// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt driver - control channel and configuration commands * * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> * Copyright (C) 2018, Intel Corporation */ #include <linux/crc32.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/dmapool.h> #include <linux/workqueue.h> #include "ctl.h" #define CREATE_TRACE_POINTS #include "trace.h" #define TB_CTL_RX_PKG_COUNT 10 #define TB_CTL_RETRIES 4 /** * struct tb_ctl - Thunderbolt control channel * @nhi: Pointer to the NHI structure * @tx: Transmit ring * @rx: Receive ring * @frame_pool: DMA pool for control messages * @rx_packets: Received control messages * @request_queue_lock: Lock protecting @request_queue * @request_queue: List of outstanding requests * @running: Is the control channel running at the moment * @timeout_msec: Default timeout for non-raw control messages * @callback: Callback called when hotplug message is received * @callback_data: Data passed to @callback * @index: Domain number. This will be output with the trace record. */ struct tb_ctl { struct tb_nhi *nhi; struct tb_ring *tx; struct tb_ring *rx; struct dma_pool *frame_pool; struct ctl_pkg *rx_packets[TB_CTL_RX_PKG_COUNT]; struct mutex request_queue_lock; struct list_head request_queue; bool running; int timeout_msec; event_cb callback; void *callback_data; int index; }; #define tb_ctl_WARN(ctl, format, arg...) \ dev_WARN(&(ctl)->nhi->pdev->dev, format, ## arg) #define tb_ctl_err(ctl, format, arg...) \ dev_err(&(ctl)->nhi->pdev->dev, format, ## arg) #define tb_ctl_warn(ctl, format, arg...) \ dev_warn(&(ctl)->nhi->pdev->dev, format, ## arg) #define tb_ctl_info(ctl, format, arg...) \ dev_info(&(ctl)->nhi->pdev->dev, format, ## arg) #define tb_ctl_dbg(ctl, format, arg...) \ dev_dbg(&(ctl)->nhi->pdev->dev, format, ## arg) static DECLARE_WAIT_QUEUE_HEAD(tb_cfg_request_cancel_queue); /* Serializes access to request kref_get/put */ static DEFINE_MUTEX(tb_cfg_request_lock); /** * tb_cfg_request_alloc() - Allocates a new config request * * This is refcounted object so when you are done with this, call * tb_cfg_request_put() to it. */ struct tb_cfg_request *tb_cfg_request_alloc(void) { struct tb_cfg_request *req; req = kzalloc(sizeof(*req), GFP_KERNEL); if (!req) return NULL; kref_init(&req->kref); return req; } /** * tb_cfg_request_get() - Increase refcount of a request * @req: Request whose refcount is increased */ void tb_cfg_request_get(struct tb_cfg_request *req) { mutex_lock(&tb_cfg_request_lock); kref_get(&req->kref); mutex_unlock(&tb_cfg_request_lock); } static void tb_cfg_request_destroy(struct kref *kref) { struct tb_cfg_request *req = container_of(kref, typeof(*req), kref); kfree(req); } /** * tb_cfg_request_put() - Decrease refcount and possibly release the request * @req: Request whose refcount is decreased * * Call this function when you are done with the request. When refcount * goes to %0 the object is released. */ void tb_cfg_request_put(struct tb_cfg_request *req) { mutex_lock(&tb_cfg_request_lock); kref_put(&req->kref, tb_cfg_request_destroy); mutex_unlock(&tb_cfg_request_lock); } static int tb_cfg_request_enqueue(struct tb_ctl *ctl, struct tb_cfg_request *req) { WARN_ON(test_bit(TB_CFG_REQUEST_ACTIVE, &req->flags)); WARN_ON(req->ctl); mutex_lock(&ctl->request_queue_lock); if (!ctl->running) { mutex_unlock(&ctl->request_queue_lock); return -ENOTCONN; } req->ctl = ctl; list_add_tail(&req->list, &ctl->request_queue); set_bit(TB_CFG_REQUEST_ACTIVE, &req->flags); mutex_unlock(&ctl->request_queue_lock); return 0; } static void tb_cfg_request_dequeue(struct tb_cfg_request *req) { struct tb_ctl *ctl = req->ctl; mutex_lock(&ctl->request_queue_lock); list_del(&req->list); clear_bit(TB_CFG_REQUEST_ACTIVE, &req->flags); if (test_bit(TB_CFG_REQUEST_CANCELED, &req->flags)) wake_up(&tb_cfg_request_cancel_queue); mutex_unlock(&ctl->request_queue_lock); } static bool tb_cfg_request_is_active(struct tb_cfg_request *req) { return test_bit(TB_CFG_REQUEST_ACTIVE, &req->flags); } static struct tb_cfg_request * tb_cfg_request_find(struct tb_ctl *ctl, struct ctl_pkg *pkg) { struct tb_cfg_request *req = NULL, *iter; mutex_lock(&pkg->ctl->request_queue_lock); list_for_each_entry(iter, &pkg->ctl->request_queue, list) { tb_cfg_request_get(iter); if (iter->match(iter, pkg)) { req = iter; break; } tb_cfg_request_put(iter); } mutex_unlock(&pkg->ctl->request_queue_lock); return req; } /* utility functions */ static int check_header(const struct ctl_pkg *pkg, u32 len, enum tb_cfg_pkg_type type, u64 route) { struct tb_cfg_header *header = pkg->buffer; /* check frame, TODO: frame flags */ if (WARN(len != pkg->frame.size, "wrong framesize (expected %#x, got %#x)\n", len, pkg->frame.size)) return -EIO; if (WARN(type != pkg->frame.eof, "wrong eof (expected %#x, got %#x)\n", type, pkg->frame.eof)) return -EIO; if (WARN(pkg->frame.sof, "wrong sof (expected 0x0, got %#x)\n", pkg->frame.sof)) return -EIO; /* check header */ if (WARN(header->unknown != 1 << 9, "header->unknown is %#x\n", header->unknown)) return -EIO; if (WARN(route != tb_cfg_get_route(header), "wrong route (expected %llx, got %llx)", route, tb_cfg_get_route(header))) return -EIO; return 0; } static int check_config_address(struct tb_cfg_address addr, enum tb_cfg_space space, u32 offset, u32 length) { if (WARN(addr.zero, "addr.zero is %#x\n", addr.zero)) return -EIO; if (WARN(space != addr.space, "wrong space (expected %x, got %x\n)", space, addr.space)) return -EIO; if (WARN(offset != addr.offset, "wrong offset (expected %x, got %x\n)", offset, addr.offset)) return -EIO; if (WARN(length != addr.length, "wrong space (expected %x, got %x\n)", length, addr.length)) return -EIO; /* * We cannot check addr->port as it is set to the upstream port of the * sender. */ return 0; } static struct tb_cfg_result decode_error(const struct ctl_pkg *response) { struct cfg_error_pkg *pkg = response->buffer; struct tb_cfg_result res = { 0 }; res.response_route = tb_cfg_get_route(&pkg->header); res.response_port = 0; res.err = check_header(response, sizeof(*pkg), TB_CFG_PKG_ERROR, tb_cfg_get_route(&pkg->header)); if (res.err) return res; res.err = 1; res.tb_error = pkg->error; res.response_port = pkg->port; return res; } static struct tb_cfg_result parse_header(const struct ctl_pkg *pkg, u32 len, enum tb_cfg_pkg_type type, u64 route) { struct tb_cfg_header *header = pkg->buffer; struct tb_cfg_result res = { 0 }; if (pkg->frame.eof == TB_CFG_PKG_ERROR) return decode_error(pkg); res.response_port = 0; /* will be updated later for cfg_read/write */ res.response_route = tb_cfg_get_route(header); res.err = check_header(pkg, len, type, route); return res; } static void tb_cfg_print_error(struct tb_ctl *ctl, const struct tb_cfg_result *res) { WARN_ON(res->err != 1); switch (res->tb_error) { case TB_CFG_ERROR_PORT_NOT_CONNECTED: /* Port is not connected. This can happen during surprise * removal. Do not warn. */ return; case TB_CFG_ERROR_INVALID_CONFIG_SPACE: /* * Invalid cfg_space/offset/length combination in * cfg_read/cfg_write. */ tb_ctl_dbg(ctl, "%llx:%x: invalid config space or offset\n", res->response_route, res->response_port); return; case TB_CFG_ERROR_NO_SUCH_PORT: /* * - The route contains a non-existent port. * - The route contains a non-PHY port (e.g. PCIe). * - The port in cfg_read/cfg_write does not exist. */ tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Invalid port\n", res->response_route, res->response_port); return; case TB_CFG_ERROR_LOOP: tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Route contains a loop\n", res->response_route, res->response_port); return; case TB_CFG_ERROR_LOCK: tb_ctl_warn(ctl, "%llx:%x: downstream port is locked\n", res->response_route, res->response_port); return; default: /* 5,6,7,9 and 11 are also valid error codes */ tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Unknown error\n", res->response_route, res->response_port); return; } } static __be32 tb_crc(const void *data, size_t len) { return cpu_to_be32(~__crc32c_le(~0, data, len)); } static void tb_ctl_pkg_free(struct ctl_pkg *pkg) { if (pkg) { dma_pool_free(pkg->ctl->frame_pool, pkg->buffer, pkg->frame.buffer_phy); kfree(pkg); } } static struct ctl_pkg *tb_ctl_pkg_alloc(struct tb_ctl *ctl) { struct ctl_pkg *pkg = kzalloc(sizeof(*pkg), GFP_KERNEL); if (!pkg) return NULL; pkg->ctl = ctl; pkg->buffer = dma_pool_alloc(ctl->frame_pool, GFP_KERNEL, &pkg->frame.buffer_phy); if (!pkg->buffer) { kfree(pkg); return NULL; } return pkg; } /* RX/TX handling */ static void tb_ctl_tx_callback(struct tb_ring *ring, struct ring_frame *frame, bool canceled) { struct ctl_pkg *pkg = container_of(frame, typeof(*pkg), frame); tb_ctl_pkg_free(pkg); } /* * tb_cfg_tx() - transmit a packet on the control channel * * len must be a multiple of four. * * Return: Returns 0 on success or an error code on failure. */ static int tb_ctl_tx(struct tb_ctl *ctl, const void *data, size_t len, enum tb_cfg_pkg_type type) { int res; struct ctl_pkg *pkg; if (len % 4 != 0) { /* required for le->be conversion */ tb_ctl_WARN(ctl, "TX: invalid size: %zu\n", len); return -EINVAL; } if (len > TB_FRAME_SIZE - 4) { /* checksum is 4 bytes */ tb_ctl_WARN(ctl, "TX: packet too large: %zu/%d\n", len, TB_FRAME_SIZE - 4); return -EINVAL; } pkg = tb_ctl_pkg_alloc(ctl); if (!pkg) return -ENOMEM; pkg->frame.callback = tb_ctl_tx_callback; pkg->frame.size = len + 4; pkg->frame.sof = type; pkg->frame.eof = type; trace_tb_tx(ctl->index, type, data, len); cpu_to_be32_array(pkg->buffer, data, len / 4); *(__be32 *) (pkg->buffer + len) = tb_crc(pkg->buffer, len); res = tb_ring_tx(ctl->tx, &pkg->frame); if (res) /* ring is stopped */ tb_ctl_pkg_free(pkg); return res; } /* * tb_ctl_handle_event() - acknowledge a plug event, invoke ctl->callback */ static bool tb_ctl_handle_event(struct tb_ctl *ctl, enum tb_cfg_pkg_type type, struct ctl_pkg *pkg, size_t size) { trace_tb_event(ctl->index, type, pkg->buffer, size); return ctl->callback(ctl->callback_data, type, pkg->buffer, size); } static void tb_ctl_rx_submit(struct ctl_pkg *pkg) { tb_ring_rx(pkg->ctl->rx, &pkg->frame); /* * We ignore failures during stop. * All rx packets are referenced * from ctl->rx_packets, so we do * not loose them. */ } static int tb_async_error(const struct ctl_pkg *pkg) { const struct cfg_error_pkg *error = pkg->buffer; if (pkg->frame.eof != TB_CFG_PKG_ERROR) return false; switch (error->error) { case TB_CFG_ERROR_LINK_ERROR: case TB_CFG_ERROR_HEC_ERROR_DETECTED: case TB_CFG_ERROR_FLOW_CONTROL_ERROR: case TB_CFG_ERROR_DP_BW: case TB_CFG_ERROR_ROP_CMPLT: case TB_CFG_ERROR_POP_CMPLT: case TB_CFG_ERROR_PCIE_WAKE: case TB_CFG_ERROR_DP_CON_CHANGE: case TB_CFG_ERROR_DPTX_DISCOVERY: case TB_CFG_ERROR_LINK_RECOVERY: case TB_CFG_ERROR_ASYM_LINK: return true; default: return false; } } static void tb_ctl_rx_callback(struct tb_ring *ring, struct ring_frame *frame, bool canceled) { struct ctl_pkg *pkg = container_of(frame, typeof(*pkg), frame); struct tb_cfg_request *req; __be32 crc32; if (canceled) return; /* * ring is stopped, packet is referenced from * ctl->rx_packets. */ if (frame->size < 4 || frame->size % 4 != 0) { tb_ctl_err(pkg->ctl, "RX: invalid size %#x, dropping packet\n", frame->size); goto rx; } frame->size -= 4; /* remove checksum */ crc32 = tb_crc(pkg->buffer, frame->size); be32_to_cpu_array(pkg->buffer, pkg->buffer, frame->size / 4); switch (frame->eof) { case TB_CFG_PKG_READ: case TB_CFG_PKG_WRITE: case TB_CFG_PKG_ERROR: case TB_CFG_PKG_OVERRIDE: case TB_CFG_PKG_RESET: if (*(__be32 *)(pkg->buffer + frame->size) != crc32) { tb_ctl_err(pkg->ctl, "RX: checksum mismatch, dropping packet\n"); goto rx; } if (tb_async_error(pkg)) { tb_ctl_handle_event(pkg->ctl, frame->eof, pkg, frame->size); goto rx; } break; case TB_CFG_PKG_EVENT: case TB_CFG_PKG_XDOMAIN_RESP: case TB_CFG_PKG_XDOMAIN_REQ: if (*(__be32 *)(pkg->buffer + frame->size) != crc32) { tb_ctl_err(pkg->ctl, "RX: checksum mismatch, dropping packet\n"); goto rx; } fallthrough; case TB_CFG_PKG_ICM_EVENT: if (tb_ctl_handle_event(pkg->ctl, frame->eof, pkg, frame->size)) goto rx; break; default: break; } /* * The received packet will be processed only if there is an * active request and that the packet is what is expected. This * prevents packets such as replies coming after timeout has * triggered from messing with the active requests. */ req = tb_cfg_request_find(pkg->ctl, pkg); trace_tb_rx(pkg->ctl->index, frame->eof, pkg->buffer, frame->size, !req); if (req) { if (req->copy(req, pkg)) schedule_work(&req->work); tb_cfg_request_put(req); } rx: tb_ctl_rx_submit(pkg); } static void tb_cfg_request_work(struct work_struct *work) { struct tb_cfg_request *req = container_of(work, typeof(*req), work); if (!test_bit(TB_CFG_REQUEST_CANCELED, &req->flags)) req->callback(req->callback_data); tb_cfg_request_dequeue(req); tb_cfg_request_put(req); } /** * tb_cfg_request() - Start control request not waiting for it to complete * @ctl: Control channel to use * @req: Request to start * @callback: Callback called when the request is completed * @callback_data: Data to be passed to @callback * * This queues @req on the given control channel without waiting for it * to complete. When the request completes @callback is called. */ int tb_cfg_request(struct tb_ctl *ctl, struct tb_cfg_request *req, void (*callback)(void *), void *callback_data) { int ret; req->flags = 0; req->callback = callback; req->callback_data = callback_data; INIT_WORK(&req->work, tb_cfg_request_work); INIT_LIST_HEAD(&req->list); tb_cfg_request_get(req); ret = tb_cfg_request_enqueue(ctl, req); if (ret) goto err_put; ret = tb_ctl_tx(ctl, req->request, req->request_size, req->request_type); if (ret) goto err_dequeue; if (!req->response) schedule_work(&req->work); return 0; err_dequeue: tb_cfg_request_dequeue(req); err_put: tb_cfg_request_put(req); return ret; } /** * tb_cfg_request_cancel() - Cancel a control request * @req: Request to cancel * @err: Error to assign to the request * * This function can be used to cancel ongoing request. It will wait * until the request is not active anymore. */ void tb_cfg_request_cancel(struct tb_cfg_request *req, int err) { set_bit(TB_CFG_REQUEST_CANCELED, &req->flags); schedule_work(&req->work); wait_event(tb_cfg_request_cancel_queue, !tb_cfg_request_is_active(req)); req->result.err = err; } static void tb_cfg_request_complete(void *data) { complete(data); } /** * tb_cfg_request_sync() - Start control request and wait until it completes * @ctl: Control channel to use * @req: Request to start * @timeout_msec: Timeout how long to wait @req to complete * * Starts a control request and waits until it completes. If timeout * triggers the request is canceled before function returns. Note the * caller needs to make sure only one message for given switch is active * at a time. */ struct tb_cfg_result tb_cfg_request_sync(struct tb_ctl *ctl, struct tb_cfg_request *req, int timeout_msec) { unsigned long timeout = msecs_to_jiffies(timeout_msec); struct tb_cfg_result res = { 0 }; DECLARE_COMPLETION_ONSTACK(done); int ret; ret = tb_cfg_request(ctl, req, tb_cfg_request_complete, &done); if (ret) { res.err = ret; return res; } if (!wait_for_completion_timeout(&done, timeout)) tb_cfg_request_cancel(req, -ETIMEDOUT); flush_work(&req->work); return req->result; } /* public interface, alloc/start/stop/free */ /** * tb_ctl_alloc() - allocate a control channel * @nhi: Pointer to NHI * @index: Domain number * @timeout_msec: Default timeout used with non-raw control messages * @cb: Callback called for plug events * @cb_data: Data passed to @cb * * cb will be invoked once for every hot plug event. * * Return: Returns a pointer on success or NULL on failure. */ struct tb_ctl *tb_ctl_alloc(struct tb_nhi *nhi, int index, int timeout_msec, event_cb cb, void *cb_data) { int i; struct tb_ctl *ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); if (!ctl) return NULL; ctl->nhi = nhi; ctl->index = index; ctl->timeout_msec = timeout_msec; ctl->callback = cb; ctl->callback_data = cb_data; mutex_init(&ctl->request_queue_lock); INIT_LIST_HEAD(&ctl->request_queue); ctl->frame_pool = dma_pool_create("thunderbolt_ctl", &nhi->pdev->dev, TB_FRAME_SIZE, 4, 0); if (!ctl->frame_pool) goto err; ctl->tx = tb_ring_alloc_tx(nhi, 0, 10, RING_FLAG_NO_SUSPEND); if (!ctl->tx) goto err; ctl->rx = tb_ring_alloc_rx(nhi, 0, 10, RING_FLAG_NO_SUSPEND, 0, 0xffff, 0xffff, NULL, NULL); if (!ctl->rx) goto err; for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++) { ctl->rx_packets[i] = tb_ctl_pkg_alloc(ctl); if (!ctl->rx_packets[i]) goto err; ctl->rx_packets[i]->frame.callback = tb_ctl_rx_callback; } tb_ctl_dbg(ctl, "control channel created\n"); return ctl; err: tb_ctl_free(ctl); return NULL; } /** * tb_ctl_free() - free a control channel * @ctl: Control channel to free * * Must be called after tb_ctl_stop. * * Must NOT be called from ctl->callback. */ void tb_ctl_free(struct tb_ctl *ctl) { int i; if (!ctl) return; if (ctl->rx) tb_ring_free(ctl->rx); if (ctl->tx) tb_ring_free(ctl->tx); /* free RX packets */ for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++) tb_ctl_pkg_free(ctl->rx_packets[i]); dma_pool_destroy(ctl->frame_pool); kfree(ctl); } /** * tb_ctl_start() - start/resume the control channel * @ctl: Control channel to start */ void tb_ctl_start(struct tb_ctl *ctl) { int i; tb_ctl_dbg(ctl, "control channel starting...\n"); tb_ring_start(ctl->tx); /* is used to ack hotplug packets, start first */ tb_ring_start(ctl->rx); for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++) tb_ctl_rx_submit(ctl->rx_packets[i]); ctl->running = true; } /** * tb_ctl_stop() - pause the control channel * @ctl: Control channel to stop * * All invocations of ctl->callback will have finished after this method * returns. * * Must NOT be called from ctl->callback. */ void tb_ctl_stop(struct tb_ctl *ctl) { mutex_lock(&ctl->request_queue_lock); ctl->running = false; mutex_unlock(&ctl->request_queue_lock); tb_ring_stop(ctl->rx); tb_ring_stop(ctl->tx); if (!list_empty(&ctl->request_queue)) tb_ctl_WARN(ctl, "dangling request in request_queue\n"); INIT_LIST_HEAD(&ctl->request_queue); tb_ctl_dbg(ctl, "control channel stopped\n"); } /* public interface, commands */ /** * tb_cfg_ack_notification() - Ack notification * @ctl: Control channel to use * @route: Router that originated the event * @error: Pointer to the notification package * * Call this as response for non-plug notification to ack it. Returns * %0 on success or an error code on failure. */ int tb_cfg_ack_notification(struct tb_ctl *ctl, u64 route, const struct cfg_error_pkg *error) { struct cfg_ack_pkg pkg = { .header = tb_cfg_make_header(route), }; const char *name; switch (error->error) { case TB_CFG_ERROR_LINK_ERROR: name = "link error"; break; case TB_CFG_ERROR_HEC_ERROR_DETECTED: name = "HEC error"; break; case TB_CFG_ERROR_FLOW_CONTROL_ERROR: name = "flow control error"; break; case TB_CFG_ERROR_DP_BW: name = "DP_BW"; break; case TB_CFG_ERROR_ROP_CMPLT: name = "router operation completion"; break; case TB_CFG_ERROR_POP_CMPLT: name = "port operation completion"; break; case TB_CFG_ERROR_PCIE_WAKE: name = "PCIe wake"; break; case TB_CFG_ERROR_DP_CON_CHANGE: name = "DP connector change"; break; case TB_CFG_ERROR_DPTX_DISCOVERY: name = "DPTX discovery"; break; case TB_CFG_ERROR_LINK_RECOVERY: name = "link recovery"; break; case TB_CFG_ERROR_ASYM_LINK: name = "asymmetric link"; break; default: name = "unknown"; break; } tb_ctl_dbg(ctl, "acking %s (%#x) notification on %llx\n", name, error->error, route); return tb_ctl_tx(ctl, &pkg, sizeof(pkg), TB_CFG_PKG_NOTIFY_ACK); } /** * tb_cfg_ack_plug() - Ack hot plug/unplug event * @ctl: Control channel to use * @route: Router that originated the event * @port: Port where the hot plug/unplug happened * @unplug: Ack hot plug or unplug * * Call this as response for hot plug/unplug event to ack it. * Returns %0 on success or an error code on failure. */ int tb_cfg_ack_plug(struct tb_ctl *ctl, u64 route, u32 port, bool unplug) { struct cfg_error_pkg pkg = { .header = tb_cfg_make_header(route), .port = port, .error = TB_CFG_ERROR_ACK_PLUG_EVENT, .pg = unplug ? TB_CFG_ERROR_PG_HOT_UNPLUG : TB_CFG_ERROR_PG_HOT_PLUG, }; tb_ctl_dbg(ctl, "acking hot %splug event on %llx:%u\n", unplug ? "un" : "", route, port); return tb_ctl_tx(ctl, &pkg, sizeof(pkg), TB_CFG_PKG_ERROR); } static bool tb_cfg_match(const struct tb_cfg_request *req, const struct ctl_pkg *pkg) { u64 route = tb_cfg_get_route(pkg->buffer) & ~BIT_ULL(63); if (pkg->frame.eof == TB_CFG_PKG_ERROR) return true; if (pkg->frame.eof != req->response_type) return false; if (route != tb_cfg_get_route(req->request)) return false; if (pkg->frame.size != req->response_size) return false; if (pkg->frame.eof == TB_CFG_PKG_READ || pkg->frame.eof == TB_CFG_PKG_WRITE) { const struct cfg_read_pkg *req_hdr = req->request; const struct cfg_read_pkg *res_hdr = pkg->buffer; if (req_hdr->addr.seq != res_hdr->addr.seq) return false; } return true; } static bool tb_cfg_copy(struct tb_cfg_request *req, const struct ctl_pkg *pkg) { struct tb_cfg_result res; /* Now make sure it is in expected format */ res = parse_header(pkg, req->response_size, req->response_type, tb_cfg_get_route(req->request)); if (!res.err) memcpy(req->response, pkg->buffer, req->response_size); req->result = res; /* Always complete when first response is received */ return true; } /** * tb_cfg_reset() - send a reset packet and wait for a response * @ctl: Control channel pointer * @route: Router string for the router to send reset * * If the switch at route is incorrectly configured then we will not receive a * reply (even though the switch will reset). The caller should check for * -ETIMEDOUT and attempt to reconfigure the switch. */ struct tb_cfg_result tb_cfg_reset(struct tb_ctl *ctl, u64 route) { struct cfg_reset_pkg request = { .header = tb_cfg_make_header(route) }; struct tb_cfg_result res = { 0 }; struct tb_cfg_header reply; struct tb_cfg_request *req; req = tb_cfg_request_alloc(); if (!req) { res.err = -ENOMEM; return res; } req->match = tb_cfg_match; req->copy = tb_cfg_copy; req->request = &request; req->request_size = sizeof(request); req->request_type = TB_CFG_PKG_RESET; req->response = &reply; req->response_size = sizeof(reply); req->response_type = TB_CFG_PKG_RESET; res = tb_cfg_request_sync(ctl, req, ctl->timeout_msec); tb_cfg_request_put(req); return res; } /** * tb_cfg_read_raw() - read from config space into buffer * @ctl: Pointer to the control channel * @buffer: Buffer where the data is read * @route: Route string of the router * @port: Port number when reading from %TB_CFG_PORT, %0 otherwise * @space: Config space selector * @offset: Dword word offset of the register to start reading * @length: Number of dwords to read * @timeout_msec: Timeout in ms how long to wait for the response * * Reads from router config space without translating the possible error. */ struct tb_cfg_result tb_cfg_read_raw(struct tb_ctl *ctl, void *buffer, u64 route, u32 port, enum tb_cfg_space space, u32 offset, u32 length, int timeout_msec) { struct tb_cfg_result res = { 0 }; struct cfg_read_pkg request = { .header = tb_cfg_make_header(route), .addr = { .port = port, .space = space, .offset = offset, .length = length, }, }; struct cfg_write_pkg reply; int retries = 0; while (retries < TB_CTL_RETRIES) { struct tb_cfg_request *req; req = tb_cfg_request_alloc(); if (!req) { res.err = -ENOMEM; return res; } request.addr.seq = retries++; req->match = tb_cfg_match; req->copy = tb_cfg_copy; req->request = &request; req->request_size = sizeof(request); req->request_type = TB_CFG_PKG_READ; req->response = &reply; req->response_size = 12 + 4 * length; req->response_type = TB_CFG_PKG_READ; res = tb_cfg_request_sync(ctl, req, timeout_msec); tb_cfg_request_put(req); if (res.err != -ETIMEDOUT) break; /* Wait a bit (arbitrary time) until we send a retry */ usleep_range(10, 100); } if (res.err) return res; res.response_port = reply.addr.port; res.err = check_config_address(reply.addr, space, offset, length); if (!res.err) memcpy(buffer, &reply.data, 4 * length); return res; } /** * tb_cfg_write_raw() - write from buffer into config space * @ctl: Pointer to the control channel * @buffer: Data to write * @route: Route string of the router * @port: Port number when writing to %TB_CFG_PORT, %0 otherwise * @space: Config space selector * @offset: Dword word offset of the register to start writing * @length: Number of dwords to write * @timeout_msec: Timeout in ms how long to wait for the response * * Writes to router config space without translating the possible error. */ struct tb_cfg_result tb_cfg_write_raw(struct tb_ctl *ctl, const void *buffer, u64 route, u32 port, enum tb_cfg_space space, u32 offset, u32 length, int timeout_msec) { struct tb_cfg_result res = { 0 }; struct cfg_write_pkg request = { .header = tb_cfg_make_header(route), .addr = { .port = port, .space = space, .offset = offset, .length = length, }, }; struct cfg_read_pkg reply; int retries = 0; memcpy(&request.data, buffer, length * 4); while (retries < TB_CTL_RETRIES) { struct tb_cfg_request *req; req = tb_cfg_request_alloc(); if (!req) { res.err = -ENOMEM; return res; } request.addr.seq = retries++; req->match = tb_cfg_match; req->copy = tb_cfg_copy; req->request = &request; req->request_size = 12 + 4 * length; req->request_type = TB_CFG_PKG_WRITE; req->response = &reply; req->response_size = sizeof(reply); req->response_type = TB_CFG_PKG_WRITE; res = tb_cfg_request_sync(ctl, req, timeout_msec); tb_cfg_request_put(req); if (res.err != -ETIMEDOUT) break; /* Wait a bit (arbitrary time) until we send a retry */ usleep_range(10, 100); } if (res.err) return res; res.response_port = reply.addr.port; res.err = check_config_address(reply.addr, space, offset, length); return res; } static int tb_cfg_get_error(struct tb_ctl *ctl, enum tb_cfg_space space, const struct tb_cfg_result *res) { /* * For unimplemented ports access to port config space may return * TB_CFG_ERROR_INVALID_CONFIG_SPACE (alternatively their type is * set to TB_TYPE_INACTIVE). In the former case return -ENODEV so * that the caller can mark the port as disabled. */ if (space == TB_CFG_PORT && res->tb_error == TB_CFG_ERROR_INVALID_CONFIG_SPACE) return -ENODEV; tb_cfg_print_error(ctl, res); if (res->tb_error == TB_CFG_ERROR_LOCK) return -EACCES; if (res->tb_error == TB_CFG_ERROR_PORT_NOT_CONNECTED) return -ENOTCONN; return -EIO; } int tb_cfg_read(struct tb_ctl *ctl, void *buffer, u64 route, u32 port, enum tb_cfg_space space, u32 offset, u32 length) { struct tb_cfg_result res = tb_cfg_read_raw(ctl, buffer, route, port, space, offset, length, ctl->timeout_msec); switch (res.err) { case 0: /* Success */ break; case 1: /* Thunderbolt error, tb_error holds the actual number */ return tb_cfg_get_error(ctl, space, &res); case -ETIMEDOUT: tb_ctl_warn(ctl, "%llx: timeout reading config space %u from %#x\n", route, space, offset); break; default: WARN(1, "tb_cfg_read: %d\n", res.err); break; } return res.err; } int tb_cfg_write(struct tb_ctl *ctl, const void *buffer, u64 route, u32 port, enum tb_cfg_space space, u32 offset, u32 length) { struct tb_cfg_result res = tb_cfg_write_raw(ctl, buffer, route, port, space, offset, length, ctl->timeout_msec); switch (res.err) { case 0: /* Success */ break; case 1: /* Thunderbolt error, tb_error holds the actual number */ return tb_cfg_get_error(ctl, space, &res); case -ETIMEDOUT: tb_ctl_warn(ctl, "%llx: timeout writing config space %u to %#x\n", route, space, offset); break; default: WARN(1, "tb_cfg_write: %d\n", res.err); break; } return res.err; } /** * tb_cfg_get_upstream_port() - get upstream port number of switch at route * @ctl: Pointer to the control channel * @route: Route string of the router * * Reads the first dword from the switches TB_CFG_SWITCH config area and * returns the port number from which the reply originated. * * Return: Returns the upstream port number on success or an error code on * failure. */ int tb_cfg_get_upstream_port(struct tb_ctl *ctl, u64 route) { u32 dummy; struct tb_cfg_result res = tb_cfg_read_raw(ctl, &dummy, route, 0, TB_CFG_SWITCH, 0, 1, ctl->timeout_msec); if (res.err == 1) return -EIO; if (res.err) return res.err; return res.response_port; }