// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2015-2017 Google, Inc * * USB Type-C Port Controller Interface. */ #include #include #include #include #include #include #include #include #include #include #include #include #define PD_RETRY_COUNT_DEFAULT 3 #define PD_RETRY_COUNT_3_0_OR_HIGHER 2 #define AUTO_DISCHARGE_DEFAULT_THRESHOLD_MV 3500 #define VSINKPD_MIN_IR_DROP_MV 750 #define VSRC_NEW_MIN_PERCENT 95 #define VSRC_VALID_MIN_MV 500 #define VPPS_NEW_MIN_PERCENT 95 #define VPPS_VALID_MIN_MV 100 #define VSINKDISCONNECT_PD_MIN_PERCENT 90 struct tcpci { struct device *dev; struct tcpm_port *port; struct regmap *regmap; unsigned int alert_mask; bool controls_vbus; struct tcpc_dev tcpc; struct tcpci_data *data; }; struct tcpci_chip { struct tcpci *tcpci; struct tcpci_data data; }; struct tcpm_port *tcpci_get_tcpm_port(struct tcpci *tcpci) { return tcpci->port; } EXPORT_SYMBOL_GPL(tcpci_get_tcpm_port); static inline struct tcpci *tcpc_to_tcpci(struct tcpc_dev *tcpc) { return container_of(tcpc, struct tcpci, tcpc); } static int tcpci_read16(struct tcpci *tcpci, unsigned int reg, u16 *val) { return regmap_raw_read(tcpci->regmap, reg, val, sizeof(u16)); } static int tcpci_write16(struct tcpci *tcpci, unsigned int reg, u16 val) { return regmap_raw_write(tcpci->regmap, reg, &val, sizeof(u16)); } static int tcpci_check_std_output_cap(struct regmap *regmap, u8 mask) { unsigned int reg; int ret; ret = regmap_read(regmap, TCPC_STD_OUTPUT_CAP, ®); if (ret < 0) return ret; return (reg & mask) == mask; } static int tcpci_set_cc(struct tcpc_dev *tcpc, enum typec_cc_status cc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); bool vconn_pres; enum typec_cc_polarity polarity = TYPEC_POLARITY_CC1; unsigned int reg; int ret; ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®); if (ret < 0) return ret; vconn_pres = !!(reg & TCPC_POWER_STATUS_VCONN_PRES); if (vconn_pres) { ret = regmap_read(tcpci->regmap, TCPC_TCPC_CTRL, ®); if (ret < 0) return ret; if (reg & TCPC_TCPC_CTRL_ORIENTATION) polarity = TYPEC_POLARITY_CC2; } switch (cc) { case TYPEC_CC_RA: reg = (FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RA) | FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RA)); break; case TYPEC_CC_RD: reg = (FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RD) | FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RD)); break; case TYPEC_CC_RP_DEF: reg = (FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RP) | FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RP) | FIELD_PREP(TCPC_ROLE_CTRL_RP_VAL, TCPC_ROLE_CTRL_RP_VAL_DEF)); break; case TYPEC_CC_RP_1_5: reg = (FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RP) | FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RP) | FIELD_PREP(TCPC_ROLE_CTRL_RP_VAL, TCPC_ROLE_CTRL_RP_VAL_1_5)); break; case TYPEC_CC_RP_3_0: reg = (FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RP) | FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RP) | FIELD_PREP(TCPC_ROLE_CTRL_RP_VAL, TCPC_ROLE_CTRL_RP_VAL_3_0)); break; case TYPEC_CC_OPEN: default: reg = (FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_OPEN) | FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_OPEN)); break; } if (vconn_pres) { if (polarity == TYPEC_POLARITY_CC2) { reg &= ~TCPC_ROLE_CTRL_CC1; reg |= FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_OPEN); } else { reg &= ~TCPC_ROLE_CTRL_CC2; reg |= FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_OPEN); } } ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg); if (ret < 0) return ret; return 0; } static int tcpci_apply_rc(struct tcpc_dev *tcpc, enum typec_cc_status cc, enum typec_cc_polarity polarity) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; ret = regmap_read(tcpci->regmap, TCPC_ROLE_CTRL, ®); if (ret < 0) return ret; /* * APPLY_RC state is when ROLE_CONTROL.CC1 != ROLE_CONTROL.CC2 and vbus autodischarge on * disconnect is disabled. Bail out when ROLE_CONTROL.CC1 != ROLE_CONTROL.CC2. */ if (FIELD_GET(TCPC_ROLE_CTRL_CC2, reg) != FIELD_GET(TCPC_ROLE_CTRL_CC1, reg)) return 0; return regmap_update_bits(tcpci->regmap, TCPC_ROLE_CTRL, polarity == TYPEC_POLARITY_CC1 ? TCPC_ROLE_CTRL_CC2 : TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_OPEN); } static int tcpci_start_toggling(struct tcpc_dev *tcpc, enum typec_port_type port_type, enum typec_cc_status cc) { int ret; struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg = TCPC_ROLE_CTRL_DRP; if (port_type != TYPEC_PORT_DRP) return -EOPNOTSUPP; /* Handle vendor drp toggling */ if (tcpci->data->start_drp_toggling) { ret = tcpci->data->start_drp_toggling(tcpci, tcpci->data, cc); if (ret < 0) return ret; } switch (cc) { default: case TYPEC_CC_RP_DEF: reg |= FIELD_PREP(TCPC_ROLE_CTRL_RP_VAL, TCPC_ROLE_CTRL_RP_VAL_DEF); break; case TYPEC_CC_RP_1_5: reg |= FIELD_PREP(TCPC_ROLE_CTRL_RP_VAL, TCPC_ROLE_CTRL_RP_VAL_1_5); break; case TYPEC_CC_RP_3_0: reg |= FIELD_PREP(TCPC_ROLE_CTRL_RP_VAL, TCPC_ROLE_CTRL_RP_VAL_3_0); break; } if (cc == TYPEC_CC_RD) reg |= (FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RD) | FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RD)); else reg |= (FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RP) | FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RP)); ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg); if (ret < 0) return ret; return regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_LOOK4CONNECTION); } static int tcpci_get_cc(struct tcpc_dev *tcpc, enum typec_cc_status *cc1, enum typec_cc_status *cc2) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg, role_control; int ret; ret = regmap_read(tcpci->regmap, TCPC_ROLE_CTRL, &role_control); if (ret < 0) return ret; ret = regmap_read(tcpci->regmap, TCPC_CC_STATUS, ®); if (ret < 0) return ret; *cc1 = tcpci_to_typec_cc(FIELD_GET(TCPC_CC_STATUS_CC1, reg), reg & TCPC_CC_STATUS_TERM || tcpc_presenting_rd(role_control, CC1)); *cc2 = tcpci_to_typec_cc(FIELD_GET(TCPC_CC_STATUS_CC2, reg), reg & TCPC_CC_STATUS_TERM || tcpc_presenting_rd(role_control, CC2)); return 0; } static int tcpci_set_polarity(struct tcpc_dev *tcpc, enum typec_cc_polarity polarity) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; enum typec_cc_status cc1, cc2; /* Obtain Rp setting from role control */ ret = regmap_read(tcpci->regmap, TCPC_ROLE_CTRL, ®); if (ret < 0) return ret; ret = tcpci_get_cc(tcpc, &cc1, &cc2); if (ret < 0) return ret; /* * When port has drp toggling enabled, ROLE_CONTROL would only have the initial * terminations for the toggling and does not indicate the final cc * terminations when ConnectionResult is 0 i.e. drp toggling stops and * the connection is resolved. Infer port role from TCPC_CC_STATUS based on the * terminations seen. The port role is then used to set the cc terminations. */ if (reg & TCPC_ROLE_CTRL_DRP) { /* Disable DRP for the OPEN setting to take effect */ reg = reg & ~TCPC_ROLE_CTRL_DRP; if (polarity == TYPEC_POLARITY_CC2) { reg &= ~TCPC_ROLE_CTRL_CC2; /* Local port is source */ if (cc2 == TYPEC_CC_RD) /* Role control would have the Rp setting when DRP was enabled */ reg |= FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RP); else reg |= FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_RD); } else { reg &= ~TCPC_ROLE_CTRL_CC1; /* Local port is source */ if (cc1 == TYPEC_CC_RD) /* Role control would have the Rp setting when DRP was enabled */ reg |= FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RP); else reg |= FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_RD); } } if (polarity == TYPEC_POLARITY_CC2) reg |= FIELD_PREP(TCPC_ROLE_CTRL_CC1, TCPC_ROLE_CTRL_CC_OPEN); else reg |= FIELD_PREP(TCPC_ROLE_CTRL_CC2, TCPC_ROLE_CTRL_CC_OPEN); ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg); if (ret < 0) return ret; return regmap_write(tcpci->regmap, TCPC_TCPC_CTRL, (polarity == TYPEC_POLARITY_CC2) ? TCPC_TCPC_CTRL_ORIENTATION : 0); } static int tcpci_set_orientation(struct tcpc_dev *tcpc, enum typec_orientation orientation) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; switch (orientation) { case TYPEC_ORIENTATION_NONE: /* We can't put a single output into high impedance */ fallthrough; case TYPEC_ORIENTATION_NORMAL: reg = TCPC_CONFIG_STD_OUTPUT_ORIENTATION_NORMAL; break; case TYPEC_ORIENTATION_REVERSE: reg = TCPC_CONFIG_STD_OUTPUT_ORIENTATION_FLIPPED; break; } return regmap_update_bits(tcpci->regmap, TCPC_CONFIG_STD_OUTPUT, TCPC_CONFIG_STD_OUTPUT_ORIENTATION_MASK, reg); } static void tcpci_set_partner_usb_comm_capable(struct tcpc_dev *tcpc, bool capable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); if (tcpci->data->set_partner_usb_comm_capable) tcpci->data->set_partner_usb_comm_capable(tcpci, tcpci->data, capable); } static int tcpci_set_vconn(struct tcpc_dev *tcpc, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); int ret; /* Handle vendor set vconn */ if (tcpci->data->set_vconn) { ret = tcpci->data->set_vconn(tcpci, tcpci->data, enable); if (ret < 0) return ret; } return regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL, TCPC_POWER_CTRL_VCONN_ENABLE, enable ? TCPC_POWER_CTRL_VCONN_ENABLE : 0); } static int tcpci_enable_auto_vbus_discharge(struct tcpc_dev *dev, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(dev); int ret; ret = regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL, TCPC_POWER_CTRL_AUTO_DISCHARGE, enable ? TCPC_POWER_CTRL_AUTO_DISCHARGE : 0); return ret; } static int tcpci_set_auto_vbus_discharge_threshold(struct tcpc_dev *dev, enum typec_pwr_opmode mode, bool pps_active, u32 requested_vbus_voltage_mv) { struct tcpci *tcpci = tcpc_to_tcpci(dev); unsigned int pwr_ctrl, threshold = 0; int ret; /* * Indicates that vbus is going to go away due PR_SWAP, hard reset etc. * Do not discharge vbus here. */ if (requested_vbus_voltage_mv == 0) goto write_thresh; ret = regmap_read(tcpci->regmap, TCPC_POWER_CTRL, &pwr_ctrl); if (ret < 0) return ret; if (pwr_ctrl & TCPC_FAST_ROLE_SWAP_EN) { /* To prevent disconnect when the source is fast role swap is capable. */ threshold = AUTO_DISCHARGE_DEFAULT_THRESHOLD_MV; } else if (mode == TYPEC_PWR_MODE_PD) { if (pps_active) threshold = ((VPPS_NEW_MIN_PERCENT * requested_vbus_voltage_mv / 100) - VSINKPD_MIN_IR_DROP_MV - VPPS_VALID_MIN_MV) * VSINKDISCONNECT_PD_MIN_PERCENT / 100; else threshold = ((VSRC_NEW_MIN_PERCENT * requested_vbus_voltage_mv / 100) - VSINKPD_MIN_IR_DROP_MV - VSRC_VALID_MIN_MV) * VSINKDISCONNECT_PD_MIN_PERCENT / 100; } else { /* 3.5V for non-pd sink */ threshold = AUTO_DISCHARGE_DEFAULT_THRESHOLD_MV; } threshold = threshold / TCPC_VBUS_SINK_DISCONNECT_THRESH_LSB_MV; if (threshold > TCPC_VBUS_SINK_DISCONNECT_THRESH_MAX) return -EINVAL; write_thresh: return tcpci_write16(tcpci, TCPC_VBUS_SINK_DISCONNECT_THRESH, threshold); } static int tcpci_enable_frs(struct tcpc_dev *dev, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(dev); int ret; /* To prevent disconnect during FRS, set disconnect threshold to 3.5V */ ret = tcpci_write16(tcpci, TCPC_VBUS_SINK_DISCONNECT_THRESH, enable ? 0 : 0x8c); if (ret < 0) return ret; ret = regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL, TCPC_FAST_ROLE_SWAP_EN, enable ? TCPC_FAST_ROLE_SWAP_EN : 0); return ret; } static void tcpci_frs_sourcing_vbus(struct tcpc_dev *dev) { struct tcpci *tcpci = tcpc_to_tcpci(dev); if (tcpci->data->frs_sourcing_vbus) tcpci->data->frs_sourcing_vbus(tcpci, tcpci->data); } static void tcpci_check_contaminant(struct tcpc_dev *dev) { struct tcpci *tcpci = tcpc_to_tcpci(dev); if (tcpci->data->check_contaminant) tcpci->data->check_contaminant(tcpci, tcpci->data); } static int tcpci_set_bist_data(struct tcpc_dev *tcpc, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); return regmap_update_bits(tcpci->regmap, TCPC_TCPC_CTRL, TCPC_TCPC_CTRL_BIST_TM, enable ? TCPC_TCPC_CTRL_BIST_TM : 0); } static int tcpci_set_roles(struct tcpc_dev *tcpc, bool attached, enum typec_role role, enum typec_data_role data) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; reg = FIELD_PREP(TCPC_MSG_HDR_INFO_REV, PD_REV20); if (role == TYPEC_SOURCE) reg |= TCPC_MSG_HDR_INFO_PWR_ROLE; if (data == TYPEC_HOST) reg |= TCPC_MSG_HDR_INFO_DATA_ROLE; ret = regmap_write(tcpci->regmap, TCPC_MSG_HDR_INFO, reg); if (ret < 0) return ret; return 0; } static int tcpci_set_pd_rx(struct tcpc_dev *tcpc, bool enable) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg = 0; int ret; if (enable) { reg = TCPC_RX_DETECT_SOP | TCPC_RX_DETECT_HARD_RESET; if (tcpci->data->cable_comm_capable) reg |= TCPC_RX_DETECT_SOP1; } ret = regmap_write(tcpci->regmap, TCPC_RX_DETECT, reg); if (ret < 0) return ret; return 0; } static int tcpci_get_vbus(struct tcpc_dev *tcpc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®); if (ret < 0) return ret; return !!(reg & TCPC_POWER_STATUS_VBUS_PRES); } static bool tcpci_is_vbus_vsafe0v(struct tcpc_dev *tcpc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned int reg; int ret; ret = regmap_read(tcpci->regmap, TCPC_EXTENDED_STATUS, ®); if (ret < 0) return false; return !!(reg & TCPC_EXTENDED_STATUS_VSAFE0V); } static int tcpci_set_vbus(struct tcpc_dev *tcpc, bool source, bool sink) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); int ret; if (tcpci->data->set_vbus) { ret = tcpci->data->set_vbus(tcpci, tcpci->data, source, sink); /* Bypass when ret > 0 */ if (ret != 0) return ret < 0 ? ret : 0; } /* Disable both source and sink first before enabling anything */ if (!source) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_DISABLE_SRC_VBUS); if (ret < 0) return ret; } if (!sink) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_DISABLE_SINK_VBUS); if (ret < 0) return ret; } if (source) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_SRC_VBUS_DEFAULT); if (ret < 0) return ret; } if (sink) { ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_SINK_VBUS); if (ret < 0) return ret; } return 0; } static int tcpci_pd_transmit(struct tcpc_dev *tcpc, enum tcpm_transmit_type type, const struct pd_message *msg, unsigned int negotiated_rev) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); u16 header = msg ? le16_to_cpu(msg->header) : 0; unsigned int reg, cnt; int ret; cnt = msg ? pd_header_cnt(header) * 4 : 0; /** * TCPCI spec forbids direct access of TCPC_TX_DATA. * But, since some of the chipsets offer this capability, * it's fair to support both. */ if (tcpci->data->TX_BUF_BYTE_x_hidden) { u8 buf[TCPC_TRANSMIT_BUFFER_MAX_LEN] = {0,}; u8 pos = 0; /* Payload + header + TCPC_TX_BYTE_CNT */ buf[pos++] = cnt + 2; if (msg) memcpy(&buf[pos], &msg->header, sizeof(msg->header)); pos += sizeof(header); if (cnt > 0) memcpy(&buf[pos], msg->payload, cnt); pos += cnt; ret = regmap_raw_write(tcpci->regmap, TCPC_TX_BYTE_CNT, buf, pos); if (ret < 0) return ret; } else { ret = regmap_write(tcpci->regmap, TCPC_TX_BYTE_CNT, cnt + 2); if (ret < 0) return ret; ret = tcpci_write16(tcpci, TCPC_TX_HDR, header); if (ret < 0) return ret; if (cnt > 0) { ret = regmap_raw_write(tcpci->regmap, TCPC_TX_DATA, &msg->payload, cnt); if (ret < 0) return ret; } } /* nRetryCount is 3 in PD2.0 spec where 2 in PD3.0 spec */ reg = FIELD_PREP(TCPC_TRANSMIT_RETRY, (negotiated_rev > PD_REV20 ? PD_RETRY_COUNT_3_0_OR_HIGHER : PD_RETRY_COUNT_DEFAULT)); reg |= FIELD_PREP(TCPC_TRANSMIT_TYPE, type); ret = regmap_write(tcpci->regmap, TCPC_TRANSMIT, reg); if (ret < 0) return ret; return 0; } static bool tcpci_cable_comm_capable(struct tcpc_dev *tcpc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); return tcpci->data->cable_comm_capable; } static bool tcpci_attempt_vconn_swap_discovery(struct tcpc_dev *tcpc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); if (tcpci->data->attempt_vconn_swap_discovery) return tcpci->data->attempt_vconn_swap_discovery(tcpci, tcpci->data); return false; } static int tcpci_init(struct tcpc_dev *tcpc) { struct tcpci *tcpci = tcpc_to_tcpci(tcpc); unsigned long timeout = jiffies + msecs_to_jiffies(2000); /* XXX */ unsigned int reg; int ret; while (time_before_eq(jiffies, timeout)) { ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, ®); if (ret < 0) return ret; if (!(reg & TCPC_POWER_STATUS_UNINIT)) break; usleep_range(10000, 20000); } if (time_after(jiffies, timeout)) return -ETIMEDOUT; ret = tcpci_write16(tcpci, TCPC_FAULT_STATUS, TCPC_FAULT_STATUS_ALL_REG_RST_TO_DEFAULT); if (ret < 0) return ret; /* Handle vendor init */ if (tcpci->data->init) { ret = tcpci->data->init(tcpci, tcpci->data); if (ret < 0) return ret; } /* Clear all events */ ret = tcpci_write16(tcpci, TCPC_ALERT, 0xffff); if (ret < 0) return ret; if (tcpci->controls_vbus) reg = TCPC_POWER_STATUS_VBUS_PRES; else reg = 0; ret = regmap_write(tcpci->regmap, TCPC_POWER_STATUS_MASK, reg); if (ret < 0) return ret; /* Enable Vbus detection */ ret = regmap_write(tcpci->regmap, TCPC_COMMAND, TCPC_CMD_ENABLE_VBUS_DETECT); if (ret < 0) return ret; reg = TCPC_ALERT_TX_SUCCESS | TCPC_ALERT_TX_FAILED | TCPC_ALERT_TX_DISCARDED | TCPC_ALERT_RX_STATUS | TCPC_ALERT_RX_HARD_RST | TCPC_ALERT_CC_STATUS; if (tcpci->controls_vbus) reg |= TCPC_ALERT_POWER_STATUS; /* Enable VSAFE0V status interrupt when detecting VSAFE0V is supported */ if (tcpci->data->vbus_vsafe0v) { reg |= TCPC_ALERT_EXTENDED_STATUS; ret = regmap_write(tcpci->regmap, TCPC_EXTENDED_STATUS_MASK, TCPC_EXTENDED_STATUS_VSAFE0V); if (ret < 0) return ret; } tcpci->alert_mask = reg; return tcpci_write16(tcpci, TCPC_ALERT_MASK, reg); } irqreturn_t tcpci_irq(struct tcpci *tcpci) { u16 status; int ret; int irq_ret; unsigned int raw; tcpci_read16(tcpci, TCPC_ALERT, &status); irq_ret = status & tcpci->alert_mask; process_status: /* * Clear alert status for everything except RX_STATUS, which shouldn't * be cleared until we have successfully retrieved message. */ if (status & ~TCPC_ALERT_RX_STATUS) tcpci_write16(tcpci, TCPC_ALERT, status & ~TCPC_ALERT_RX_STATUS); if (status & TCPC_ALERT_CC_STATUS) tcpm_cc_change(tcpci->port); if (status & TCPC_ALERT_POWER_STATUS) { regmap_read(tcpci->regmap, TCPC_POWER_STATUS_MASK, &raw); /* * If power status mask has been reset, then the TCPC * has reset. */ if (raw == 0xff) tcpm_tcpc_reset(tcpci->port); else tcpm_vbus_change(tcpci->port); } if (status & TCPC_ALERT_RX_STATUS) { struct pd_message msg; unsigned int cnt, payload_cnt; u16 header; regmap_read(tcpci->regmap, TCPC_RX_BYTE_CNT, &cnt); /* * 'cnt' corresponds to READABLE_BYTE_COUNT in section 4.4.14 * of the TCPCI spec [Rev 2.0 Ver 1.0 October 2017] and is * defined in table 4-36 as one greater than the number of * bytes received. And that number includes the header. So: */ if (cnt > 3) payload_cnt = cnt - (1 + sizeof(msg.header)); else payload_cnt = 0; tcpci_read16(tcpci, TCPC_RX_HDR, &header); msg.header = cpu_to_le16(header); if (WARN_ON(payload_cnt > sizeof(msg.payload))) payload_cnt = sizeof(msg.payload); if (payload_cnt > 0) regmap_raw_read(tcpci->regmap, TCPC_RX_DATA, &msg.payload, payload_cnt); /* Read complete, clear RX status alert bit */ tcpci_write16(tcpci, TCPC_ALERT, TCPC_ALERT_RX_STATUS); tcpm_pd_receive(tcpci->port, &msg, TCPC_TX_SOP); } if (tcpci->data->vbus_vsafe0v && (status & TCPC_ALERT_EXTENDED_STATUS)) { ret = regmap_read(tcpci->regmap, TCPC_EXTENDED_STATUS, &raw); if (!ret && (raw & TCPC_EXTENDED_STATUS_VSAFE0V)) tcpm_vbus_change(tcpci->port); } if (status & TCPC_ALERT_RX_HARD_RST) tcpm_pd_hard_reset(tcpci->port); if (status & TCPC_ALERT_TX_SUCCESS) tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_SUCCESS); else if (status & TCPC_ALERT_TX_DISCARDED) tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_DISCARDED); else if (status & TCPC_ALERT_TX_FAILED) tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_FAILED); tcpci_read16(tcpci, TCPC_ALERT, &status); if (status & tcpci->alert_mask) goto process_status; return IRQ_RETVAL(irq_ret); } EXPORT_SYMBOL_GPL(tcpci_irq); static irqreturn_t _tcpci_irq(int irq, void *dev_id) { struct tcpci_chip *chip = dev_id; return tcpci_irq(chip->tcpci); } static const struct regmap_config tcpci_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x7F, /* 0x80 .. 0xFF are vendor defined */ }; static int tcpci_parse_config(struct tcpci *tcpci) { tcpci->controls_vbus = true; /* XXX */ tcpci->tcpc.fwnode = device_get_named_child_node(tcpci->dev, "connector"); if (!tcpci->tcpc.fwnode) { dev_err(tcpci->dev, "Can't find connector node.\n"); return -EINVAL; } return 0; } struct tcpci *tcpci_register_port(struct device *dev, struct tcpci_data *data) { struct tcpci *tcpci; int err; tcpci = devm_kzalloc(dev, sizeof(*tcpci), GFP_KERNEL); if (!tcpci) return ERR_PTR(-ENOMEM); tcpci->dev = dev; tcpci->data = data; tcpci->regmap = data->regmap; tcpci->tcpc.init = tcpci_init; tcpci->tcpc.get_vbus = tcpci_get_vbus; tcpci->tcpc.set_vbus = tcpci_set_vbus; tcpci->tcpc.set_cc = tcpci_set_cc; tcpci->tcpc.apply_rc = tcpci_apply_rc; tcpci->tcpc.get_cc = tcpci_get_cc; tcpci->tcpc.set_polarity = tcpci_set_polarity; tcpci->tcpc.set_vconn = tcpci_set_vconn; tcpci->tcpc.start_toggling = tcpci_start_toggling; tcpci->tcpc.set_pd_rx = tcpci_set_pd_rx; tcpci->tcpc.set_roles = tcpci_set_roles; tcpci->tcpc.pd_transmit = tcpci_pd_transmit; tcpci->tcpc.set_bist_data = tcpci_set_bist_data; tcpci->tcpc.enable_frs = tcpci_enable_frs; tcpci->tcpc.frs_sourcing_vbus = tcpci_frs_sourcing_vbus; tcpci->tcpc.set_partner_usb_comm_capable = tcpci_set_partner_usb_comm_capable; tcpci->tcpc.cable_comm_capable = tcpci_cable_comm_capable; tcpci->tcpc.attempt_vconn_swap_discovery = tcpci_attempt_vconn_swap_discovery; if (tcpci->data->check_contaminant) tcpci->tcpc.check_contaminant = tcpci_check_contaminant; if (tcpci->data->auto_discharge_disconnect) { tcpci->tcpc.enable_auto_vbus_discharge = tcpci_enable_auto_vbus_discharge; tcpci->tcpc.set_auto_vbus_discharge_threshold = tcpci_set_auto_vbus_discharge_threshold; regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL, TCPC_POWER_CTRL_BLEED_DISCHARGE, TCPC_POWER_CTRL_BLEED_DISCHARGE); } if (tcpci->data->vbus_vsafe0v) tcpci->tcpc.is_vbus_vsafe0v = tcpci_is_vbus_vsafe0v; if (tcpci->data->set_orientation) tcpci->tcpc.set_orientation = tcpci_set_orientation; err = tcpci_parse_config(tcpci); if (err < 0) return ERR_PTR(err); tcpci->port = tcpm_register_port(tcpci->dev, &tcpci->tcpc); if (IS_ERR(tcpci->port)) { fwnode_handle_put(tcpci->tcpc.fwnode); return ERR_CAST(tcpci->port); } return tcpci; } EXPORT_SYMBOL_GPL(tcpci_register_port); void tcpci_unregister_port(struct tcpci *tcpci) { tcpm_unregister_port(tcpci->port); fwnode_handle_put(tcpci->tcpc.fwnode); } EXPORT_SYMBOL_GPL(tcpci_unregister_port); static int tcpci_probe(struct i2c_client *client) { struct tcpci_chip *chip; int err; u16 val = 0; chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->data.regmap = devm_regmap_init_i2c(client, &tcpci_regmap_config); if (IS_ERR(chip->data.regmap)) return PTR_ERR(chip->data.regmap); i2c_set_clientdata(client, chip); /* Disable chip interrupts before requesting irq */ err = regmap_raw_write(chip->data.regmap, TCPC_ALERT_MASK, &val, sizeof(u16)); if (err < 0) return err; err = tcpci_check_std_output_cap(chip->data.regmap, TCPC_STD_OUTPUT_CAP_ORIENTATION); if (err < 0) return err; chip->data.set_orientation = err; err = devm_request_threaded_irq(&client->dev, client->irq, NULL, _tcpci_irq, IRQF_SHARED | IRQF_ONESHOT, dev_name(&client->dev), chip); if (err < 0) return err; /* * Disable irq while registering port. If irq is configured as an edge * irq this allow to keep track and process the irq as soon as it is enabled. */ disable_irq(client->irq); chip->tcpci = tcpci_register_port(&client->dev, &chip->data); enable_irq(client->irq); return PTR_ERR_OR_ZERO(chip->tcpci); } static void tcpci_remove(struct i2c_client *client) { struct tcpci_chip *chip = i2c_get_clientdata(client); int err; /* Disable chip interrupts before unregistering port */ err = tcpci_write16(chip->tcpci, TCPC_ALERT_MASK, 0); if (err < 0) dev_warn(&client->dev, "Failed to disable irqs (%pe)\n", ERR_PTR(err)); tcpci_unregister_port(chip->tcpci); } static const struct i2c_device_id tcpci_id[] = { { "tcpci" }, { } }; MODULE_DEVICE_TABLE(i2c, tcpci_id); #ifdef CONFIG_OF static const struct of_device_id tcpci_of_match[] = { { .compatible = "nxp,ptn5110", }, { .compatible = "tcpci", }, {}, }; MODULE_DEVICE_TABLE(of, tcpci_of_match); #endif static struct i2c_driver tcpci_i2c_driver = { .driver = { .name = "tcpci", .of_match_table = of_match_ptr(tcpci_of_match), }, .probe = tcpci_probe, .remove = tcpci_remove, .id_table = tcpci_id, }; module_i2c_driver(tcpci_i2c_driver); MODULE_DESCRIPTION("USB Type-C Port Controller Interface driver"); MODULE_LICENSE("GPL");