// SPDX-License-Identifier: GPL-2.0 /* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. */ /* * Ring initialization rules: * 1. Each segment is initialized to zero, except for link TRBs. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or * Consumer Cycle State (CCS), depending on ring function. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. * * Ring behavior rules: * 1. A ring is empty if enqueue == dequeue. This means there will always be at * least one free TRB in the ring. This is useful if you want to turn that * into a link TRB and expand the ring. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a * link TRB, then load the pointer with the address in the link TRB. If the * link TRB had its toggle bit set, you may need to update the ring cycle * state (see cycle bit rules). You may have to do this multiple times * until you reach a non-link TRB. * 3. A ring is full if enqueue++ (for the definition of increment above) * equals the dequeue pointer. * * Cycle bit rules: * 1. When a consumer increments a dequeue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * 2. When a producer increments an enqueue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * * Producer rules: * 1. Check if ring is full before you enqueue. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. * Update enqueue pointer between each write (which may update the ring * cycle state). * 3. Notify consumer. If SW is producer, it rings the doorbell for command * and endpoint rings. If HC is the producer for the event ring, * and it generates an interrupt according to interrupt modulation rules. * * Consumer rules: * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, * the TRB is owned by the consumer. * 2. Update dequeue pointer (which may update the ring cycle state) and * continue processing TRBs until you reach a TRB which is not owned by you. * 3. Notify the producer. SW is the consumer for the event ring, and it * updates event ring dequeue pointer. HC is the consumer for the command and * endpoint rings; it generates events on the event ring for these. */ #include #include #include #include "xhci.h" #include "xhci-trace.h" static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 field1, u32 field2, u32 field3, u32 field4, bool command_must_succeed); /* * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA * address of the TRB. */ dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, union xhci_trb *trb) { unsigned long segment_offset; if (!seg || !trb || trb < seg->trbs) return 0; /* offset in TRBs */ segment_offset = trb - seg->trbs; if (segment_offset >= TRBS_PER_SEGMENT) return 0; return seg->dma + (segment_offset * sizeof(*trb)); } static bool trb_is_noop(union xhci_trb *trb) { return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); } static bool trb_is_link(union xhci_trb *trb) { return TRB_TYPE_LINK_LE32(trb->link.control); } static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) { return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; } static bool last_trb_on_ring(struct xhci_ring *ring, struct xhci_segment *seg, union xhci_trb *trb) { return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); } static bool link_trb_toggles_cycle(union xhci_trb *trb) { return le32_to_cpu(trb->link.control) & LINK_TOGGLE; } static bool last_td_in_urb(struct xhci_td *td) { struct urb_priv *urb_priv = td->urb->hcpriv; return urb_priv->num_tds_done == urb_priv->num_tds; } static bool unhandled_event_trb(struct xhci_ring *ring) { return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) == ring->cycle_state); } static void inc_td_cnt(struct urb *urb) { struct urb_priv *urb_priv = urb->hcpriv; urb_priv->num_tds_done++; } static void trb_to_noop(union xhci_trb *trb, u32 noop_type) { if (trb_is_link(trb)) { /* unchain chained link TRBs */ trb->link.control &= cpu_to_le32(~TRB_CHAIN); } else { trb->generic.field[0] = 0; trb->generic.field[1] = 0; trb->generic.field[2] = 0; /* Preserve only the cycle bit of this TRB */ trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); } } /* Updates trb to point to the next TRB in the ring, and updates seg if the next * TRB is in a new segment. This does not skip over link TRBs, and it does not * effect the ring dequeue or enqueue pointers. */ static void next_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment **seg, union xhci_trb **trb) { if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) { *seg = (*seg)->next; *trb = ((*seg)->trbs); } else { (*trb)++; } } /* * See Cycle bit rules. SW is the consumer for the event ring only. */ void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) { unsigned int link_trb_count = 0; /* event ring doesn't have link trbs, check for last trb */ if (ring->type == TYPE_EVENT) { if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { ring->dequeue++; goto out; } if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) ring->cycle_state ^= 1; ring->deq_seg = ring->deq_seg->next; ring->dequeue = ring->deq_seg->trbs; goto out; } /* All other rings have link trbs */ if (!trb_is_link(ring->dequeue)) { if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) xhci_warn(xhci, "Missing link TRB at end of segment\n"); else ring->dequeue++; } while (trb_is_link(ring->dequeue)) { ring->deq_seg = ring->deq_seg->next; ring->dequeue = ring->deq_seg->trbs; if (link_trb_count++ > ring->num_segs) { xhci_warn(xhci, "Ring is an endless link TRB loop\n"); break; } } out: trace_xhci_inc_deq(ring); return; } /* * See Cycle bit rules. SW is the consumer for the event ring only. * * If we've just enqueued a TRB that is in the middle of a TD (meaning the * chain bit is set), then set the chain bit in all the following link TRBs. * If we've enqueued the last TRB in a TD, make sure the following link TRBs * have their chain bit cleared (so that each Link TRB is a separate TD). * * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit * set, but other sections talk about dealing with the chain bit set. This was * fixed in the 0.96 specification errata, but we have to assume that all 0.95 * xHCI hardware can't handle the chain bit being cleared on a link TRB. * * @more_trbs_coming: Will you enqueue more TRBs before calling * prepare_transfer()? */ static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool more_trbs_coming) { u32 chain; union xhci_trb *next; unsigned int link_trb_count = 0; chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { xhci_err(xhci, "Tried to move enqueue past ring segment\n"); return; } next = ++(ring->enqueue); /* Update the dequeue pointer further if that was a link TRB */ while (trb_is_link(next)) { /* * If the caller doesn't plan on enqueueing more TDs before * ringing the doorbell, then we don't want to give the link TRB * to the hardware just yet. We'll give the link TRB back in * prepare_ring() just before we enqueue the TD at the top of * the ring. */ if (!chain && !more_trbs_coming) break; /* If we're not dealing with 0.95 hardware or isoc rings on * AMD 0.96 host, carry over the chain bit of the previous TRB * (which may mean the chain bit is cleared). */ if (!xhci_link_chain_quirk(xhci, ring->type)) { next->link.control &= cpu_to_le32(~TRB_CHAIN); next->link.control |= cpu_to_le32(chain); } /* Give this link TRB to the hardware */ wmb(); next->link.control ^= cpu_to_le32(TRB_CYCLE); /* Toggle the cycle bit after the last ring segment. */ if (link_trb_toggles_cycle(next)) ring->cycle_state ^= 1; ring->enq_seg = ring->enq_seg->next; ring->enqueue = ring->enq_seg->trbs; next = ring->enqueue; if (link_trb_count++ > ring->num_segs) { xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); break; } } trace_xhci_inc_enq(ring); } /* * Return number of free normal TRBs from enqueue to dequeue pointer on ring. * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. * Only for transfer and command rings where driver is the producer, not for * event rings. */ static unsigned int xhci_num_trbs_free(struct xhci_ring *ring) { struct xhci_segment *enq_seg = ring->enq_seg; union xhci_trb *enq = ring->enqueue; union xhci_trb *last_on_seg; unsigned int free = 0; int i = 0; /* Ring might be empty even if enq != deq if enq is left on a link trb */ if (trb_is_link(enq)) { enq_seg = enq_seg->next; enq = enq_seg->trbs; } /* Empty ring, common case, don't walk the segments */ if (enq == ring->dequeue) return ring->num_segs * (TRBS_PER_SEGMENT - 1); do { if (ring->deq_seg == enq_seg && ring->dequeue >= enq) return free + (ring->dequeue - enq); last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; free += last_on_seg - enq; enq_seg = enq_seg->next; enq = enq_seg->trbs; } while (i++ < ring->num_segs); return free; } /* * Check to see if there's room to enqueue num_trbs on the ring and make sure * enqueue pointer will not advance into dequeue segment. See rules above. * return number of new segments needed to ensure this. */ static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, unsigned int num_trbs) { struct xhci_segment *seg; int trbs_past_seg; int enq_used; int new_segs; enq_used = ring->enqueue - ring->enq_seg->trbs; /* how many trbs will be queued past the enqueue segment? */ trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); /* * Consider expanding the ring already if num_trbs fills the current * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into * the next segment. Avoids confusing full ring with special empty ring * case below */ if (trbs_past_seg < 0) return 0; /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) return 0; new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); seg = ring->enq_seg; while (new_segs > 0) { seg = seg->next; if (seg == ring->deq_seg) { xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n", num_trbs, new_segs); return new_segs; } new_segs--; } return 0; } /* Ring the host controller doorbell after placing a command on the ring */ void xhci_ring_cmd_db(struct xhci_hcd *xhci) { if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) return; xhci_dbg(xhci, "// Ding dong!\n"); trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); /* Flush PCI posted writes */ readl(&xhci->dba->doorbell[0]); } static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) { return mod_delayed_work(system_wq, &xhci->cmd_timer, msecs_to_jiffies(xhci->current_cmd->timeout_ms)); } static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) { return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, cmd_list); } /* * Turn all commands on command ring with status set to "aborted" to no-op trbs. * If there are other commands waiting then restart the ring and kick the timer. * This must be called with command ring stopped and xhci->lock held. */ static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, struct xhci_command *cur_cmd) { struct xhci_command *i_cmd; /* Turn all aborted commands in list to no-ops, then restart */ list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { if (i_cmd->status != COMP_COMMAND_ABORTED) continue; i_cmd->status = COMP_COMMAND_RING_STOPPED; xhci_dbg(xhci, "Turn aborted command %p to no-op\n", i_cmd->command_trb); trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); /* * caller waiting for completion is called when command * completion event is received for these no-op commands */ } xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; /* ring command ring doorbell to restart the command ring */ if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && !(xhci->xhc_state & XHCI_STATE_DYING)) { xhci->current_cmd = cur_cmd; xhci_mod_cmd_timer(xhci); xhci_ring_cmd_db(xhci); } } /* Must be called with xhci->lock held, releases and aquires lock back */ static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) { struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; union xhci_trb *new_deq = xhci->cmd_ring->dequeue; u64 crcr; int ret; xhci_dbg(xhci, "Abort command ring\n"); reinit_completion(&xhci->cmd_ring_stop_completion); /* * The control bits like command stop, abort are located in lower * dword of the command ring control register. * Some controllers require all 64 bits to be written to abort the ring. * Make sure the upper dword is valid, pointing to the next command, * avoiding corrupting the command ring pointer in case the command ring * is stopped by the time the upper dword is written. */ next_trb(xhci, NULL, &new_seg, &new_deq); if (trb_is_link(new_deq)) next_trb(xhci, NULL, &new_seg, &new_deq); crcr = xhci_trb_virt_to_dma(new_seg, new_deq); xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the * completion of the Command Abort operation. If CRR is not negated in 5 * seconds then driver handles it as if host died (-ENODEV). * In the future we should distinguish between -ENODEV and -ETIMEDOUT * and try to recover a -ETIMEDOUT with a host controller reset. */ ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring, CMD_RING_RUNNING, 0, 5 * 1000 * 1000, XHCI_STATE_REMOVING); if (ret < 0) { xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); xhci_halt(xhci); xhci_hc_died(xhci); return ret; } /* * Writing the CMD_RING_ABORT bit should cause a cmd completion event, * however on some host hw the CMD_RING_RUNNING bit is correctly cleared * but the completion event in never sent. Wait 2 secs (arbitrary * number) to handle those cases after negation of CMD_RING_RUNNING. */ spin_unlock_irqrestore(&xhci->lock, flags); ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, msecs_to_jiffies(2000)); spin_lock_irqsave(&xhci->lock, flags); if (!ret) { xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); xhci_cleanup_command_queue(xhci); } else { xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); } return 0; } void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id) { __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; unsigned int ep_state = ep->ep_state; /* Don't ring the doorbell for this endpoint if there are pending * cancellations because we don't want to interrupt processing. * We don't want to restart any stream rings if there's a set dequeue * pointer command pending because the device can choose to start any * stream once the endpoint is on the HW schedule. */ if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) return; trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); writel(DB_VALUE(ep_index, stream_id), db_addr); /* flush the write */ readl(db_addr); } /* Ring the doorbell for any rings with pending URBs */ static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index) { unsigned int stream_id; struct xhci_virt_ep *ep; ep = &xhci->devs[slot_id]->eps[ep_index]; /* A ring has pending URBs if its TD list is not empty */ if (!(ep->ep_state & EP_HAS_STREAMS)) { if (ep->ring && !(list_empty(&ep->ring->td_list))) xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); return; } for (stream_id = 1; stream_id < ep->stream_info->num_streams; stream_id++) { struct xhci_stream_info *stream_info = ep->stream_info; if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); } } void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index) { ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index) { if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); return NULL; } if (ep_index >= EP_CTX_PER_DEV) { xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); return NULL; } if (!xhci->devs[slot_id]) { xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); return NULL; } return &xhci->devs[slot_id]->eps[ep_index]; } static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, unsigned int stream_id) { /* common case, no streams */ if (!(ep->ep_state & EP_HAS_STREAMS)) return ep->ring; if (!ep->stream_info) return NULL; if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", stream_id, ep->vdev->slot_id, ep->ep_index); return NULL; } return ep->stream_info->stream_rings[stream_id]; } /* Get the right ring for the given slot_id, ep_index and stream_id. * If the endpoint supports streams, boundary check the URB's stream ID. * If the endpoint doesn't support streams, return the singular endpoint ring. */ struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id) { struct xhci_virt_ep *ep; ep = xhci_get_virt_ep(xhci, slot_id, ep_index); if (!ep) return NULL; return xhci_virt_ep_to_ring(xhci, ep, stream_id); } /* * Get the hw dequeue pointer xHC stopped on, either directly from the * endpoint context, or if streams are in use from the stream context. * The returned hw_dequeue contains the lowest four bits with cycle state * and possbile stream context type. */ static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, unsigned int ep_index, unsigned int stream_id) { struct xhci_ep_ctx *ep_ctx; struct xhci_stream_ctx *st_ctx; struct xhci_virt_ep *ep; ep = &vdev->eps[ep_index]; if (ep->ep_state & EP_HAS_STREAMS) { st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; return le64_to_cpu(st_ctx->stream_ring); } ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); return le64_to_cpu(ep_ctx->deq); } static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *td) { struct xhci_virt_device *dev = xhci->devs[slot_id]; struct xhci_virt_ep *ep = &dev->eps[ep_index]; struct xhci_ring *ep_ring; struct xhci_command *cmd; struct xhci_segment *new_seg; union xhci_trb *new_deq; int new_cycle; dma_addr_t addr; u64 hw_dequeue; bool cycle_found = false; bool td_last_trb_found = false; u32 trb_sct = 0; int ret; ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, ep_index, stream_id); if (!ep_ring) { xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", stream_id); return -ENODEV; } hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); new_seg = ep_ring->deq_seg; new_deq = ep_ring->dequeue; new_cycle = hw_dequeue & 0x1; /* * We want to find the pointer, segment and cycle state of the new trb * (the one after current TD's last_trb). We know the cycle state at * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are * found. */ do { if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) == (dma_addr_t)(hw_dequeue & ~0xf)) { cycle_found = true; if (td_last_trb_found) break; } if (new_deq == td->last_trb) td_last_trb_found = true; if (cycle_found && trb_is_link(new_deq) && link_trb_toggles_cycle(new_deq)) new_cycle ^= 0x1; next_trb(xhci, ep_ring, &new_seg, &new_deq); /* Search wrapped around, bail out */ if (new_deq == ep->ring->dequeue) { xhci_err(xhci, "Error: Failed finding new dequeue state\n"); return -EINVAL; } } while (!cycle_found || !td_last_trb_found); /* Don't update the ring cycle state for the producer (us). */ addr = xhci_trb_virt_to_dma(new_seg, new_deq); if (addr == 0) { xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); return -EINVAL; } if ((ep->ep_state & SET_DEQ_PENDING)) { xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", &addr); return -EBUSY; } /* This function gets called from contexts where it cannot sleep */ cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); if (!cmd) { xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); return -ENOMEM; } if (stream_id) trb_sct = SCT_FOR_TRB(SCT_PRI_TR); ret = queue_command(xhci, cmd, lower_32_bits(addr) | trb_sct | new_cycle, upper_32_bits(addr), STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); if (ret < 0) { xhci_free_command(xhci, cmd); return ret; } ep->queued_deq_seg = new_seg; ep->queued_deq_ptr = new_deq; xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); /* Stop the TD queueing code from ringing the doorbell until * this command completes. The HC won't set the dequeue pointer * if the ring is running, and ringing the doorbell starts the * ring running. */ ep->ep_state |= SET_DEQ_PENDING; xhci_ring_cmd_db(xhci); return 0; } /* flip_cycle means flip the cycle bit of all but the first and last TRB. * (The last TRB actually points to the ring enqueue pointer, which is not part * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. */ static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, struct xhci_td *td, bool flip_cycle) { struct xhci_segment *seg = td->start_seg; union xhci_trb *trb = td->first_trb; while (1) { trb_to_noop(trb, TRB_TR_NOOP); /* flip cycle if asked to */ if (flip_cycle && trb != td->first_trb && trb != td->last_trb) trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); if (trb == td->last_trb) break; next_trb(xhci, ep_ring, &seg, &trb); } } static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, struct xhci_td *cur_td, int status) { struct urb *urb = cur_td->urb; struct urb_priv *urb_priv = urb->hcpriv; struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_enable(); } } xhci_urb_free_priv(urb_priv); usb_hcd_unlink_urb_from_ep(hcd, urb); trace_xhci_urb_giveback(urb); usb_hcd_giveback_urb(hcd, urb, status); } static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_td *td) { struct device *dev = xhci_to_hcd(xhci)->self.sysdev; struct xhci_segment *seg = td->bounce_seg; struct urb *urb = td->urb; size_t len; if (!ring || !seg || !urb) return; if (usb_urb_dir_out(urb)) { dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, DMA_TO_DEVICE); return; } dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, DMA_FROM_DEVICE); /* for in tranfers we need to copy the data from bounce to sg */ if (urb->num_sgs) { len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, seg->bounce_len, seg->bounce_offs); if (len != seg->bounce_len) xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", len, seg->bounce_len); } else { memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, seg->bounce_len); } seg->bounce_len = 0; seg->bounce_offs = 0; } static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ep_ring, int status) { struct urb *urb = NULL; /* Clean up the endpoint's TD list */ urb = td->urb; /* if a bounce buffer was used to align this td then unmap it */ xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); /* Do one last check of the actual transfer length. * If the host controller said we transferred more data than the buffer * length, urb->actual_length will be a very big number (since it's * unsigned). Play it safe and say we didn't transfer anything. */ if (urb->actual_length > urb->transfer_buffer_length) { xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", urb->transfer_buffer_length, urb->actual_length); urb->actual_length = 0; status = 0; } /* TD might be removed from td_list if we are giving back a cancelled URB */ if (!list_empty(&td->td_list)) list_del_init(&td->td_list); /* Giving back a cancelled URB, or if a slated TD completed anyway */ if (!list_empty(&td->cancelled_td_list)) list_del_init(&td->cancelled_td_list); inc_td_cnt(urb); /* Giveback the urb when all the tds are completed */ if (last_td_in_urb(td)) { if ((urb->actual_length != urb->transfer_buffer_length && (urb->transfer_flags & URB_SHORT_NOT_OK)) || (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", urb, urb->actual_length, urb->transfer_buffer_length, status); /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) status = 0; xhci_giveback_urb_in_irq(xhci, td, status); } return 0; } /* Complete the cancelled URBs we unlinked from td_list. */ static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) { struct xhci_ring *ring; struct xhci_td *td, *tmp_td; list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); if (td->cancel_status == TD_CLEARED) { xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", __func__, td->urb); xhci_td_cleanup(ep->xhci, td, ring, td->status); } else { xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", __func__, td->urb, td->cancel_status); } if (ep->xhci->xhc_state & XHCI_STATE_DYING) return; } } static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, enum xhci_ep_reset_type reset_type) { struct xhci_command *command; int ret = 0; command = xhci_alloc_command(xhci, false, GFP_ATOMIC); if (!command) { ret = -ENOMEM; goto done; } xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", ep_index, slot_id); ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); done: if (ret) xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", slot_id, ep_index, ret); return ret; } static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, struct xhci_td *td, enum xhci_ep_reset_type reset_type) { unsigned int slot_id = ep->vdev->slot_id; int err; /* * Avoid resetting endpoint if link is inactive. Can cause host hang. * Device will be reset soon to recover the link so don't do anything */ if (ep->vdev->flags & VDEV_PORT_ERROR) return -ENODEV; /* add td to cancelled list and let reset ep handler take care of it */ if (reset_type == EP_HARD_RESET) { ep->ep_state |= EP_HARD_CLEAR_TOGGLE; if (td && list_empty(&td->cancelled_td_list)) { list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); td->cancel_status = TD_HALTED; } } if (ep->ep_state & EP_HALTED) { xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", ep->ep_index); return 0; } err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); if (err) return err; ep->ep_state |= EP_HALTED; xhci_ring_cmd_db(xhci); return 0; } /* * Fix up the ep ring first, so HW stops executing cancelled TDs. * We have the xHCI lock, so nothing can modify this list until we drop it. * We're also in the event handler, so we can't get re-interrupted if another * Stop Endpoint command completes. * * only call this when ring is not in a running state */ static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) { struct xhci_hcd *xhci; struct xhci_td *td = NULL; struct xhci_td *tmp_td = NULL; struct xhci_td *cached_td = NULL; struct xhci_ring *ring; u64 hw_deq; unsigned int slot_id = ep->vdev->slot_id; int err; xhci = ep->xhci; list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", (unsigned long long)xhci_trb_virt_to_dma( td->start_seg, td->first_trb), td->urb->stream_id, td->urb); list_del_init(&td->td_list); ring = xhci_urb_to_transfer_ring(xhci, td->urb); if (!ring) { xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", td->urb, td->urb->stream_id); continue; } /* * If a ring stopped on the TD we need to cancel then we have to * move the xHC endpoint ring dequeue pointer past this TD. * Rings halted due to STALL may show hw_deq is past the stalled * TD, but still require a set TR Deq command to flush xHC cache. */ hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, td->urb->stream_id); hw_deq &= ~0xf; if (td->cancel_status == TD_HALTED || trb_in_td(xhci, td, hw_deq, false)) { switch (td->cancel_status) { case TD_CLEARED: /* TD is already no-op */ case TD_CLEARING_CACHE: /* set TR deq command already queued */ break; case TD_DIRTY: /* TD is cached, clear it */ case TD_HALTED: case TD_CLEARING_CACHE_DEFERRED: if (cached_td) { if (cached_td->urb->stream_id != td->urb->stream_id) { /* Multiple streams case, defer move dq */ xhci_dbg(xhci, "Move dq deferred: stream %u URB %p\n", td->urb->stream_id, td->urb); td->cancel_status = TD_CLEARING_CACHE_DEFERRED; break; } /* Should never happen, but clear the TD if it does */ xhci_warn(xhci, "Found multiple active URBs %p and %p in stream %u?\n", td->urb, cached_td->urb, td->urb->stream_id); td_to_noop(xhci, ring, cached_td, false); cached_td->cancel_status = TD_CLEARED; } td_to_noop(xhci, ring, td, false); td->cancel_status = TD_CLEARING_CACHE; cached_td = td; break; } } else { td_to_noop(xhci, ring, td, false); td->cancel_status = TD_CLEARED; } } /* If there's no need to move the dequeue pointer then we're done */ if (!cached_td) return 0; err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, cached_td->urb->stream_id, cached_td); if (err) { /* Failed to move past cached td, just set cached TDs to no-op */ list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { /* * Deferred TDs need to have the deq pointer set after the above command * completes, so if that failed we just give up on all of them (and * complain loudly since this could cause issues due to caching). */ if (td->cancel_status != TD_CLEARING_CACHE && td->cancel_status != TD_CLEARING_CACHE_DEFERRED) continue; xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", td->urb); td_to_noop(xhci, ring, td, false); td->cancel_status = TD_CLEARED; } } return 0; } /* * Returns the TD the endpoint ring halted on. * Only call for non-running rings without streams. */ static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) { struct xhci_td *td; u64 hw_deq; if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); hw_deq &= ~0xf; td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); if (trb_in_td(ep->xhci, td, hw_deq, false)) return td; } return NULL; } /* * When we get a command completion for a Stop Endpoint Command, we need to * unlink any cancelled TDs from the ring. There are two ways to do that: * * 1. If the HW was in the middle of processing the TD that needs to be * cancelled, then we must move the ring's dequeue pointer past the last TRB * in the TD with a Set Dequeue Pointer Command. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain * bit cleared) so that the HW will skip over them. */ static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, u32 comp_code) { unsigned int ep_index; struct xhci_virt_ep *ep; struct xhci_ep_ctx *ep_ctx; struct xhci_td *td = NULL; enum xhci_ep_reset_type reset_type; struct xhci_command *command; int err; if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { if (!xhci->devs[slot_id]) xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", slot_id); return; } ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); ep = xhci_get_virt_ep(xhci, slot_id, ep_index); if (!ep) return; ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); trace_xhci_handle_cmd_stop_ep(ep_ctx); if (comp_code == COMP_CONTEXT_STATE_ERROR) { /* * If stop endpoint command raced with a halting endpoint we need to * reset the host side endpoint first. * If the TD we halted on isn't cancelled the TD should be given back * with a proper error code, and the ring dequeue moved past the TD. * If streams case we can't find hw_deq, or the TD we halted on so do a * soft reset. * * Proper error code is unknown here, it would be -EPIPE if device side * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) * We use -EPROTO, if device is stalled it should return a stall error on * next transfer, which then will return -EPIPE, and device side stall is * noted and cleared by class driver. */ switch (GET_EP_CTX_STATE(ep_ctx)) { case EP_STATE_HALTED: xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); if (ep->ep_state & EP_HAS_STREAMS) { reset_type = EP_SOFT_RESET; } else { reset_type = EP_HARD_RESET; td = find_halted_td(ep); if (td) td->status = -EPROTO; } /* reset ep, reset handler cleans up cancelled tds */ err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); if (err) break; ep->ep_state &= ~EP_STOP_CMD_PENDING; return; case EP_STATE_STOPPED: /* * NEC uPD720200 sometimes sets this state and fails with * Context Error while continuing to process TRBs. * Be conservative and trust EP_CTX_STATE on other chips. */ if (!(xhci->quirks & XHCI_NEC_HOST)) break; fallthrough; case EP_STATE_RUNNING: /* Race, HW handled stop ep cmd before ep was running */ xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); command = xhci_alloc_command(xhci, false, GFP_ATOMIC); if (!command) { ep->ep_state &= ~EP_STOP_CMD_PENDING; return; } xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); xhci_ring_cmd_db(xhci); return; default: break; } } /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ xhci_invalidate_cancelled_tds(ep); ep->ep_state &= ~EP_STOP_CMD_PENDING; /* Otherwise ring the doorbell(s) to restart queued transfers */ xhci_giveback_invalidated_tds(ep); ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) { struct xhci_td *cur_td; struct xhci_td *tmp; list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { list_del_init(&cur_td->td_list); if (!list_empty(&cur_td->cancelled_td_list)) list_del_init(&cur_td->cancelled_td_list); xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); inc_td_cnt(cur_td->urb); if (last_td_in_urb(cur_td)) xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); } } static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, int slot_id, int ep_index) { struct xhci_td *cur_td; struct xhci_td *tmp; struct xhci_virt_ep *ep; struct xhci_ring *ring; ep = xhci_get_virt_ep(xhci, slot_id, ep_index); if (!ep) return; if ((ep->ep_state & EP_HAS_STREAMS) || (ep->ep_state & EP_GETTING_NO_STREAMS)) { int stream_id; for (stream_id = 1; stream_id < ep->stream_info->num_streams; stream_id++) { ring = ep->stream_info->stream_rings[stream_id]; if (!ring) continue; xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Killing URBs for slot ID %u, ep index %u, stream %u", slot_id, ep_index, stream_id); xhci_kill_ring_urbs(xhci, ring); } } else { ring = ep->ring; if (!ring) return; xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Killing URBs for slot ID %u, ep index %u", slot_id, ep_index); xhci_kill_ring_urbs(xhci, ring); } list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, cancelled_td_list) { list_del_init(&cur_td->cancelled_td_list); inc_td_cnt(cur_td->urb); if (last_td_in_urb(cur_td)) xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); } } /* * host controller died, register read returns 0xffffffff * Complete pending commands, mark them ABORTED. * URBs need to be given back as usb core might be waiting with device locks * held for the URBs to finish during device disconnect, blocking host remove. * * Call with xhci->lock held. * lock is relased and re-acquired while giving back urb. */ void xhci_hc_died(struct xhci_hcd *xhci) { int i, j; if (xhci->xhc_state & XHCI_STATE_DYING) return; xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); xhci->xhc_state |= XHCI_STATE_DYING; xhci_cleanup_command_queue(xhci); /* return any pending urbs, remove may be waiting for them */ for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { if (!xhci->devs[i]) continue; for (j = 0; j < 31; j++) xhci_kill_endpoint_urbs(xhci, i, j); } /* inform usb core hc died if PCI remove isn't already handling it */ if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) usb_hc_died(xhci_to_hcd(xhci)); } static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, struct xhci_virt_device *dev, struct xhci_ring *ep_ring, unsigned int ep_index) { union xhci_trb *dequeue_temp; dequeue_temp = ep_ring->dequeue; /* If we get two back-to-back stalls, and the first stalled transfer * ends just before a link TRB, the dequeue pointer will be left on * the link TRB by the code in the while loop. So we have to update * the dequeue pointer one segment further, or we'll jump off * the segment into la-la-land. */ if (trb_is_link(ep_ring->dequeue)) { ep_ring->deq_seg = ep_ring->deq_seg->next; ep_ring->dequeue = ep_ring->deq_seg->trbs; } while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { /* We have more usable TRBs */ ep_ring->dequeue++; if (trb_is_link(ep_ring->dequeue)) { if (ep_ring->dequeue == dev->eps[ep_index].queued_deq_ptr) break; ep_ring->deq_seg = ep_ring->deq_seg->next; ep_ring->dequeue = ep_ring->deq_seg->trbs; } if (ep_ring->dequeue == dequeue_temp) { xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); break; } } } /* * When we get a completion for a Set Transfer Ring Dequeue Pointer command, * we need to clear the set deq pending flag in the endpoint ring state, so that * the TD queueing code can ring the doorbell again. We also need to ring the * endpoint doorbell to restart the ring, but only if there aren't more * cancellations pending. */ static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, u32 cmd_comp_code) { unsigned int ep_index; unsigned int stream_id; struct xhci_ring *ep_ring; struct xhci_virt_ep *ep; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; struct xhci_td *td, *tmp_td; bool deferred = false; ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); ep = xhci_get_virt_ep(xhci, slot_id, ep_index); if (!ep) return; ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); if (!ep_ring) { xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", stream_id); /* XXX: Harmless??? */ goto cleanup; } ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); trace_xhci_handle_cmd_set_deq(slot_ctx); trace_xhci_handle_cmd_set_deq_ep(ep_ctx); if (cmd_comp_code != COMP_SUCCESS) { unsigned int ep_state; unsigned int slot_state; switch (cmd_comp_code) { case COMP_TRB_ERROR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); break; case COMP_CONTEXT_STATE_ERROR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); ep_state = GET_EP_CTX_STATE(ep_ctx); slot_state = le32_to_cpu(slot_ctx->dev_state); slot_state = GET_SLOT_STATE(slot_state); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Slot state = %u, EP state = %u", slot_state, ep_state); break; case COMP_SLOT_NOT_ENABLED_ERROR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", slot_id); break; default: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", cmd_comp_code); break; } /* OK what do we do now? The endpoint state is hosed, and we * should never get to this point if the synchronization between * queueing, and endpoint state are correct. This might happen * if the device gets disconnected after we've finished * cancelling URBs, which might not be an error... */ } else { u64 deq; /* 4.6.10 deq ptr is written to the stream ctx for streams */ if (ep->ep_state & EP_HAS_STREAMS) { struct xhci_stream_ctx *ctx = &ep->stream_info->stream_ctx_array[stream_id]; deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; /* * Cadence xHCI controllers store some endpoint state * information within Rsvd0 fields of Stream Endpoint * context. This field is not cleared during Set TR * Dequeue Pointer command which causes XDMA to skip * over transfer ring and leads to data loss on stream * pipe. * To fix this issue driver must clear Rsvd0 field. */ if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { ctx->reserved[0] = 0; ctx->reserved[1] = 0; } } else { deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; } xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); if (xhci_trb_virt_to_dma(ep->queued_deq_seg, ep->queued_deq_ptr) == deq) { /* Update the ring's dequeue segment and dequeue pointer * to reflect the new position. */ update_ring_for_set_deq_completion(xhci, ep->vdev, ep_ring, ep_index); } else { xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", ep->queued_deq_seg, ep->queued_deq_ptr); } } /* HW cached TDs cleared from cache, give them back */ list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); if (td->cancel_status == TD_CLEARING_CACHE) { td->cancel_status = TD_CLEARED; xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", __func__, td->urb); xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); } else if (td->cancel_status == TD_CLEARING_CACHE_DEFERRED) { deferred = true; } else { xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", __func__, td->urb, td->cancel_status); } } cleanup: ep->ep_state &= ~SET_DEQ_PENDING; ep->queued_deq_seg = NULL; ep->queued_deq_ptr = NULL; if (deferred) { /* We have more streams to clear */ xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", __func__); xhci_invalidate_cancelled_tds(ep); } else { /* Restart any rings with pending URBs */ xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } } static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, u32 cmd_comp_code) { struct xhci_virt_ep *ep; struct xhci_ep_ctx *ep_ctx; unsigned int ep_index; ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); ep = xhci_get_virt_ep(xhci, slot_id, ep_index); if (!ep) return; ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); trace_xhci_handle_cmd_reset_ep(ep_ctx); /* This command will only fail if the endpoint wasn't halted, * but we don't care. */ xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, "Ignoring reset ep completion code of %u", cmd_comp_code); /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ xhci_invalidate_cancelled_tds(ep); /* Clear our internal halted state */ ep->ep_state &= ~EP_HALTED; xhci_giveback_invalidated_tds(ep); /* if this was a soft reset, then restart */ if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command, u32 cmd_comp_code) { if (cmd_comp_code == COMP_SUCCESS) command->slot_id = slot_id; else command->slot_id = 0; } static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *virt_dev; struct xhci_slot_ctx *slot_ctx; virt_dev = xhci->devs[slot_id]; if (!virt_dev) return; slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); trace_xhci_handle_cmd_disable_slot(slot_ctx); if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) /* Delete default control endpoint resources */ xhci_free_device_endpoint_resources(xhci, virt_dev, true); } static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *virt_dev; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_ep_ctx *ep_ctx; unsigned int ep_index; u32 add_flags; /* * Configure endpoint commands can come from the USB core configuration * or alt setting changes, or when streams were being configured. */ virt_dev = xhci->devs[slot_id]; if (!virt_dev) return; ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); if (!ctrl_ctx) { xhci_warn(xhci, "Could not get input context, bad type.\n"); return; } add_flags = le32_to_cpu(ctrl_ctx->add_flags); /* Input ctx add_flags are the endpoint index plus one */ ep_index = xhci_last_valid_endpoint(add_flags) - 1; ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); trace_xhci_handle_cmd_config_ep(ep_ctx); return; } static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *vdev; struct xhci_slot_ctx *slot_ctx; vdev = xhci->devs[slot_id]; if (!vdev) return; slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); trace_xhci_handle_cmd_addr_dev(slot_ctx); } static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *vdev; struct xhci_slot_ctx *slot_ctx; vdev = xhci->devs[slot_id]; if (!vdev) { xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", slot_id); return; } slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); trace_xhci_handle_cmd_reset_dev(slot_ctx); xhci_dbg(xhci, "Completed reset device command.\n"); } static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, struct xhci_event_cmd *event) { if (!(xhci->quirks & XHCI_NEC_HOST)) { xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); return; } xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, "NEC firmware version %2x.%02x", NEC_FW_MAJOR(le32_to_cpu(event->status)), NEC_FW_MINOR(le32_to_cpu(event->status))); } static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) { list_del(&cmd->cmd_list); if (cmd->completion) { cmd->status = status; complete(cmd->completion); } else { kfree(cmd); } } void xhci_cleanup_command_queue(struct xhci_hcd *xhci) { struct xhci_command *cur_cmd, *tmp_cmd; xhci->current_cmd = NULL; list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); } void xhci_handle_command_timeout(struct work_struct *work) { struct xhci_hcd *xhci; unsigned long flags; char str[XHCI_MSG_MAX]; u64 hw_ring_state; u32 cmd_field3; u32 usbsts; xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); spin_lock_irqsave(&xhci->lock, flags); /* * If timeout work is pending, or current_cmd is NULL, it means we * raced with command completion. Command is handled so just return. */ if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { spin_unlock_irqrestore(&xhci->lock, flags); return; } cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); usbsts = readl(&xhci->op_regs->status); xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); /* Bail out and tear down xhci if a stop endpoint command failed */ if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { struct xhci_virt_ep *ep; xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), TRB_TO_EP_INDEX(cmd_field3)); if (ep) ep->ep_state &= ~EP_STOP_CMD_PENDING; xhci_halt(xhci); xhci_hc_died(xhci); goto time_out_completed; } /* mark this command to be cancelled */ xhci->current_cmd->status = COMP_COMMAND_ABORTED; /* Make sure command ring is running before aborting it */ hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); if (hw_ring_state == ~(u64)0) { xhci_hc_died(xhci); goto time_out_completed; } if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && (hw_ring_state & CMD_RING_RUNNING)) { /* Prevent new doorbell, and start command abort */ xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; xhci_dbg(xhci, "Command timeout\n"); xhci_abort_cmd_ring(xhci, flags); goto time_out_completed; } /* host removed. Bail out */ if (xhci->xhc_state & XHCI_STATE_REMOVING) { xhci_dbg(xhci, "host removed, ring start fail?\n"); xhci_cleanup_command_queue(xhci); goto time_out_completed; } /* command timeout on stopped ring, ring can't be aborted */ xhci_dbg(xhci, "Command timeout on stopped ring\n"); xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); time_out_completed: spin_unlock_irqrestore(&xhci->lock, flags); return; } static void handle_cmd_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event) { unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); u64 cmd_dma; dma_addr_t cmd_dequeue_dma; u32 cmd_comp_code; union xhci_trb *cmd_trb; struct xhci_command *cmd; u32 cmd_type; if (slot_id >= MAX_HC_SLOTS) { xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); return; } cmd_dma = le64_to_cpu(event->cmd_trb); cmd_trb = xhci->cmd_ring->dequeue; trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); /* If CMD ring stopped we own the trbs between enqueue and dequeue */ if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { complete_all(&xhci->cmd_ring_stop_completion); return; } cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, cmd_trb); /* * Check whether the completion event is for our internal kept * command. */ if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { xhci_warn(xhci, "ERROR mismatched command completion event\n"); return; } cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); cancel_delayed_work(&xhci->cmd_timer); if (cmd->command_trb != xhci->cmd_ring->dequeue) { xhci_err(xhci, "Command completion event does not match command\n"); return; } /* * Host aborted the command ring, check if the current command was * supposed to be aborted, otherwise continue normally. * The command ring is stopped now, but the xHC will issue a Command * Ring Stopped event which will cause us to restart it. */ if (cmd_comp_code == COMP_COMMAND_ABORTED) { xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; if (cmd->status == COMP_COMMAND_ABORTED) { if (xhci->current_cmd == cmd) xhci->current_cmd = NULL; goto event_handled; } } cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); switch (cmd_type) { case TRB_ENABLE_SLOT: xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code); break; case TRB_DISABLE_SLOT: xhci_handle_cmd_disable_slot(xhci, slot_id); break; case TRB_CONFIG_EP: if (!cmd->completion) xhci_handle_cmd_config_ep(xhci, slot_id); break; case TRB_EVAL_CONTEXT: break; case TRB_ADDR_DEV: xhci_handle_cmd_addr_dev(xhci, slot_id); break; case TRB_STOP_RING: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); if (!cmd->completion) xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, cmd_comp_code); break; case TRB_SET_DEQ: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); break; case TRB_CMD_NOOP: /* Is this an aborted command turned to NO-OP? */ if (cmd->status == COMP_COMMAND_RING_STOPPED) cmd_comp_code = COMP_COMMAND_RING_STOPPED; break; case TRB_RESET_EP: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); break; case TRB_RESET_DEV: /* SLOT_ID field in reset device cmd completion event TRB is 0. * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) */ slot_id = TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3])); xhci_handle_cmd_reset_dev(xhci, slot_id); break; case TRB_NEC_GET_FW: xhci_handle_cmd_nec_get_fw(xhci, event); break; default: /* Skip over unknown commands on the event ring */ xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); break; } /* restart timer if this wasn't the last command */ if (!list_is_singular(&xhci->cmd_list)) { xhci->current_cmd = list_first_entry(&cmd->cmd_list, struct xhci_command, cmd_list); xhci_mod_cmd_timer(xhci); } else if (xhci->current_cmd == cmd) { xhci->current_cmd = NULL; } event_handled: xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); inc_deq(xhci, xhci->cmd_ring); } static void handle_vendor_event(struct xhci_hcd *xhci, union xhci_trb *event, u32 trb_type) { xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) handle_cmd_completion(xhci, &event->event_cmd); } static void handle_device_notification(struct xhci_hcd *xhci, union xhci_trb *event) { u32 slot_id; struct usb_device *udev; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); if (!xhci->devs[slot_id]) { xhci_warn(xhci, "Device Notification event for " "unused slot %u\n", slot_id); return; } xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", slot_id); udev = xhci->devs[slot_id]->udev; if (udev && udev->parent) usb_wakeup_notification(udev->parent, udev->portnum); } /* * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI * Controller. * As per ThunderX2errata-129 USB 2 device may come up as USB 1 * If a connection to a USB 1 device is followed by another connection * to a USB 2 device. * * Reset the PHY after the USB device is disconnected if device speed * is less than HCD_USB3. * Retry the reset sequence max of 4 times checking the PLL lock status. * */ static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) { struct usb_hcd *hcd = xhci_to_hcd(xhci); u32 pll_lock_check; u32 retry_count = 4; do { /* Assert PHY reset */ writel(0x6F, hcd->regs + 0x1048); udelay(10); /* De-assert the PHY reset */ writel(0x7F, hcd->regs + 0x1048); udelay(200); pll_lock_check = readl(hcd->regs + 0x1070); } while (!(pll_lock_check & 0x1) && --retry_count); } static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) { struct usb_hcd *hcd; u32 port_id; u32 portsc, cmd_reg; int max_ports; unsigned int hcd_portnum; struct xhci_bus_state *bus_state; bool bogus_port_status = false; struct xhci_port *port; /* Port status change events always have a successful completion code */ if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); max_ports = HCS_MAX_PORTS(xhci->hcs_params1); if ((port_id <= 0) || (port_id > max_ports)) { xhci_warn(xhci, "Port change event with invalid port ID %d\n", port_id); return; } port = &xhci->hw_ports[port_id - 1]; if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { xhci_warn(xhci, "Port change event, no port for port ID %u\n", port_id); bogus_port_status = true; goto cleanup; } /* We might get interrupts after shared_hcd is removed */ if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); bogus_port_status = true; goto cleanup; } hcd = port->rhub->hcd; bus_state = &port->rhub->bus_state; hcd_portnum = port->hcd_portnum; portsc = readl(port->addr); xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", hcd->self.busnum, hcd_portnum + 1, port_id, portsc); trace_xhci_handle_port_status(port, portsc); if (hcd->state == HC_STATE_SUSPENDED) { xhci_dbg(xhci, "resume root hub\n"); usb_hcd_resume_root_hub(hcd); } if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { if (port->slot_id && xhci->devs[port->slot_id]) xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR; } if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { xhci_dbg(xhci, "port resume event for port %d\n", port_id); cmd_reg = readl(&xhci->op_regs->command); if (!(cmd_reg & CMD_RUN)) { xhci_warn(xhci, "xHC is not running.\n"); goto cleanup; } if (DEV_SUPERSPEED_ANY(portsc)) { xhci_dbg(xhci, "remote wake SS port %d\n", port_id); /* Set a flag to say the port signaled remote wakeup, * so we can tell the difference between the end of * device and host initiated resume. */ bus_state->port_remote_wakeup |= 1 << hcd_portnum; xhci_test_and_clear_bit(xhci, port, PORT_PLC); usb_hcd_start_port_resume(&hcd->self, hcd_portnum); xhci_set_link_state(xhci, port, XDEV_U0); /* Need to wait until the next link state change * indicates the device is actually in U0. */ bogus_port_status = true; goto cleanup; } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { xhci_dbg(xhci, "resume HS port %d\n", port_id); port->resume_timestamp = jiffies + msecs_to_jiffies(USB_RESUME_TIMEOUT); set_bit(hcd_portnum, &bus_state->resuming_ports); /* Do the rest in GetPortStatus after resume time delay. * Avoid polling roothub status before that so that a * usb device auto-resume latency around ~40ms. */ set_bit(HCD_FLAG_POLL_RH, &hcd->flags); mod_timer(&hcd->rh_timer, port->resume_timestamp); usb_hcd_start_port_resume(&hcd->self, hcd_portnum); bogus_port_status = true; } } if ((portsc & PORT_PLC) && DEV_SUPERSPEED_ANY(portsc) && ((portsc & PORT_PLS_MASK) == XDEV_U0 || (portsc & PORT_PLS_MASK) == XDEV_U1 || (portsc & PORT_PLS_MASK) == XDEV_U2)) { xhci_dbg(xhci, "resume SS port %d finished\n", port_id); complete(&port->u3exit_done); /* We've just brought the device into U0/1/2 through either the * Resume state after a device remote wakeup, or through the * U3Exit state after a host-initiated resume. If it's a device * initiated remote wake, don't pass up the link state change, * so the roothub behavior is consistent with external * USB 3.0 hub behavior. */ if (port->slot_id && xhci->devs[port->slot_id]) xhci_ring_device(xhci, port->slot_id); if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { xhci_test_and_clear_bit(xhci, port, PORT_PLC); usb_wakeup_notification(hcd->self.root_hub, hcd_portnum + 1); bogus_port_status = true; goto cleanup; } } /* * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or * RExit to a disconnect state). If so, let the driver know it's * out of the RExit state. */ if (hcd->speed < HCD_USB3 && port->rexit_active) { complete(&port->rexit_done); port->rexit_active = false; bogus_port_status = true; goto cleanup; } if (hcd->speed < HCD_USB3) { xhci_test_and_clear_bit(xhci, port, PORT_PLC); if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) xhci_cavium_reset_phy_quirk(xhci); } cleanup: /* Don't make the USB core poll the roothub if we got a bad port status * change event. Besides, at that point we can't tell which roothub * (USB 2.0 or USB 3.0) to kick. */ if (bogus_port_status) return; /* * xHCI port-status-change events occur when the "or" of all the * status-change bits in the portsc register changes from 0 to 1. * New status changes won't cause an event if any other change * bits are still set. When an event occurs, switch over to * polling to avoid losing status changes. */ xhci_dbg(xhci, "%s: starting usb%d port polling.\n", __func__, hcd->self.busnum); set_bit(HCD_FLAG_POLL_RH, &hcd->flags); spin_unlock(&xhci->lock); /* Pass this up to the core */ usb_hcd_poll_rh_status(hcd); spin_lock(&xhci->lock); } /* * If the suspect DMA address is a TRB in this TD, this function returns that * TRB's segment. Otherwise it returns 0. */ struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_td *td, dma_addr_t suspect_dma, bool debug) { dma_addr_t start_dma; dma_addr_t end_seg_dma; dma_addr_t end_trb_dma; struct xhci_segment *cur_seg; start_dma = xhci_trb_virt_to_dma(td->start_seg, td->first_trb); cur_seg = td->start_seg; do { if (start_dma == 0) return NULL; /* We may get an event for a Link TRB in the middle of a TD */ end_seg_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); /* If the end TRB isn't in this segment, this is set to 0 */ end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->last_trb); if (debug) xhci_warn(xhci, "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", (unsigned long long)suspect_dma, (unsigned long long)start_dma, (unsigned long long)end_trb_dma, (unsigned long long)cur_seg->dma, (unsigned long long)end_seg_dma); if (end_trb_dma > 0) { /* The end TRB is in this segment, so suspect should be here */ if (start_dma <= end_trb_dma) { if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) return cur_seg; } else { /* Case for one segment with * a TD wrapped around to the top */ if ((suspect_dma >= start_dma && suspect_dma <= end_seg_dma) || (suspect_dma >= cur_seg->dma && suspect_dma <= end_trb_dma)) return cur_seg; } return NULL; } else { /* Might still be somewhere in this segment */ if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) return cur_seg; } cur_seg = cur_seg->next; start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); } while (cur_seg != td->start_seg); return NULL; } static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_virt_ep *ep) { /* * As part of low/full-speed endpoint-halt processing * we must clear the TT buffer (USB 2.0 specification 11.17.5). */ if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && !(ep->ep_state & EP_CLEARING_TT)) { ep->ep_state |= EP_CLEARING_TT; td->urb->ep->hcpriv = td->urb->dev; if (usb_hub_clear_tt_buffer(td->urb)) ep->ep_state &= ~EP_CLEARING_TT; } } /* * Check if xhci internal endpoint state has gone to a "halt" state due to an * error or stall, including default control pipe protocol stall. * The internal halt needs to be cleared with a reset endpoint command. * * External device side is also halted in functional stall cases. Class driver * will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later. */ static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code) { /* Stall halts both internal and device side endpoint */ if (comp_code == COMP_STALL_ERROR) return true; /* TRB completion codes that may require internal halt cleanup */ if (comp_code == COMP_USB_TRANSACTION_ERROR || comp_code == COMP_BABBLE_DETECTED_ERROR || comp_code == COMP_SPLIT_TRANSACTION_ERROR) /* * The 0.95 spec says a babbling control endpoint is not halted. * The 0.96 spec says it is. Some HW claims to be 0.95 * compliant, but it halts the control endpoint anyway. * Check endpoint context if endpoint is halted. */ if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) return true; return false; } int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) { if (trb_comp_code >= 224 && trb_comp_code <= 255) { /* Vendor defined "informational" completion code, * treat as not-an-error. */ xhci_dbg(xhci, "Vendor defined info completion code %u\n", trb_comp_code); xhci_dbg(xhci, "Treating code as success.\n"); return 1; } return 0; } static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, struct xhci_ring *ep_ring, struct xhci_td *td, u32 trb_comp_code) { struct xhci_ep_ctx *ep_ctx; ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); switch (trb_comp_code) { case COMP_STOPPED_LENGTH_INVALID: case COMP_STOPPED_SHORT_PACKET: case COMP_STOPPED: /* * The "Stop Endpoint" completion will take care of any * stopped TDs. A stopped TD may be restarted, so don't update * the ring dequeue pointer or take this TD off any lists yet. */ return 0; case COMP_USB_TRANSACTION_ERROR: case COMP_BABBLE_DETECTED_ERROR: case COMP_SPLIT_TRANSACTION_ERROR: /* * If endpoint context state is not halted we might be * racing with a reset endpoint command issued by a unsuccessful * stop endpoint completion (context error). In that case the * td should be on the cancelled list, and EP_HALTED flag set. * * Or then it's not halted due to the 0.95 spec stating that a * babbling control endpoint should not halt. The 0.96 spec * again says it should. Some HW claims to be 0.95 compliant, * but it halts the control endpoint anyway. */ if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { /* * If EP_HALTED is set and TD is on the cancelled list * the TD and dequeue pointer will be handled by reset * ep command completion */ if ((ep->ep_state & EP_HALTED) && !list_empty(&td->cancelled_td_list)) { xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", (unsigned long long)xhci_trb_virt_to_dma( td->start_seg, td->first_trb)); return 0; } /* endpoint not halted, don't reset it */ break; } /* Almost same procedure as for STALL_ERROR below */ xhci_clear_hub_tt_buffer(xhci, td, ep); xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); return 0; case COMP_STALL_ERROR: /* * xhci internal endpoint state will go to a "halt" state for * any stall, including default control pipe protocol stall. * To clear the host side halt we need to issue a reset endpoint * command, followed by a set dequeue command to move past the * TD. * Class drivers clear the device side halt from a functional * stall later. Hub TT buffer should only be cleared for FS/LS * devices behind HS hubs for functional stalls. */ if (ep->ep_index != 0) xhci_clear_hub_tt_buffer(xhci, td, ep); xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); return 0; /* xhci_handle_halted_endpoint marked td cancelled */ default: break; } /* Update ring dequeue pointer */ ep_ring->dequeue = td->last_trb; ep_ring->deq_seg = td->last_trb_seg; inc_deq(xhci, ep_ring); return xhci_td_cleanup(xhci, td, ep_ring, td->status); } /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, union xhci_trb *stop_trb) { u32 sum; union xhci_trb *trb = ring->dequeue; struct xhci_segment *seg = ring->deq_seg; for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { if (!trb_is_noop(trb) && !trb_is_link(trb)) sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); } return sum; } /* * Process control tds, update urb status and actual_length. */ static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, struct xhci_ring *ep_ring, struct xhci_td *td, union xhci_trb *ep_trb, struct xhci_transfer_event *event) { struct xhci_ep_ctx *ep_ctx; u32 trb_comp_code; u32 remaining, requested; u32 trb_type; trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); requested = td->urb->transfer_buffer_length; remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); switch (trb_comp_code) { case COMP_SUCCESS: if (trb_type != TRB_STATUS) { xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", (trb_type == TRB_DATA) ? "data" : "setup"); td->status = -ESHUTDOWN; break; } td->status = 0; break; case COMP_SHORT_PACKET: td->status = 0; break; case COMP_STOPPED_SHORT_PACKET: if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) td->urb->actual_length = remaining; else xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); goto finish_td; case COMP_STOPPED: switch (trb_type) { case TRB_SETUP: td->urb->actual_length = 0; goto finish_td; case TRB_DATA: case TRB_NORMAL: td->urb->actual_length = requested - remaining; goto finish_td; case TRB_STATUS: td->urb->actual_length = requested; goto finish_td; default: xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", trb_type); goto finish_td; } case COMP_STOPPED_LENGTH_INVALID: goto finish_td; default: if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) break; xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", trb_comp_code, ep->ep_index); fallthrough; case COMP_STALL_ERROR: /* Did we transfer part of the data (middle) phase? */ if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) td->urb->actual_length = requested - remaining; else if (!td->urb_length_set) td->urb->actual_length = 0; goto finish_td; } /* stopped at setup stage, no data transferred */ if (trb_type == TRB_SETUP) goto finish_td; /* * if on data stage then update the actual_length of the URB and flag it * as set, so it won't be overwritten in the event for the last TRB. */ if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) { td->urb_length_set = true; td->urb->actual_length = requested - remaining; xhci_dbg(xhci, "Waiting for status stage event\n"); return 0; } /* at status stage */ if (!td->urb_length_set) td->urb->actual_length = requested; finish_td: return finish_td(xhci, ep, ep_ring, td, trb_comp_code); } /* * Process isochronous tds, update urb packet status and actual_length. */ static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, struct xhci_ring *ep_ring, struct xhci_td *td, union xhci_trb *ep_trb, struct xhci_transfer_event *event) { struct urb_priv *urb_priv; int idx; struct usb_iso_packet_descriptor *frame; u32 trb_comp_code; bool sum_trbs_for_length = false; u32 remaining, requested, ep_trb_len; int short_framestatus; trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); urb_priv = td->urb->hcpriv; idx = urb_priv->num_tds_done; frame = &td->urb->iso_frame_desc[idx]; requested = frame->length; remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? -EREMOTEIO : 0; /* handle completion code */ switch (trb_comp_code) { case COMP_SUCCESS: /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ if (td->error_mid_td) break; if (remaining) { frame->status = short_framestatus; sum_trbs_for_length = true; break; } frame->status = 0; break; case COMP_SHORT_PACKET: frame->status = short_framestatus; sum_trbs_for_length = true; break; case COMP_BANDWIDTH_OVERRUN_ERROR: frame->status = -ECOMM; break; case COMP_BABBLE_DETECTED_ERROR: sum_trbs_for_length = true; fallthrough; case COMP_ISOCH_BUFFER_OVERRUN: frame->status = -EOVERFLOW; if (ep_trb != td->last_trb) td->error_mid_td = true; break; case COMP_INCOMPATIBLE_DEVICE_ERROR: case COMP_STALL_ERROR: frame->status = -EPROTO; break; case COMP_USB_TRANSACTION_ERROR: frame->status = -EPROTO; sum_trbs_for_length = true; if (ep_trb != td->last_trb) td->error_mid_td = true; break; case COMP_STOPPED: sum_trbs_for_length = true; break; case COMP_STOPPED_SHORT_PACKET: /* field normally containing residue now contains tranferred */ frame->status = short_framestatus; requested = remaining; break; case COMP_STOPPED_LENGTH_INVALID: /* exclude stopped trb with invalid length from length sum */ sum_trbs_for_length = true; ep_trb_len = 0; remaining = 0; break; default: sum_trbs_for_length = true; frame->status = -1; break; } if (td->urb_length_set) goto finish_td; if (sum_trbs_for_length) frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + ep_trb_len - remaining; else frame->actual_length = requested; td->urb->actual_length += frame->actual_length; finish_td: /* Don't give back TD yet if we encountered an error mid TD */ if (td->error_mid_td && ep_trb != td->last_trb) { xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); td->urb_length_set = true; return 0; } return finish_td(xhci, ep, ep_ring, td, trb_comp_code); } static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_virt_ep *ep, int status) { struct urb_priv *urb_priv; struct usb_iso_packet_descriptor *frame; int idx; urb_priv = td->urb->hcpriv; idx = urb_priv->num_tds_done; frame = &td->urb->iso_frame_desc[idx]; /* The transfer is partly done. */ frame->status = -EXDEV; /* calc actual length */ frame->actual_length = 0; /* Update ring dequeue pointer */ ep->ring->dequeue = td->last_trb; ep->ring->deq_seg = td->last_trb_seg; inc_deq(xhci, ep->ring); return xhci_td_cleanup(xhci, td, ep->ring, status); } /* * Process bulk and interrupt tds, update urb status and actual_length. */ static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, struct xhci_ring *ep_ring, struct xhci_td *td, union xhci_trb *ep_trb, struct xhci_transfer_event *event) { struct xhci_slot_ctx *slot_ctx; u32 trb_comp_code; u32 remaining, requested, ep_trb_len; slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); requested = td->urb->transfer_buffer_length; switch (trb_comp_code) { case COMP_SUCCESS: ep->err_count = 0; /* handle success with untransferred data as short packet */ if (ep_trb != td->last_trb || remaining) { xhci_warn(xhci, "WARN Successful completion on short TX\n"); xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", td->urb->ep->desc.bEndpointAddress, requested, remaining); } td->status = 0; break; case COMP_SHORT_PACKET: td->status = 0; break; case COMP_STOPPED_SHORT_PACKET: td->urb->actual_length = remaining; goto finish_td; case COMP_STOPPED_LENGTH_INVALID: /* stopped on ep trb with invalid length, exclude it */ td->urb->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb); goto finish_td; case COMP_USB_TRANSACTION_ERROR: if (xhci->quirks & XHCI_NO_SOFT_RETRY || (ep->err_count++ > MAX_SOFT_RETRY) || le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) break; td->status = 0; xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); return 0; default: /* do nothing */ break; } if (ep_trb == td->last_trb) td->urb->actual_length = requested - remaining; else td->urb->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + ep_trb_len - remaining; finish_td: if (remaining > requested) { xhci_warn(xhci, "bad transfer trb length %d in event trb\n", remaining); td->urb->actual_length = 0; } return finish_td(xhci, ep, ep_ring, td, trb_comp_code); } /* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */ static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, u32 trb_comp_code) { switch (trb_comp_code) { case COMP_STALL_ERROR: case COMP_USB_TRANSACTION_ERROR: case COMP_INVALID_STREAM_TYPE_ERROR: case COMP_INVALID_STREAM_ID_ERROR: xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index); if (ep->err_count++ > MAX_SOFT_RETRY) xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET); else xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET); break; case COMP_RING_UNDERRUN: case COMP_RING_OVERRUN: case COMP_STOPPED_LENGTH_INVALID: break; default: xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n", trb_comp_code, ep->vdev->slot_id, ep->ep_index); return -ENODEV; } return 0; } /* * If this function returns an error condition, it means it got a Transfer * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. * At this point, the host controller is probably hosed and should be reset. */ static int handle_tx_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir, struct xhci_transfer_event *event) { struct xhci_virt_ep *ep; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct xhci_td *td = NULL; dma_addr_t ep_trb_dma; struct xhci_segment *ep_seg; union xhci_trb *ep_trb; int status = -EINPROGRESS; struct xhci_ep_ctx *ep_ctx; u32 trb_comp_code; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); ep_trb_dma = le64_to_cpu(event->buffer); ep = xhci_get_virt_ep(xhci, slot_id, ep_index); if (!ep) { xhci_err(xhci, "ERROR Invalid Transfer event\n"); goto err_out; } ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { xhci_err(xhci, "ERROR Transfer event for disabled endpoint slot %u ep %u\n", slot_id, ep_index); goto err_out; } if (!ep_ring) return handle_transferless_tx_event(xhci, ep, trb_comp_code); /* Look for common error cases */ switch (trb_comp_code) { /* Skip codes that require special handling depending on * transfer type */ case COMP_SUCCESS: if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { trb_comp_code = COMP_SHORT_PACKET; xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td short %d\n", slot_id, ep_index, ep_ring->last_td_was_short); } break; case COMP_SHORT_PACKET: break; /* Completion codes for endpoint stopped state */ case COMP_STOPPED: xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", slot_id, ep_index); break; case COMP_STOPPED_LENGTH_INVALID: xhci_dbg(xhci, "Stopped on No-op or Link TRB for slot %u ep %u\n", slot_id, ep_index); break; case COMP_STOPPED_SHORT_PACKET: xhci_dbg(xhci, "Stopped with short packet transfer detected for slot %u ep %u\n", slot_id, ep_index); break; /* Completion codes for endpoint halted state */ case COMP_STALL_ERROR: xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, ep_index); status = -EPIPE; break; case COMP_SPLIT_TRANSACTION_ERROR: xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", slot_id, ep_index); status = -EPROTO; break; case COMP_USB_TRANSACTION_ERROR: xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", slot_id, ep_index); status = -EPROTO; break; case COMP_BABBLE_DETECTED_ERROR: xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", slot_id, ep_index); status = -EOVERFLOW; break; /* Completion codes for endpoint error state */ case COMP_TRB_ERROR: xhci_warn(xhci, "WARN: TRB error for slot %u ep %u on endpoint\n", slot_id, ep_index); status = -EILSEQ; break; /* completion codes not indicating endpoint state change */ case COMP_DATA_BUFFER_ERROR: xhci_warn(xhci, "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", slot_id, ep_index); status = -ENOSR; break; case COMP_BANDWIDTH_OVERRUN_ERROR: xhci_warn(xhci, "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", slot_id, ep_index); break; case COMP_ISOCH_BUFFER_OVERRUN: xhci_warn(xhci, "WARN: buffer overrun event for slot %u ep %u on endpoint", slot_id, ep_index); break; case COMP_RING_UNDERRUN: /* * When the Isoch ring is empty, the xHC will generate * a Ring Overrun Event for IN Isoch endpoint or Ring * Underrun Event for OUT Isoch endpoint. */ xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index); if (ep->skip) break; return 0; case COMP_RING_OVERRUN: xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index); if (ep->skip) break; return 0; case COMP_MISSED_SERVICE_ERROR: /* * When encounter missed service error, one or more isoc tds * may be missed by xHC. * Set skip flag of the ep_ring; Complete the missed tds as * short transfer when process the ep_ring next time. */ ep->skip = true; xhci_dbg(xhci, "Miss service interval error for slot %u ep %u, set skip flag\n", slot_id, ep_index); return 0; case COMP_NO_PING_RESPONSE_ERROR: ep->skip = true; xhci_dbg(xhci, "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", slot_id, ep_index); return 0; case COMP_INCOMPATIBLE_DEVICE_ERROR: /* needs disable slot command to recover */ xhci_warn(xhci, "WARN: detect an incompatible device for slot %u ep %u", slot_id, ep_index); status = -EPROTO; break; default: if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { status = 0; break; } xhci_warn(xhci, "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", trb_comp_code, slot_id, ep_index); if (ep->skip) break; return 0; } /* * xhci 4.10.2 states isoc endpoints should continue * processing the next TD if there was an error mid TD. * So host like NEC don't generate an event for the last * isoc TRB even if the IOC flag is set. * xhci 4.9.1 states that if there are errors in mult-TRB * TDs xHC should generate an error for that TRB, and if xHC * proceeds to the next TD it should genete an event for * any TRB with IOC flag on the way. Other host follow this. * * We wait for the final IOC event, but if we get an event * anywhere outside this TD, just give it back already. */ td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list); if (td && td->error_mid_td && !trb_in_td(xhci, td, ep_trb_dma, false)) { xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); ep_ring->dequeue = td->last_trb; ep_ring->deq_seg = td->last_trb_seg; inc_deq(xhci, ep_ring); xhci_td_cleanup(xhci, td, ep_ring, td->status); } if (list_empty(&ep_ring->td_list)) { /* * Don't print wanings if ring is empty due to a stopped endpoint generating an * extra completion event if the device was suspended. Or, a event for the last TRB * of a short TD we already got a short event for. The short TD is already removed * from the TD list. */ if (trb_comp_code != COMP_STOPPED && trb_comp_code != COMP_STOPPED_LENGTH_INVALID && !ep_ring->last_td_was_short) { xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n", slot_id, ep_index); } ep->skip = false; goto check_endpoint_halted; } do { td = list_first_entry(&ep_ring->td_list, struct xhci_td, td_list); /* Is this a TRB in the currently executing TD? */ ep_seg = trb_in_td(xhci, td, ep_trb_dma, false); if (!ep_seg) { if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { skip_isoc_td(xhci, td, ep, status); if (!list_empty(&ep_ring->td_list)) continue; xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n", slot_id, ep_index); ep->skip = false; td = NULL; goto check_endpoint_halted; } /* * Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current * TD pointed by 'ep_ring->dequeue' because that the hardware dequeue * pointer still at the previous TRB of the current TD. The previous TRB * maybe a Link TD or the last TRB of the previous TD. The command * completion handle will take care the rest. */ if (trb_comp_code == COMP_STOPPED || trb_comp_code == COMP_STOPPED_LENGTH_INVALID) { return 0; } /* * Some hosts give a spurious success event after a short * transfer. Ignore it. */ if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && ep_ring->last_td_was_short) { ep_ring->last_td_was_short = false; return 0; } /* HC is busted, give up! */ xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not part of current TD ep_index %d comp_code %u\n", ep_index, trb_comp_code); trb_in_td(xhci, td, ep_trb_dma, true); return -ESHUTDOWN; } if (ep->skip) { xhci_dbg(xhci, "Found td. Clear skip flag for slot %u ep %u.\n", slot_id, ep_index); ep->skip = false; } /* * If ep->skip is set, it means there are missed tds on the * endpoint ring need to take care of. * Process them as short transfer until reach the td pointed by * the event. */ } while (ep->skip); if (trb_comp_code == COMP_SHORT_PACKET) ep_ring->last_td_was_short = true; else ep_ring->last_td_was_short = false; ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb); /* * No-op TRB could trigger interrupts in a case where a URB was killed * and a STALL_ERROR happens right after the endpoint ring stopped. * Reset the halted endpoint. Otherwise, the endpoint remains stalled * indefinitely. */ if (trb_is_noop(ep_trb)) goto check_endpoint_halted; td->status = status; /* update the urb's actual_length and give back to the core */ if (usb_endpoint_xfer_control(&td->urb->ep->desc)) process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); else process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); return 0; check_endpoint_halted: if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code)) xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); return 0; err_out: xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", (unsigned long long) xhci_trb_virt_to_dma( ir->event_ring->deq_seg, ir->event_ring->dequeue), lower_32_bits(le64_to_cpu(event->buffer)), upper_32_bits(le64_to_cpu(event->buffer)), le32_to_cpu(event->transfer_len), le32_to_cpu(event->flags)); return -ENODEV; } /* * This function handles one OS-owned event on the event ring. It may drop * xhci->lock between event processing (e.g. to pass up port status changes). */ static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir, union xhci_trb *event) { u32 trb_type; trace_xhci_handle_event(ir->event_ring, &event->generic); /* * Barrier between reading the TRB_CYCLE (valid) flag before, and any * speculative reads of the event's flags/data below. */ rmb(); trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); /* FIXME: Handle more event types. */ switch (trb_type) { case TRB_COMPLETION: handle_cmd_completion(xhci, &event->event_cmd); break; case TRB_PORT_STATUS: handle_port_status(xhci, event); break; case TRB_TRANSFER: handle_tx_event(xhci, ir, &event->trans_event); break; case TRB_DEV_NOTE: handle_device_notification(xhci, event); break; default: if (trb_type >= TRB_VENDOR_DEFINED_LOW) handle_vendor_event(xhci, event, trb_type); else xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); } /* Any of the above functions may drop and re-acquire the lock, so check * to make sure a watchdog timer didn't mark the host as non-responsive. */ if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n"); return -ENODEV; } return 0; } /* * Update Event Ring Dequeue Pointer: * - When all events have finished * - To avoid "Event Ring Full Error" condition */ static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, struct xhci_interrupter *ir, bool clear_ehb) { u64 temp_64; dma_addr_t deq; temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, ir->event_ring->dequeue); if (deq == 0) xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); /* * Per 4.9.4, Software writes to the ERDP register shall always advance * the Event Ring Dequeue Pointer value. */ if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb) return; /* Update HC event ring dequeue pointer */ temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK; temp_64 |= deq & ERST_PTR_MASK; /* Clear the event handler busy flag (RW1C) */ if (clear_ehb) temp_64 |= ERST_EHB; xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); } /* Clear the interrupt pending bit for a specific interrupter. */ static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir) { if (!ir->ip_autoclear) { u32 irq_pending; irq_pending = readl(&ir->ir_set->irq_pending); irq_pending |= IMAN_IP; writel(irq_pending, &ir->ir_set->irq_pending); } } /* * Handle all OS-owned events on an interrupter event ring. It may drop * and reaquire xhci->lock between event processing. */ static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir) { int event_loop = 0; int err; u64 temp; xhci_clear_interrupt_pending(ir); /* Event ring hasn't been allocated yet. */ if (!ir->event_ring || !ir->event_ring->dequeue) { xhci_err(xhci, "ERROR interrupter event ring not ready\n"); return -ENOMEM; } if (xhci->xhc_state & XHCI_STATE_DYING || xhci->xhc_state & XHCI_STATE_HALTED) { xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n"); /* Clear the event handler busy flag (RW1C) */ temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue); return -ENODEV; } /* Process all OS owned event TRBs on this event ring */ while (unhandled_event_trb(ir->event_ring)) { err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue); /* * If half a segment of events have been handled in one go then * update ERDP, and force isoc trbs to interrupt more often */ if (event_loop++ > TRBS_PER_SEGMENT / 2) { xhci_update_erst_dequeue(xhci, ir, false); if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) ir->isoc_bei_interval = ir->isoc_bei_interval / 2; event_loop = 0; } /* Update SW event ring dequeue pointer */ inc_deq(xhci, ir->event_ring); if (err) break; } xhci_update_erst_dequeue(xhci, ir, true); return 0; } /* * xHCI spec says we can get an interrupt, and if the HC has an error condition, * we might get bad data out of the event ring. Section 4.10.2.7 has a list of * indicators of an event TRB error, but we check the status *first* to be safe. */ irqreturn_t xhci_irq(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); irqreturn_t ret = IRQ_HANDLED; u32 status; spin_lock(&xhci->lock); /* Check if the xHC generated the interrupt, or the irq is shared */ status = readl(&xhci->op_regs->status); if (status == ~(u32)0) { xhci_hc_died(xhci); goto out; } if (!(status & STS_EINT)) { ret = IRQ_NONE; goto out; } if (status & STS_HCE) { xhci_warn(xhci, "WARNING: Host Controller Error\n"); goto out; } if (status & STS_FATAL) { xhci_warn(xhci, "WARNING: Host System Error\n"); xhci_halt(xhci); goto out; } /* * Clear the op reg interrupt status first, * so we can receive interrupts from other MSI-X interrupters. * Write 1 to clear the interrupt status. */ status |= STS_EINT; writel(status, &xhci->op_regs->status); /* This is the handler of the primary interrupter */ xhci_handle_events(xhci, xhci->interrupters[0]); out: spin_unlock(&xhci->lock); return ret; } irqreturn_t xhci_msi_irq(int irq, void *hcd) { return xhci_irq(hcd); } EXPORT_SYMBOL_GPL(xhci_msi_irq); /**** Endpoint Ring Operations ****/ /* * Generic function for queueing a TRB on a ring. * The caller must have checked to make sure there's room on the ring. * * @more_trbs_coming: Will you enqueue more TRBs before calling * prepare_transfer()? */ static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, bool more_trbs_coming, u32 field1, u32 field2, u32 field3, u32 field4) { struct xhci_generic_trb *trb; trb = &ring->enqueue->generic; trb->field[0] = cpu_to_le32(field1); trb->field[1] = cpu_to_le32(field2); trb->field[2] = cpu_to_le32(field3); /* make sure TRB is fully written before giving it to the controller */ wmb(); trb->field[3] = cpu_to_le32(field4); trace_xhci_queue_trb(ring, trb); inc_enq(xhci, ring, more_trbs_coming); } /* * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. * expand ring if it start to be full. */ static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) { unsigned int link_trb_count = 0; unsigned int new_segs = 0; /* Make sure the endpoint has been added to xHC schedule */ switch (ep_state) { case EP_STATE_DISABLED: /* * USB core changed config/interfaces without notifying us, * or hardware is reporting the wrong state. */ xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); return -ENOENT; case EP_STATE_ERROR: xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); /* FIXME event handling code for error needs to clear it */ /* XXX not sure if this should be -ENOENT or not */ return -EINVAL; case EP_STATE_HALTED: xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); break; case EP_STATE_STOPPED: case EP_STATE_RUNNING: break; default: xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); /* * FIXME issue Configure Endpoint command to try to get the HC * back into a known state. */ return -EINVAL; } if (ep_ring != xhci->cmd_ring) { new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); } else if (xhci_num_trbs_free(ep_ring) <= num_trbs) { xhci_err(xhci, "Do not support expand command ring\n"); return -ENOMEM; } if (new_segs) { xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, "ERROR no room on ep ring, try ring expansion"); if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { xhci_err(xhci, "Ring expansion failed\n"); return -ENOMEM; } } while (trb_is_link(ep_ring->enqueue)) { /* If we're not dealing with 0.95 hardware or isoc rings * on AMD 0.96 host, clear the chain bit. */ if (!xhci_link_chain_quirk(xhci, ep_ring->type)) ep_ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); else ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN); wmb(); ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); /* Toggle the cycle bit after the last ring segment. */ if (link_trb_toggles_cycle(ep_ring->enqueue)) ep_ring->cycle_state ^= 1; ep_ring->enq_seg = ep_ring->enq_seg->next; ep_ring->enqueue = ep_ring->enq_seg->trbs; /* prevent infinite loop if all first trbs are link trbs */ if (link_trb_count++ > ep_ring->num_segs) { xhci_warn(xhci, "Ring is an endless link TRB loop\n"); return -EINVAL; } } if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); return -EINVAL; } return 0; } static int prepare_transfer(struct xhci_hcd *xhci, struct xhci_virt_device *xdev, unsigned int ep_index, unsigned int stream_id, unsigned int num_trbs, struct urb *urb, unsigned int td_index, gfp_t mem_flags) { int ret; struct urb_priv *urb_priv; struct xhci_td *td; struct xhci_ring *ep_ring; struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, stream_id); if (!ep_ring) { xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", stream_id); return -EINVAL; } ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), num_trbs, mem_flags); if (ret) return ret; urb_priv = urb->hcpriv; td = &urb_priv->td[td_index]; INIT_LIST_HEAD(&td->td_list); INIT_LIST_HEAD(&td->cancelled_td_list); if (td_index == 0) { ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); if (unlikely(ret)) return ret; } td->urb = urb; /* Add this TD to the tail of the endpoint ring's TD list */ list_add_tail(&td->td_list, &ep_ring->td_list); td->start_seg = ep_ring->enq_seg; td->first_trb = ep_ring->enqueue; return 0; } unsigned int count_trbs(u64 addr, u64 len) { unsigned int num_trbs; num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), TRB_MAX_BUFF_SIZE); if (num_trbs == 0) num_trbs++; return num_trbs; } static inline unsigned int count_trbs_needed(struct urb *urb) { return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); } static unsigned int count_sg_trbs_needed(struct urb *urb) { struct scatterlist *sg; unsigned int i, len, full_len, num_trbs = 0; full_len = urb->transfer_buffer_length; for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { len = sg_dma_len(sg); num_trbs += count_trbs(sg_dma_address(sg), len); len = min_t(unsigned int, len, full_len); full_len -= len; if (full_len == 0) break; } return num_trbs; } static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) { u64 addr, len; addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); len = urb->iso_frame_desc[i].length; return count_trbs(addr, len); } static void check_trb_math(struct urb *urb, int running_total) { if (unlikely(running_total != urb->transfer_buffer_length)) dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " "queued %#x (%d), asked for %#x (%d)\n", __func__, urb->ep->desc.bEndpointAddress, running_total, running_total, urb->transfer_buffer_length, urb->transfer_buffer_length); } static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, unsigned int stream_id, int start_cycle, struct xhci_generic_trb *start_trb) { /* * Pass all the TRBs to the hardware at once and make sure this write * isn't reordered. */ wmb(); if (start_cycle) start_trb->field[3] |= cpu_to_le32(start_cycle); else start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); } static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx) { int xhci_interval; int ep_interval; xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); ep_interval = urb->interval; /* Convert to microframes */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) ep_interval *= 8; /* FIXME change this to a warning and a suggestion to use the new API * to set the polling interval (once the API is added). */ if (xhci_interval != ep_interval) { dev_dbg_ratelimited(&urb->dev->dev, "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", ep_interval, ep_interval == 1 ? "" : "s", xhci_interval, xhci_interval == 1 ? "" : "s"); urb->interval = xhci_interval; /* Convert back to frames for LS/FS devices */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->interval /= 8; } } /* * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD * (comprised of sg list entries) can take several service intervals to * transmit. */ int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ep_ctx *ep_ctx; ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); check_interval(urb, ep_ctx); return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); } /* * For xHCI 1.0 host controllers, TD size is the number of max packet sized * packets remaining in the TD (*not* including this TRB). * * Total TD packet count = total_packet_count = * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) * * Packets transferred up to and including this TRB = packets_transferred = * rounddown(total bytes transferred including this TRB / wMaxPacketSize) * * TD size = total_packet_count - packets_transferred * * For xHCI 0.96 and older, TD size field should be the remaining bytes * including this TRB, right shifted by 10 * * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. * This is taken care of in the TRB_TD_SIZE() macro * * The last TRB in a TD must have the TD size set to zero. */ static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, int trb_buff_len, unsigned int td_total_len, struct urb *urb, bool more_trbs_coming) { u32 maxp, total_packet_count; /* MTK xHCI 0.96 contains some features from 1.0 */ if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) return ((td_total_len - transferred) >> 10); /* One TRB with a zero-length data packet. */ if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || trb_buff_len == td_total_len) return 0; /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) trb_buff_len = 0; maxp = usb_endpoint_maxp(&urb->ep->desc); total_packet_count = DIV_ROUND_UP(td_total_len, maxp); /* Queueing functions don't count the current TRB into transferred */ return (total_packet_count - ((transferred + trb_buff_len) / maxp)); } static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, u32 *trb_buff_len, struct xhci_segment *seg) { struct device *dev = xhci_to_hcd(xhci)->self.sysdev; unsigned int unalign; unsigned int max_pkt; u32 new_buff_len; size_t len; max_pkt = usb_endpoint_maxp(&urb->ep->desc); unalign = (enqd_len + *trb_buff_len) % max_pkt; /* we got lucky, last normal TRB data on segment is packet aligned */ if (unalign == 0) return 0; xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", unalign, *trb_buff_len); /* is the last nornal TRB alignable by splitting it */ if (*trb_buff_len > unalign) { *trb_buff_len -= unalign; xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); return 0; } /* * We want enqd_len + trb_buff_len to sum up to a number aligned to * number which is divisible by the endpoint's wMaxPacketSize. IOW: * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. */ new_buff_len = max_pkt - (enqd_len % max_pkt); if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) new_buff_len = (urb->transfer_buffer_length - enqd_len); /* create a max max_pkt sized bounce buffer pointed to by last trb */ if (usb_urb_dir_out(urb)) { if (urb->num_sgs) { len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, new_buff_len, enqd_len); if (len != new_buff_len) xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", len, new_buff_len); } else { memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); } seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, max_pkt, DMA_TO_DEVICE); } else { seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, max_pkt, DMA_FROM_DEVICE); } if (dma_mapping_error(dev, seg->bounce_dma)) { /* try without aligning. Some host controllers survive */ xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); return 0; } *trb_buff_len = new_buff_len; seg->bounce_len = new_buff_len; seg->bounce_offs = enqd_len; xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); return 1; } /* This is very similar to what ehci-q.c qtd_fill() does */ int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ring; struct urb_priv *urb_priv; struct xhci_td *td; struct xhci_generic_trb *start_trb; struct scatterlist *sg = NULL; bool more_trbs_coming = true; bool need_zero_pkt = false; bool first_trb = true; unsigned int num_trbs; unsigned int start_cycle, num_sgs = 0; unsigned int enqd_len, block_len, trb_buff_len, full_len; int sent_len, ret; u32 field, length_field, remainder; u64 addr, send_addr; ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ring) return -EINVAL; full_len = urb->transfer_buffer_length; /* If we have scatter/gather list, we use it. */ if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { num_sgs = urb->num_mapped_sgs; sg = urb->sg; addr = (u64) sg_dma_address(sg); block_len = sg_dma_len(sg); num_trbs = count_sg_trbs_needed(urb); } else { num_trbs = count_trbs_needed(urb); addr = (u64) urb->transfer_dma; block_len = full_len; } ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (unlikely(ret < 0)) return ret; urb_priv = urb->hcpriv; /* Deal with URB_ZERO_PACKET - need one more td/trb */ if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) need_zero_pkt = true; td = &urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ring->enqueue->generic; start_cycle = ring->cycle_state; send_addr = addr; /* Queue the TRBs, even if they are zero-length */ for (enqd_len = 0; first_trb || enqd_len < full_len; enqd_len += trb_buff_len) { field = TRB_TYPE(TRB_NORMAL); /* TRB buffer should not cross 64KB boundaries */ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); if (enqd_len + trb_buff_len > full_len) trb_buff_len = full_len - enqd_len; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) { first_trb = false; if (start_cycle == 0) field |= TRB_CYCLE; } else field |= ring->cycle_state; /* Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (enqd_len + trb_buff_len < full_len) { field |= TRB_CHAIN; if (trb_is_link(ring->enqueue + 1)) { if (xhci_align_td(xhci, urb, enqd_len, &trb_buff_len, ring->enq_seg)) { send_addr = ring->enq_seg->bounce_dma; /* assuming TD won't span 2 segs */ td->bounce_seg = ring->enq_seg; } } } if (enqd_len + trb_buff_len >= full_len) { field &= ~TRB_CHAIN; field |= TRB_IOC; more_trbs_coming = false; td->last_trb = ring->enqueue; td->last_trb_seg = ring->enq_seg; if (xhci_urb_suitable_for_idt(urb)) { memcpy(&send_addr, urb->transfer_buffer, trb_buff_len); le64_to_cpus(&send_addr); field |= TRB_IDT; } } /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; /* Set the TRB length, TD size, and interrupter fields. */ remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, full_len, urb, more_trbs_coming); length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, lower_32_bits(send_addr), upper_32_bits(send_addr), length_field, field); addr += trb_buff_len; sent_len = trb_buff_len; while (sg && sent_len >= block_len) { /* New sg entry */ --num_sgs; sent_len -= block_len; sg = sg_next(sg); if (num_sgs != 0 && sg) { block_len = sg_dma_len(sg); addr = (u64) sg_dma_address(sg); addr += sent_len; } } block_len -= sent_len; send_addr = addr; } if (need_zero_pkt) { ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, 1, urb, 1, mem_flags); urb_priv->td[1].last_trb = ring->enqueue; urb_priv->td[1].last_trb_seg = ring->enq_seg; field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); } check_trb_math(urb, enqd_len); giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; } /* Caller must have locked xhci->lock */ int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; int num_trbs; int ret; struct usb_ctrlrequest *setup; struct xhci_generic_trb *start_trb; int start_cycle; u32 field; struct urb_priv *urb_priv; struct xhci_td *td; ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) return -EINVAL; /* * Need to copy setup packet into setup TRB, so we can't use the setup * DMA address. */ if (!urb->setup_packet) return -EINVAL; /* 1 TRB for setup, 1 for status */ num_trbs = 2; /* * Don't need to check if we need additional event data and normal TRBs, * since data in control transfers will never get bigger than 16MB * XXX: can we get a buffer that crosses 64KB boundaries? */ if (urb->transfer_buffer_length > 0) num_trbs++; ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (ret < 0) return ret; urb_priv = urb->hcpriv; td = &urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; /* Queue setup TRB - see section 6.4.1.2.1 */ /* FIXME better way to translate setup_packet into two u32 fields? */ setup = (struct usb_ctrlrequest *) urb->setup_packet; field = 0; field |= TRB_IDT | TRB_TYPE(TRB_SETUP); if (start_cycle == 0) field |= 0x1; /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { if (urb->transfer_buffer_length > 0) { if (setup->bRequestType & USB_DIR_IN) field |= TRB_TX_TYPE(TRB_DATA_IN); else field |= TRB_TX_TYPE(TRB_DATA_OUT); } } queue_trb(xhci, ep_ring, true, setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, TRB_LEN(8) | TRB_INTR_TARGET(0), /* Immediate data in pointer */ field); /* If there's data, queue data TRBs */ /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field = TRB_ISP | TRB_TYPE(TRB_DATA); else field = TRB_TYPE(TRB_DATA); if (urb->transfer_buffer_length > 0) { u32 length_field, remainder; u64 addr; if (xhci_urb_suitable_for_idt(urb)) { memcpy(&addr, urb->transfer_buffer, urb->transfer_buffer_length); le64_to_cpus(&addr); field |= TRB_IDT; } else { addr = (u64) urb->transfer_dma; } remainder = xhci_td_remainder(xhci, 0, urb->transfer_buffer_length, urb->transfer_buffer_length, urb, 1); length_field = TRB_LEN(urb->transfer_buffer_length) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); if (setup->bRequestType & USB_DIR_IN) field |= TRB_DIR_IN; queue_trb(xhci, ep_ring, true, lower_32_bits(addr), upper_32_bits(addr), length_field, field | ep_ring->cycle_state); } /* Save the DMA address of the last TRB in the TD */ td->last_trb = ep_ring->enqueue; td->last_trb_seg = ep_ring->enq_seg; /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ /* If the device sent data, the status stage is an OUT transfer */ if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) field = 0; else field = TRB_DIR_IN; queue_trb(xhci, ep_ring, false, 0, 0, TRB_INTR_TARGET(0), /* Event on completion */ field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); giveback_first_trb(xhci, slot_id, ep_index, 0, start_cycle, start_trb); return 0; } /* * The transfer burst count field of the isochronous TRB defines the number of * bursts that are required to move all packets in this TD. Only SuperSpeed * devices can burst up to bMaxBurst number of packets per service interval. * This field is zero based, meaning a value of zero in the field means one * burst. Basically, for everything but SuperSpeed devices, this field will be * zero. Only xHCI 1.0 host controllers support this field. */ static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, struct urb *urb, unsigned int total_packet_count) { unsigned int max_burst; if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) return 0; max_burst = urb->ep->ss_ep_comp.bMaxBurst; return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; } /* * Returns the number of packets in the last "burst" of packets. This field is * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so * the last burst packet count is equal to the total number of packets in the * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst * must contain (bMaxBurst + 1) number of packets, but the last burst can * contain 1 to (bMaxBurst + 1) packets. */ static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, struct urb *urb, unsigned int total_packet_count) { unsigned int max_burst; unsigned int residue; if (xhci->hci_version < 0x100) return 0; if (urb->dev->speed >= USB_SPEED_SUPER) { /* bMaxBurst is zero based: 0 means 1 packet per burst */ max_burst = urb->ep->ss_ep_comp.bMaxBurst; residue = total_packet_count % (max_burst + 1); /* If residue is zero, the last burst contains (max_burst + 1) * number of packets, but the TLBPC field is zero-based. */ if (residue == 0) return max_burst; return residue - 1; } if (total_packet_count == 0) return 0; return total_packet_count - 1; } /* * Calculates Frame ID field of the isochronous TRB identifies the * target frame that the Interval associated with this Isochronous * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. * * Returns actual frame id on success, negative value on error. */ static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, struct urb *urb, int index) { int start_frame, ist, ret = 0; int start_frame_id, end_frame_id, current_frame_id; if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) start_frame = urb->start_frame + index * urb->interval; else start_frame = (urb->start_frame + index * urb->interval) >> 3; /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): * * If bit [3] of IST is cleared to '0', software can add a TRB no * later than IST[2:0] Microframes before that TRB is scheduled to * be executed. * If bit [3] of IST is set to '1', software can add a TRB no later * than IST[2:0] Frames before that TRB is scheduled to be executed. */ ist = HCS_IST(xhci->hcs_params2) & 0x7; if (HCS_IST(xhci->hcs_params2) & (1 << 3)) ist <<= 3; /* Software shall not schedule an Isoch TD with a Frame ID value that * is less than the Start Frame ID or greater than the End Frame ID, * where: * * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 * * Both the End Frame ID and Start Frame ID values are calculated * in microframes. When software determines the valid Frame ID value; * The End Frame ID value should be rounded down to the nearest Frame * boundary, and the Start Frame ID value should be rounded up to the * nearest Frame boundary. */ current_frame_id = readl(&xhci->run_regs->microframe_index); start_frame_id = roundup(current_frame_id + ist + 1, 8); end_frame_id = rounddown(current_frame_id + 895 * 8, 8); start_frame &= 0x7ff; start_frame_id = (start_frame_id >> 3) & 0x7ff; end_frame_id = (end_frame_id >> 3) & 0x7ff; if (start_frame_id < end_frame_id) { if (start_frame > end_frame_id || start_frame < start_frame_id) ret = -EINVAL; } else if (start_frame_id > end_frame_id) { if ((start_frame > end_frame_id && start_frame < start_frame_id)) ret = -EINVAL; } else { ret = -EINVAL; } if (index == 0) { if (ret == -EINVAL || start_frame == start_frame_id) { start_frame = start_frame_id + 1; if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->start_frame = start_frame; else urb->start_frame = start_frame << 3; ret = 0; } } if (ret) { xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", start_frame, current_frame_id, index, start_frame_id, end_frame_id); xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); return ret; } return start_frame; } /* Check if we should generate event interrupt for a TD in an isoc URB */ static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i, struct xhci_interrupter *ir) { if (xhci->hci_version < 0x100) return false; /* always generate an event interrupt for the last TD */ if (i == num_tds - 1) return false; /* * If AVOID_BEI is set the host handles full event rings poorly, * generate an event at least every 8th TD to clear the event ring */ if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI) return !!(i % ir->isoc_bei_interval); return true; } /* This is for isoc transfer */ static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_interrupter *ir; struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct xhci_td *td; int num_tds, trbs_per_td; struct xhci_generic_trb *start_trb; bool first_trb; int start_cycle; u32 field, length_field; int running_total, trb_buff_len, td_len, td_remain_len, ret; u64 start_addr, addr; int i, j; bool more_trbs_coming; struct xhci_virt_ep *xep; int frame_id; xep = &xhci->devs[slot_id]->eps[ep_index]; ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; ir = xhci->interrupters[0]; num_tds = urb->number_of_packets; if (num_tds < 1) { xhci_dbg(xhci, "Isoc URB with zero packets?\n"); return -EINVAL; } start_addr = (u64) urb->transfer_dma; start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; urb_priv = urb->hcpriv; /* Queue the TRBs for each TD, even if they are zero-length */ for (i = 0; i < num_tds; i++) { unsigned int total_pkt_count, max_pkt; unsigned int burst_count, last_burst_pkt_count; u32 sia_frame_id; first_trb = true; running_total = 0; addr = start_addr + urb->iso_frame_desc[i].offset; td_len = urb->iso_frame_desc[i].length; td_remain_len = td_len; max_pkt = usb_endpoint_maxp(&urb->ep->desc); total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); /* A zero-length transfer still involves at least one packet. */ if (total_pkt_count == 0) total_pkt_count++; burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, urb, total_pkt_count); trbs_per_td = count_isoc_trbs_needed(urb, i); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, trbs_per_td, urb, i, mem_flags); if (ret < 0) { if (i == 0) return ret; goto cleanup; } td = &urb_priv->td[i]; /* use SIA as default, if frame id is used overwrite it */ sia_frame_id = TRB_SIA; if (!(urb->transfer_flags & URB_ISO_ASAP) && HCC_CFC(xhci->hcc_params)) { frame_id = xhci_get_isoc_frame_id(xhci, urb, i); if (frame_id >= 0) sia_frame_id = TRB_FRAME_ID(frame_id); } /* * Set isoc specific data for the first TRB in a TD. * Prevent HW from getting the TRBs by keeping the cycle state * inverted in the first TDs isoc TRB. */ field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt_count) | sia_frame_id | (i ? ep_ring->cycle_state : !start_cycle); /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ if (!xep->use_extended_tbc) field |= TRB_TBC(burst_count); /* fill the rest of the TRB fields, and remaining normal TRBs */ for (j = 0; j < trbs_per_td; j++) { u32 remainder = 0; /* only first TRB is isoc, overwrite otherwise */ if (!first_trb) field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state; /* Only set interrupt on short packet for IN EPs */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; /* Set the chain bit for all except the last TRB */ if (j < trbs_per_td - 1) { more_trbs_coming = true; field |= TRB_CHAIN; } else { more_trbs_coming = false; td->last_trb = ep_ring->enqueue; td->last_trb_seg = ep_ring->enq_seg; field |= TRB_IOC; if (trb_block_event_intr(xhci, num_tds, i, ir)) field |= TRB_BEI; } /* Calculate TRB length */ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); if (trb_buff_len > td_remain_len) trb_buff_len = td_remain_len; /* Set the TRB length, TD size, & interrupter fields. */ remainder = xhci_td_remainder(xhci, running_total, trb_buff_len, td_len, urb, more_trbs_coming); length_field = TRB_LEN(trb_buff_len) | TRB_INTR_TARGET(0); /* xhci 1.1 with ETE uses TD Size field for TBC */ if (first_trb && xep->use_extended_tbc) length_field |= TRB_TD_SIZE_TBC(burst_count); else length_field |= TRB_TD_SIZE(remainder); first_trb = false; queue_trb(xhci, ep_ring, more_trbs_coming, lower_32_bits(addr), upper_32_bits(addr), length_field, field); running_total += trb_buff_len; addr += trb_buff_len; td_remain_len -= trb_buff_len; } /* Check TD length */ if (running_total != td_len) { xhci_err(xhci, "ISOC TD length unmatch\n"); ret = -EINVAL; goto cleanup; } } /* store the next frame id */ if (HCC_CFC(xhci->hcc_params)) xep->next_frame_id = urb->start_frame + num_tds * urb->interval; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_disable(); } xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; cleanup: /* Clean up a partially enqueued isoc transfer. */ for (i--; i >= 0; i--) list_del_init(&urb_priv->td[i].td_list); /* Use the first TD as a temporary variable to turn the TDs we've queued * into No-ops with a software-owned cycle bit. That way the hardware * won't accidentally start executing bogus TDs when we partially * overwrite them. td->first_trb and td->start_seg are already set. */ urb_priv->td[0].last_trb = ep_ring->enqueue; /* Every TRB except the first & last will have its cycle bit flipped. */ td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); /* Reset the ring enqueue back to the first TRB and its cycle bit. */ ep_ring->enqueue = urb_priv->td[0].first_trb; ep_ring->enq_seg = urb_priv->td[0].start_seg; ep_ring->cycle_state = start_cycle; usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); return ret; } /* * Check transfer ring to guarantee there is enough room for the urb. * Update ISO URB start_frame and interval. * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or * Contiguous Frame ID is not supported by HC. */ int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_virt_device *xdev; struct xhci_ring *ep_ring; struct xhci_ep_ctx *ep_ctx; int start_frame; int num_tds, num_trbs, i; int ret; struct xhci_virt_ep *xep; int ist; xdev = xhci->devs[slot_id]; xep = &xhci->devs[slot_id]->eps[ep_index]; ep_ring = xdev->eps[ep_index].ring; ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); num_trbs = 0; num_tds = urb->number_of_packets; for (i = 0; i < num_tds; i++) num_trbs += count_isoc_trbs_needed(urb, i); /* Check the ring to guarantee there is enough room for the whole urb. * Do not insert any td of the urb to the ring if the check failed. */ ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), num_trbs, mem_flags); if (ret) return ret; /* * Check interval value. This should be done before we start to * calculate the start frame value. */ check_interval(urb, ep_ctx); /* Calculate the start frame and put it in urb->start_frame. */ if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { urb->start_frame = xep->next_frame_id; goto skip_start_over; } } start_frame = readl(&xhci->run_regs->microframe_index); start_frame &= 0x3fff; /* * Round up to the next frame and consider the time before trb really * gets scheduled by hardare. */ ist = HCS_IST(xhci->hcs_params2) & 0x7; if (HCS_IST(xhci->hcs_params2) & (1 << 3)) ist <<= 3; start_frame += ist + XHCI_CFC_DELAY; start_frame = roundup(start_frame, 8); /* * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT * is greate than 8 microframes. */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) { start_frame = roundup(start_frame, urb->interval << 3); urb->start_frame = start_frame >> 3; } else { start_frame = roundup(start_frame, urb->interval); urb->start_frame = start_frame; } skip_start_over: return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); } /**** Command Ring Operations ****/ /* Generic function for queueing a command TRB on the command ring. * Check to make sure there's room on the command ring for one command TRB. * Also check that there's room reserved for commands that must not fail. * If this is a command that must not fail, meaning command_must_succeed = TRUE, * then only check for the number of reserved spots. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB * because the command event handler may want to resubmit a failed command. */ static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 field1, u32 field2, u32 field3, u32 field4, bool command_must_succeed) { int reserved_trbs = xhci->cmd_ring_reserved_trbs; int ret; if ((xhci->xhc_state & XHCI_STATE_DYING) || (xhci->xhc_state & XHCI_STATE_HALTED)) { xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); return -ESHUTDOWN; } if (!command_must_succeed) reserved_trbs++; ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, reserved_trbs, GFP_ATOMIC); if (ret < 0) { xhci_err(xhci, "ERR: No room for command on command ring\n"); if (command_must_succeed) xhci_err(xhci, "ERR: Reserved TRB counting for " "unfailable commands failed.\n"); return ret; } cmd->command_trb = xhci->cmd_ring->enqueue; /* if there are no other commands queued we start the timeout timer */ if (list_empty(&xhci->cmd_list)) { xhci->current_cmd = cmd; xhci_mod_cmd_timer(xhci); } list_add_tail(&cmd->cmd_list, &xhci->cmd_list); queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, field4 | xhci->cmd_ring->cycle_state); return 0; } /* Queue a slot enable or disable request on the command ring */ int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 trb_type, u32 slot_id) { return queue_command(xhci, cmd, 0, 0, 0, TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue an address device command TRB */ int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); } int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 field1, u32 field2, u32 field3, u32 field4) { return queue_command(xhci, cmd, field1, field2, field3, field4, false); } /* Queue a reset device command TRB */ int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 slot_id) { return queue_command(xhci, cmd, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue a configure endpoint command TRB */ int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), command_must_succeed); } /* Queue an evaluate context command TRB */ int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), command_must_succeed); } /* * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop * activity on an endpoint that is about to be suspended. */ int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, int slot_id, unsigned int ep_index, int suspend) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_STOP_RING); u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); return queue_command(xhci, cmd, 0, 0, 0, trb_slot_id | trb_ep_index | type | trb_suspend, false); } int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, int slot_id, unsigned int ep_index, enum xhci_ep_reset_type reset_type) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_RESET_EP); if (reset_type == EP_SOFT_RESET) type |= TRB_TSP; return queue_command(xhci, cmd, 0, 0, 0, trb_slot_id | trb_ep_index | type, false); }