; ret = typec_find_pwr_opmode(opmode_str); if (ret < 0) return ret; port->src_rp = tcpm_pwr_opmode_to_rp(ret); return 0; } /* The following code are applicable to pd-capable ports, i.e. pd_supported is true. */ /* FRS can only be supported by DRP ports */ if (port->port_type == TYPEC_PORT_DRP) { ret = fwnode_property_read_u32(fwnode, "new-source-frs-typec-current", &frs_current); if (!ret && frs_current <= FRS_5V_3A) port->new_source_frs_current = frs_current; if (ret) ret = 0; } /* For the backward compatibility, "capabilities" node is optional. */ capabilities = fwnode_get_named_child_node(fwnode, "capabilities"); if (!capabilities) { port->pd_count = 1; } else { fwnode_for_each_child_node(capabilities, child) port->pd_count++; if (!port->pd_count) { ret = -ENODATA; goto put_capabilities; } } port->pds = devm_kcalloc(port->dev, port->pd_count, sizeof(struct usb_power_delivery *), GFP_KERNEL); if (!port->pds) { ret = -ENOMEM; goto put_capabilities; } port->pd_list = devm_kcalloc(port->dev, port->pd_count, sizeof(struct pd_data *), GFP_KERNEL); if (!port->pd_list) { ret = -ENOMEM; goto put_capabilities; } for (i = 0; i < port->pd_count; i++) { port->pd_list[i] = devm_kzalloc(port->dev, sizeof(struct pd_data), GFP_KERNEL); if (!port->pd_list[i]) { ret = -ENOMEM; goto put_capabilities; } src_pdo = port->pd_list[i]->source_desc.pdo; port->pd_list[i]->source_desc.role = TYPEC_SOURCE; snk_pdo = port->pd_list[i]->sink_desc.pdo; port->pd_list[i]->sink_desc.role = TYPEC_SINK; /* If "capabilities" is NULL, fall back to single pd cap population. */ if (!capabilities) caps = fwnode; else caps = fwnode_get_next_child_node(capabilities, caps); if (port->port_type != TYPEC_PORT_SNK) { ret = fwnode_property_count_u32(caps, "source-pdos"); if (ret == 0) { ret = -EINVAL; goto put_caps; } if (ret < 0) goto put_caps; nr_src_pdo = min(ret, PDO_MAX_OBJECTS); ret = fwnode_property_read_u32_array(caps, "source-pdos", src_pdo, nr_src_pdo); if (ret) goto put_caps; ret = tcpm_validate_caps(port, src_pdo, nr_src_pdo); if (ret) goto put_caps; if (i == 0) { port->nr_src_pdo = nr_src_pdo; memcpy_and_pad(port->src_pdo, sizeof(u32) * PDO_MAX_OBJECTS, port->pd_list[0]->source_desc.pdo, sizeof(u32) * nr_src_pdo, 0); } } if (port->port_type != TYPEC_PORT_SRC) { ret = fwnode_property_count_u32(caps, "sink-pdos"); if (ret == 0) { ret = -EINVAL; goto put_caps; } if (ret < 0) goto put_caps; nr_snk_pdo = min(ret, PDO_MAX_OBJECTS); ret = fwnode_property_read_u32_array(caps, "sink-pdos", snk_pdo, nr_snk_pdo); if (ret) goto put_caps; ret = tcpm_validate_caps(port, snk_pdo, nr_snk_pdo); if (ret) goto put_caps; if (fwnode_property_read_u32(caps, "op-sink-microwatt", &uw) < 0) { ret = -EINVAL; goto put_caps; } port->pd_list[i]->operating_snk_mw = uw / 1000; if (i == 0) { port->nr_snk_pdo = nr_snk_pdo; memcpy_and_pad(port->snk_pdo, sizeof(u32) * PDO_MAX_OBJECTS, port->pd_list[0]->sink_desc.pdo, sizeof(u32) * nr_snk_pdo, 0); port->operating_snk_mw = port->pd_list[0]->operating_snk_mw; } } } put_caps: if (caps != fwnode) fwnode_handle_put(caps); put_capabilities: fwnode_handle_put(capabilities); return ret; } static int tcpm_fw_get_snk_vdos(struct tcpm_port *port, struct fwnode_handle *fwnode) { int ret; /* sink-vdos is optional */ ret = fwnode_property_count_u32(fwnode, "sink-vdos"); if (ret < 0) return 0; port->nr_snk_vdo = min(ret, VDO_MAX_OBJECTS); if (port->nr_snk_vdo) { ret = fwnode_property_read_u32_array(fwnode, "sink-vdos", port->snk_vdo, port->nr_snk_vdo); if (ret < 0) return ret; } /* If sink-vdos is found, sink-vdos-v1 is expected for backward compatibility. */ if (port->nr_snk_vdo) { ret = fwnode_property_count_u32(fwnode, "sink-vdos-v1"); if (ret < 0) return ret; else if (ret == 0) return -ENODATA; port->nr_snk_vdo_v1 = min(ret, VDO_MAX_OBJECTS); ret = fwnode_property_read_u32_array(fwnode, "sink-vdos-v1", port->snk_vdo_v1, port->nr_snk_vdo_v1); if (ret < 0) return ret; } return 0; } /* Power Supply access to expose source power information */ enum tcpm_psy_online_states { TCPM_PSY_OFFLINE = 0, TCPM_PSY_FIXED_ONLINE, TCPM_PSY_PROG_ONLINE, }; static enum power_supply_property tcpm_psy_props[] = { POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_MIN, POWER_SUPPLY_PROP_VOLTAGE_MAX, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_CURRENT_NOW, }; static int tcpm_psy_get_online(struct tcpm_port *port, union power_supply_propval *val) { if (port->vbus_charge) { if (port->pps_data.active) val->intval = TCPM_PSY_PROG_ONLINE; else val->intval = TCPM_PSY_FIXED_ONLINE; } else { val->intval = TCPM_PSY_OFFLINE; } return 0; } static int tcpm_psy_get_voltage_min(struct tcpm_port *port, union power_supply_propval *val) { if (port->pps_data.active) val->intval = port->pps_data.min_volt * 1000; else val->intval = port->supply_voltage * 1000; return 0; } static int tcpm_psy_get_voltage_max(struct tcpm_port *port, union power_supply_propval *val) { if (port->pps_data.active) val->intval = port->pps_data.max_volt * 1000; else val->intval = port->supply_voltage * 1000; return 0; } static int tcpm_psy_get_voltage_now(struct tcpm_port *port, union power_supply_propval *val) { val->intval = port->supply_voltage * 1000; return 0; } static int tcpm_psy_get_current_max(struct tcpm_port *port, union power_supply_propval *val) { if (port->pps_data.active) val->intval = port->pps_data.max_curr * 1000; else val->intval = port->current_limit * 1000; return 0; } static int tcpm_psy_get_current_now(struct tcpm_port *port, union power_supply_propval *val) { val->intval = port->current_limit * 1000; return 0; } static int tcpm_psy_get_input_power_limit(struct tcpm_port *port, union power_supply_propval *val) { unsigned int src_mv, src_ma, max_src_uw = 0; unsigned int i, tmp; for (i = 0; i < port->nr_source_caps; i++) { u32 pdo = port->source_caps[i]; if (pdo_type(pdo) == PDO_TYPE_FIXED) { src_mv = pdo_fixed_voltage(pdo); src_ma = pdo_max_current(pdo); tmp = src_mv * src_ma; max_src_uw = tmp > max_src_uw ? tmp : max_src_uw; } } val->intval = max_src_uw; return 0; } static int tcpm_psy_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct tcpm_port *port = power_supply_get_drvdata(psy); int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_USB_TYPE: val->intval = port->usb_type; break; case POWER_SUPPLY_PROP_ONLINE: ret = tcpm_psy_get_online(port, val); break; case POWER_SUPPLY_PROP_VOLTAGE_MIN: ret = tcpm_psy_get_voltage_min(port, val); break; case POWER_SUPPLY_PROP_VOLTAGE_MAX: ret = tcpm_psy_get_voltage_max(port, val); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = tcpm_psy_get_voltage_now(port, val); break; case POWER_SUPPLY_PROP_CURRENT_MAX: ret = tcpm_psy_get_current_max(port, val); break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = tcpm_psy_get_current_now(port, val); break; case POWER_SUPPLY_PROP_INPUT_POWER_LIMIT: tcpm_psy_get_input_power_limit(port, val); break; default: ret = -EINVAL; break; } return ret; } static int tcpm_psy_set_online(struct tcpm_port *port, const union power_supply_propval *val) { int ret; switch (val->intval) { case TCPM_PSY_FIXED_ONLINE: ret = tcpm_pps_activate(port, false); break; case TCPM_PSY_PROG_ONLINE: ret = tcpm_pps_activate(port, true); break; default: ret = -EINVAL; break; } return ret; } static int tcpm_psy_set_prop(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct tcpm_port *port = power_supply_get_drvdata(psy); int ret; /* * All the properties below are related to USB PD. The check needs to be * property specific when a non-pd related property is added. */ if (!port->pd_supported) return -EOPNOTSUPP; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = tcpm_psy_set_online(port, val); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = tcpm_pps_set_out_volt(port, val->intval / 1000); break; case POWER_SUPPLY_PROP_CURRENT_NOW: if (val->intval > port->pps_data.max_curr * 1000) ret = -EINVAL; else ret = tcpm_pps_set_op_curr(port, val->intval / 1000); break; default: ret = -EINVAL; break; } power_supply_changed(port->psy); return ret; } static int tcpm_psy_prop_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_ONLINE: case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_CURRENT_NOW: return 1; default: return 0; } } static const char *tcpm_psy_name_prefix = "tcpm-source-psy-"; static int devm_tcpm_psy_register(struct tcpm_port *port) { struct power_supply_config psy_cfg = {}; const char *port_dev_name = dev_name(port->dev); size_t psy_name_len = strlen(tcpm_psy_name_prefix) + strlen(port_dev_name) + 1; char *psy_name; psy_cfg.drv_data = port; psy_cfg.fwnode = dev_fwnode(port->dev); psy_name = devm_kzalloc(port->dev, psy_name_len, GFP_KERNEL); if (!psy_name) return -ENOMEM; snprintf(psy_name, psy_name_len, "%s%s", tcpm_psy_name_prefix, port_dev_name); port->psy_desc.name = psy_name; port->psy_desc.type = POWER_SUPPLY_TYPE_USB; port->psy_desc.usb_types = BIT(POWER_SUPPLY_USB_TYPE_C) | BIT(POWER_SUPPLY_USB_TYPE_PD) | BIT(POWER_SUPPLY_USB_TYPE_PD_PPS); port->psy_desc.properties = tcpm_psy_props; port->psy_desc.num_properties = ARRAY_SIZE(tcpm_psy_props); port->psy_desc.get_property = tcpm_psy_get_prop; port->psy_desc.set_property = tcpm_psy_set_prop; port->psy_desc.property_is_writeable = tcpm_psy_prop_writeable; port->usb_type = POWER_SUPPLY_USB_TYPE_C; port->psy = devm_power_supply_register(port->dev, &port->psy_desc, &psy_cfg); return PTR_ERR_OR_ZERO(port->psy); } static enum hrtimer_restart state_machine_timer_handler(struct hrtimer *timer) { struct tcpm_port *port = container_of(timer, struct tcpm_port, state_machine_timer); if (port->registered) kthread_queue_work(port->wq, &port->state_machine); return HRTIMER_NORESTART; } static enum hrtimer_restart vdm_state_machine_timer_handler(struct hrtimer *timer) { struct tcpm_port *port = container_of(timer, struct tcpm_port, vdm_state_machine_timer); if (port->registered) kthread_queue_work(port->wq, &port->vdm_state_machine); return HRTIMER_NORESTART; } static enum hrtimer_restart enable_frs_timer_handler(struct hrtimer *timer) { struct tcpm_port *port = container_of(timer, struct tcpm_port, enable_frs_timer); if (port->registered) kthread_queue_work(port->wq, &port->enable_frs); return HRTIMER_NORESTART; } static enum hrtimer_restart send_discover_timer_handler(struct hrtimer *timer) { struct tcpm_port *port = container_of(timer, struct tcpm_port, send_discover_timer); if (port->registered) kthread_queue_work(port->wq, &port->send_discover_work); return HRTIMER_NORESTART; } struct tcpm_port *tcpm_register_port(struct device *dev, struct tcpc_dev *tcpc) { struct tcpm_port *port; int err; if (!dev || !tcpc || !tcpc->get_vbus || !tcpc->set_cc || !tcpc->get_cc || !tcpc->set_polarity || !tcpc->set_vconn || !tcpc->set_vbus || !tcpc->set_pd_rx || !tcpc->set_roles || !tcpc->pd_transmit) return ERR_PTR(-EINVAL); port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL); if (!port) return ERR_PTR(-ENOMEM); port->dev = dev; port->tcpc = tcpc; mutex_init(&port->lock); mutex_init(&port->swap_lock); port->wq = kthread_create_worker(0, dev_name(dev)); if (IS_ERR(port->wq)) return ERR_CAST(port->wq); sched_set_fifo(port->wq->task); kthread_init_work(&port->state_machine, tcpm_state_machine_work); kthread_init_work(&port->vdm_state_machine, vdm_state_machine_work); kthread_init_work(&port->event_work, tcpm_pd_event_handler); kthread_init_work(&port->enable_frs, tcpm_enable_frs_work); kthread_init_work(&port->send_discover_work, tcpm_send_discover_work); hrtimer_init(&port->state_machine_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); port->state_machine_timer.function = state_machine_timer_handler; hrtimer_init(&port->vdm_state_machine_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); port->vdm_state_machine_timer.function = vdm_state_machine_timer_handler; hrtimer_init(&port->enable_frs_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); port->enable_frs_timer.function = enable_frs_timer_handler; hrtimer_init(&port->send_discover_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); port->send_discover_timer.function = send_discover_timer_handler; spin_lock_init(&port->pd_event_lock); init_completion(&port->tx_complete); init_completion(&port->swap_complete); init_completion(&port->pps_complete); tcpm_debugfs_init(port); err = tcpm_fw_get_caps(port, tcpc->fwnode); if (err < 0) goto out_destroy_wq; err = tcpm_fw_get_snk_vdos(port, tcpc->fwnode); if (err < 0) goto out_destroy_wq; port->try_role = port->typec_caps.prefer_role; port->typec_caps.revision = 0x0120; /* Type-C spec release 1.2 */ port->typec_caps.pd_revision = 0x0300; /* USB-PD spec release 3.0 */ port->typec_caps.svdm_version = SVDM_VER_2_0; port->typec_caps.driver_data = port; port->typec_caps.ops = &tcpm_ops; port->typec_caps.orientation_aware = 1; port->partner_desc.identity = &port->partner_ident; port->role_sw = usb_role_switch_get(port->dev); if (!port->role_sw) port->role_sw = fwnode_usb_role_switch_get(tcpc->fwnode); if (IS_ERR(port->role_sw)) { err = PTR_ERR(port->role_sw); goto out_destroy_wq; } err = devm_tcpm_psy_register(port); if (err) goto out_role_sw_put; power_supply_changed(port->psy); err = tcpm_port_register_pd(port); if (err) goto out_role_sw_put; if (port->pds) port->typec_caps.pd = port->pds[0]; port->typec_port = typec_register_port(port->dev, &port->typec_caps); if (IS_ERR(port->typec_port)) { err = PTR_ERR(port->typec_port); goto out_unregister_pd; } typec_port_register_altmodes(port->typec_port, &tcpm_altmode_ops, port, port->port_altmode, ALTMODE_DISCOVERY_MAX); typec_port_register_cable_ops(port->port_altmode, ARRAY_SIZE(port->port_altmode), &tcpm_cable_ops); port->registered = true; mutex_lock(&port->lock); tcpm_init(port); mutex_unlock(&port->lock); tcpm_log(port, "%s: registered", dev_name(dev)); return port; out_unregister_pd: tcpm_port_unregister_pd(port); out_role_sw_put: usb_role_switch_put(port->role_sw); out_destroy_wq: tcpm_debugfs_exit(port); kthread_destroy_worker(port->wq); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(tcpm_register_port); void tcpm_unregister_port(struct tcpm_port *port) { int i; port->registered = false; kthread_destroy_worker(port->wq); hrtimer_cancel(&port->send_discover_timer); hrtimer_cancel(&port->enable_frs_timer); hrtimer_cancel(&port->vdm_state_machine_timer); hrtimer_cancel(&port->state_machine_timer); tcpm_reset_port(port); tcpm_port_unregister_pd(port); for (i = 0; i < ARRAY_SIZE(port->port_altmode); i++) typec_unregister_altmode(port->port_altmode[i]); typec_unregister_port(port->typec_port); usb_role_switch_put(port->role_sw); tcpm_debugfs_exit(port); } EXPORT_SYMBOL_GPL(tcpm_unregister_port); MODULE_AUTHOR("Guenter Roeck "); MODULE_DESCRIPTION("USB Type-C Port Manager"); MODULE_LICENSE("GPL");