// SPDX-License-Identifier: GPL-2.0-only /* Marvell RVU Admin Function driver * * Copyright (C) 2020 Marvell. * */ #include #include #include "rvu_struct.h" #include "rvu_reg.h" #include "mbox.h" #include "rvu.h" /* CPT PF device id */ #define PCI_DEVID_OTX2_CPT_PF 0xA0FD #define PCI_DEVID_OTX2_CPT10K_PF 0xA0F2 /* Length of initial context fetch in 128 byte words */ #define CPT_CTX_ILEN 1ULL /* Interrupt vector count of CPT RVU and RAS interrupts */ #define CPT_10K_AF_RVU_RAS_INT_VEC_CNT 2 /* Default CPT_AF_RXC_CFG1:max_rxc_icb_cnt */ #define CPT_DFLT_MAX_RXC_ICB_CNT 0xC0ULL #define cpt_get_eng_sts(e_min, e_max, rsp, etype) \ ({ \ u64 free_sts = 0, busy_sts = 0; \ typeof(rsp) _rsp = rsp; \ u32 e, i; \ \ for (e = (e_min), i = 0; e < (e_max); e++, i++) { \ reg = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(e)); \ if (reg & 0x1) \ busy_sts |= 1ULL << i; \ \ if (reg & 0x2) \ free_sts |= 1ULL << i; \ } \ (_rsp)->busy_sts_##etype = busy_sts; \ (_rsp)->free_sts_##etype = free_sts; \ }) #define MAX_AE GENMASK_ULL(47, 32) #define MAX_IE GENMASK_ULL(31, 16) #define MAX_SE GENMASK_ULL(15, 0) static u16 cpt_max_engines_get(struct rvu *rvu) { u16 max_ses, max_ies, max_aes; u64 reg; reg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS1); max_ses = FIELD_GET(MAX_SE, reg); max_ies = FIELD_GET(MAX_IE, reg); max_aes = FIELD_GET(MAX_AE, reg); return max_ses + max_ies + max_aes; } /* Number of flt interrupt vectors are depends on number of engines that the * chip has. Each flt vector represents 64 engines. */ static int cpt_10k_flt_nvecs_get(struct rvu *rvu, u16 max_engs) { int flt_vecs; flt_vecs = DIV_ROUND_UP(max_engs, 64); if (flt_vecs > CPT_10K_AF_INT_VEC_FLT_MAX) { dev_warn_once(rvu->dev, "flt_vecs:%d exceeds the max vectors:%d\n", flt_vecs, CPT_10K_AF_INT_VEC_FLT_MAX); flt_vecs = CPT_10K_AF_INT_VEC_FLT_MAX; } return flt_vecs; } static irqreturn_t cpt_af_flt_intr_handler(int vec, void *ptr) { struct rvu_block *block = ptr; struct rvu *rvu = block->rvu; int blkaddr = block->addr; u64 reg, val; int i, eng; u8 grp; reg = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(vec)); dev_err_ratelimited(rvu->dev, "Received CPTAF FLT%d irq : 0x%llx", vec, reg); i = -1; while ((i = find_next_bit((unsigned long *)®, 64, i + 1)) < 64) { switch (vec) { case 0: eng = i; break; case 1: eng = i + 64; break; case 2: eng = i + 128; break; } grp = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng)) & 0xFF; /* Disable and enable the engine which triggers fault */ rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), 0x0); val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng)); rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val & ~1ULL); rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), grp); rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val | 1ULL); spin_lock(&rvu->cpt_intr_lock); block->cpt_flt_eng_map[vec] |= BIT_ULL(i); val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(eng)); val = val & 0x3; if (val == 0x1 || val == 0x2) block->cpt_rcvrd_eng_map[vec] |= BIT_ULL(i); spin_unlock(&rvu->cpt_intr_lock); } rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(vec), reg); return IRQ_HANDLED; } static irqreturn_t rvu_cpt_af_flt0_intr_handler(int irq, void *ptr) { return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT0, ptr); } static irqreturn_t rvu_cpt_af_flt1_intr_handler(int irq, void *ptr) { return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT1, ptr); } static irqreturn_t rvu_cpt_af_flt2_intr_handler(int irq, void *ptr) { return cpt_af_flt_intr_handler(CPT_10K_AF_INT_VEC_FLT2, ptr); } static irqreturn_t rvu_cpt_af_rvu_intr_handler(int irq, void *ptr) { struct rvu_block *block = ptr; struct rvu *rvu = block->rvu; int blkaddr = block->addr; u64 reg; reg = rvu_read64(rvu, blkaddr, CPT_AF_RVU_INT); dev_err_ratelimited(rvu->dev, "Received CPTAF RVU irq : 0x%llx", reg); rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT, reg); return IRQ_HANDLED; } static irqreturn_t rvu_cpt_af_ras_intr_handler(int irq, void *ptr) { struct rvu_block *block = ptr; struct rvu *rvu = block->rvu; int blkaddr = block->addr; u64 reg; reg = rvu_read64(rvu, blkaddr, CPT_AF_RAS_INT); dev_err_ratelimited(rvu->dev, "Received CPTAF RAS irq : 0x%llx", reg); rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT, reg); return IRQ_HANDLED; } static int rvu_cpt_do_register_interrupt(struct rvu_block *block, int irq_offs, irq_handler_t handler, const char *name) { struct rvu *rvu = block->rvu; int ret; ret = request_irq(pci_irq_vector(rvu->pdev, irq_offs), handler, 0, name, block); if (ret) { dev_err(rvu->dev, "RVUAF: %s irq registration failed", name); return ret; } WARN_ON(rvu->irq_allocated[irq_offs]); rvu->irq_allocated[irq_offs] = true; return 0; } static void cpt_10k_unregister_interrupts(struct rvu_block *block, int off) { struct rvu *rvu = block->rvu; int blkaddr = block->addr; int i, flt_vecs; u16 max_engs; u8 nr; max_engs = cpt_max_engines_get(rvu); flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs); /* Disable all CPT AF interrupts */ for (i = CPT_10K_AF_INT_VEC_FLT0; i < flt_vecs; i++) { nr = (max_engs > 64) ? 64 : max_engs; max_engs -= nr; rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), INTR_MASK(nr)); } rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1); rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1); /* CPT AF interrupt vectors are flt_int, rvu_int and ras_int. */ for (i = 0; i < flt_vecs + CPT_10K_AF_RVU_RAS_INT_VEC_CNT; i++) if (rvu->irq_allocated[off + i]) { free_irq(pci_irq_vector(rvu->pdev, off + i), block); rvu->irq_allocated[off + i] = false; } } static void cpt_unregister_interrupts(struct rvu *rvu, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int i, offs; if (!is_block_implemented(rvu->hw, blkaddr)) return; offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF; if (!offs) { dev_warn(rvu->dev, "Failed to get CPT_AF_INT vector offsets\n"); return; } block = &hw->block[blkaddr]; if (!is_rvu_otx2(rvu)) return cpt_10k_unregister_interrupts(block, offs); /* Disable all CPT AF interrupts */ for (i = 0; i < CPT_AF_INT_VEC_RVU; i++) rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), ~0ULL); rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1); rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1); for (i = 0; i < CPT_AF_INT_VEC_CNT; i++) if (rvu->irq_allocated[offs + i]) { free_irq(pci_irq_vector(rvu->pdev, offs + i), block); rvu->irq_allocated[offs + i] = false; } } void rvu_cpt_unregister_interrupts(struct rvu *rvu) { cpt_unregister_interrupts(rvu, BLKADDR_CPT0); cpt_unregister_interrupts(rvu, BLKADDR_CPT1); } static int cpt_10k_register_interrupts(struct rvu_block *block, int off) { int rvu_intr_vec, ras_intr_vec; struct rvu *rvu = block->rvu; int blkaddr = block->addr; irq_handler_t flt_fn; int i, ret, flt_vecs; u16 max_engs; u8 nr; max_engs = cpt_max_engines_get(rvu); flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs); for (i = CPT_10K_AF_INT_VEC_FLT0; i < flt_vecs; i++) { sprintf(&rvu->irq_name[(off + i) * NAME_SIZE], "CPTAF FLT%d", i); switch (i) { case CPT_10K_AF_INT_VEC_FLT0: flt_fn = rvu_cpt_af_flt0_intr_handler; break; case CPT_10K_AF_INT_VEC_FLT1: flt_fn = rvu_cpt_af_flt1_intr_handler; break; case CPT_10K_AF_INT_VEC_FLT2: flt_fn = rvu_cpt_af_flt2_intr_handler; break; } ret = rvu_cpt_do_register_interrupt(block, off + i, flt_fn, &rvu->irq_name[(off + i) * NAME_SIZE]); if (ret) goto err; nr = (max_engs > 64) ? 64 : max_engs; max_engs -= nr; rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), INTR_MASK(nr)); } rvu_intr_vec = flt_vecs; ras_intr_vec = rvu_intr_vec + 1; ret = rvu_cpt_do_register_interrupt(block, off + rvu_intr_vec, rvu_cpt_af_rvu_intr_handler, "CPTAF RVU"); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1); ret = rvu_cpt_do_register_interrupt(block, off + ras_intr_vec, rvu_cpt_af_ras_intr_handler, "CPTAF RAS"); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1); return 0; err: rvu_cpt_unregister_interrupts(rvu); return ret; } static int cpt_register_interrupts(struct rvu *rvu, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; irq_handler_t flt_fn; int i, offs, ret = 0; if (!is_block_implemented(rvu->hw, blkaddr)) return 0; block = &hw->block[blkaddr]; offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF; if (!offs) { dev_warn(rvu->dev, "Failed to get CPT_AF_INT vector offsets\n"); return 0; } if (!is_rvu_otx2(rvu)) return cpt_10k_register_interrupts(block, offs); for (i = CPT_AF_INT_VEC_FLT0; i < CPT_AF_INT_VEC_RVU; i++) { sprintf(&rvu->irq_name[(offs + i) * NAME_SIZE], "CPTAF FLT%d", i); switch (i) { case CPT_AF_INT_VEC_FLT0: flt_fn = rvu_cpt_af_flt0_intr_handler; break; case CPT_AF_INT_VEC_FLT1: flt_fn = rvu_cpt_af_flt1_intr_handler; break; } ret = rvu_cpt_do_register_interrupt(block, offs + i, flt_fn, &rvu->irq_name[(offs + i) * NAME_SIZE]); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL); } ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RVU, rvu_cpt_af_rvu_intr_handler, "CPTAF RVU"); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1); ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RAS, rvu_cpt_af_ras_intr_handler, "CPTAF RAS"); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1); return 0; err: rvu_cpt_unregister_interrupts(rvu); return ret; } int rvu_cpt_register_interrupts(struct rvu *rvu) { int ret; ret = cpt_register_interrupts(rvu, BLKADDR_CPT0); if (ret) return ret; return cpt_register_interrupts(rvu, BLKADDR_CPT1); } static int get_cpt_pf_num(struct rvu *rvu) { int i, domain_nr, cpt_pf_num = -1; struct pci_dev *pdev; domain_nr = pci_domain_nr(rvu->pdev->bus); for (i = 0; i < rvu->hw->total_pfs; i++) { pdev = pci_get_domain_bus_and_slot(domain_nr, i + 1, 0); if (!pdev) continue; if (pdev->device == PCI_DEVID_OTX2_CPT_PF || pdev->device == PCI_DEVID_OTX2_CPT10K_PF) { cpt_pf_num = i; put_device(&pdev->dev); break; } put_device(&pdev->dev); } return cpt_pf_num; } static bool is_cpt_pf(struct rvu *rvu, u16 pcifunc) { int cpt_pf_num = rvu->cpt_pf_num; if (rvu_get_pf(pcifunc) != cpt_pf_num) return false; if (pcifunc & RVU_PFVF_FUNC_MASK) return false; return true; } static bool is_cpt_vf(struct rvu *rvu, u16 pcifunc) { int cpt_pf_num = rvu->cpt_pf_num; if (rvu_get_pf(pcifunc) != cpt_pf_num) return false; if (!(pcifunc & RVU_PFVF_FUNC_MASK)) return false; return true; } static int validate_and_get_cpt_blkaddr(int req_blkaddr) { int blkaddr; blkaddr = req_blkaddr ? req_blkaddr : BLKADDR_CPT0; if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1) return -EINVAL; return blkaddr; } int rvu_mbox_handler_cpt_lf_alloc(struct rvu *rvu, struct cpt_lf_alloc_req_msg *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_block *block; int cptlf, blkaddr; int num_lfs, slot; u64 val; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; if (req->eng_grpmsk == 0x0) return CPT_AF_ERR_GRP_INVALID; block = &rvu->hw->block[blkaddr]; num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), block->addr); if (!num_lfs) return CPT_AF_ERR_LF_INVALID; /* Check if requested 'CPTLF <=> NIXLF' mapping is valid */ if (req->nix_pf_func) { /* If default, use 'this' CPTLF's PFFUNC */ if (req->nix_pf_func == RVU_DEFAULT_PF_FUNC) req->nix_pf_func = pcifunc; if (!is_pffunc_map_valid(rvu, req->nix_pf_func, BLKTYPE_NIX)) return CPT_AF_ERR_NIX_PF_FUNC_INVALID; } /* Check if requested 'CPTLF <=> SSOLF' mapping is valid */ if (req->sso_pf_func) { /* If default, use 'this' CPTLF's PFFUNC */ if (req->sso_pf_func == RVU_DEFAULT_PF_FUNC) req->sso_pf_func = pcifunc; if (!is_pffunc_map_valid(rvu, req->sso_pf_func, BLKTYPE_SSO)) return CPT_AF_ERR_SSO_PF_FUNC_INVALID; } for (slot = 0; slot < num_lfs; slot++) { cptlf = rvu_get_lf(rvu, block, pcifunc, slot); if (cptlf < 0) return CPT_AF_ERR_LF_INVALID; /* Set CPT LF group and priority */ val = (u64)req->eng_grpmsk << 48 | 1; if (!is_rvu_otx2(rvu)) { if (req->ctx_ilen_valid) val |= (req->ctx_ilen << 17); else val |= (CPT_CTX_ILEN << 17); } rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); /* Set CPT LF NIX_PF_FUNC and SSO_PF_FUNC. EXE_LDWB is set * on reset. */ val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); val &= ~(GENMASK_ULL(63, 48) | GENMASK_ULL(47, 32)); val |= ((u64)req->nix_pf_func << 48 | (u64)req->sso_pf_func << 32); rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); } return 0; } static int cpt_lf_free(struct rvu *rvu, struct msg_req *req, int blkaddr) { u16 pcifunc = req->hdr.pcifunc; int num_lfs, cptlf, slot, err; struct rvu_block *block; block = &rvu->hw->block[blkaddr]; num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), block->addr); if (!num_lfs) return 0; for (slot = 0; slot < num_lfs; slot++) { cptlf = rvu_get_lf(rvu, block, pcifunc, slot); if (cptlf < 0) return CPT_AF_ERR_LF_INVALID; /* Perform teardown */ rvu_cpt_lf_teardown(rvu, pcifunc, blkaddr, cptlf, slot); /* Reset LF */ err = rvu_lf_reset(rvu, block, cptlf); if (err) { dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n", block->addr, cptlf); } } return 0; } int rvu_mbox_handler_cpt_lf_free(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { int ret; ret = cpt_lf_free(rvu, req, BLKADDR_CPT0); if (ret) return ret; if (is_block_implemented(rvu->hw, BLKADDR_CPT1)) ret = cpt_lf_free(rvu, req, BLKADDR_CPT1); return ret; } static int cpt_inline_ipsec_cfg_inbound(struct rvu *rvu, int blkaddr, u8 cptlf, struct cpt_inline_ipsec_cfg_msg *req) { u16 sso_pf_func = req->sso_pf_func; u8 nix_sel; u64 val; val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); if (req->enable && (val & BIT_ULL(16))) { /* IPSec inline outbound path is already enabled for a given * CPT LF, HRM states that inline inbound & outbound paths * must not be enabled at the same time for a given CPT LF */ return CPT_AF_ERR_INLINE_IPSEC_INB_ENA; } /* Check if requested 'CPTLF <=> SSOLF' mapping is valid */ if (sso_pf_func && !is_pffunc_map_valid(rvu, sso_pf_func, BLKTYPE_SSO)) return CPT_AF_ERR_SSO_PF_FUNC_INVALID; nix_sel = (blkaddr == BLKADDR_CPT1) ? 1 : 0; /* Enable CPT LF for IPsec inline inbound operations */ if (req->enable) val |= BIT_ULL(9); else val &= ~BIT_ULL(9); val |= (u64)nix_sel << 8; rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); if (sso_pf_func) { /* Set SSO_PF_FUNC */ val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); val |= (u64)sso_pf_func << 32; val |= (u64)req->nix_pf_func << 48; rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); } if (req->sso_pf_func_ovrd) /* Set SSO_PF_FUNC_OVRD for inline IPSec */ rvu_write64(rvu, blkaddr, CPT_AF_ECO, 0x1); /* Configure the X2P Link register with the cpt base channel number and * range of channels it should propagate to X2P */ if (!is_rvu_otx2(rvu)) { val = (ilog2(NIX_CHAN_CPT_X2P_MASK + 1) << 16); val |= (u64)rvu->hw->cpt_chan_base; rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0), val); rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1), val); } return 0; } static int cpt_inline_ipsec_cfg_outbound(struct rvu *rvu, int blkaddr, u8 cptlf, struct cpt_inline_ipsec_cfg_msg *req) { u16 nix_pf_func = req->nix_pf_func; int nix_blkaddr; u8 nix_sel; u64 val; val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); if (req->enable && (val & BIT_ULL(9))) { /* IPSec inline inbound path is already enabled for a given * CPT LF, HRM states that inline inbound & outbound paths * must not be enabled at the same time for a given CPT LF */ return CPT_AF_ERR_INLINE_IPSEC_OUT_ENA; } /* Check if requested 'CPTLF <=> NIXLF' mapping is valid */ if (nix_pf_func && !is_pffunc_map_valid(rvu, nix_pf_func, BLKTYPE_NIX)) return CPT_AF_ERR_NIX_PF_FUNC_INVALID; /* Enable CPT LF for IPsec inline outbound operations */ if (req->enable) val |= BIT_ULL(16); else val &= ~BIT_ULL(16); rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); if (nix_pf_func) { /* Set NIX_PF_FUNC */ val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); val |= (u64)nix_pf_func << 48; rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, nix_pf_func); nix_sel = (nix_blkaddr == BLKADDR_NIX0) ? 0 : 1; val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); val |= (u64)nix_sel << 8; rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); } return 0; } int rvu_mbox_handler_cpt_inline_ipsec_cfg(struct rvu *rvu, struct cpt_inline_ipsec_cfg_msg *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_block *block; int cptlf, blkaddr, ret; u16 actual_slot; blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc, req->slot, &actual_slot); if (blkaddr < 0) return CPT_AF_ERR_LF_INVALID; block = &rvu->hw->block[blkaddr]; cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot); if (cptlf < 0) return CPT_AF_ERR_LF_INVALID; switch (req->dir) { case CPT_INLINE_INBOUND: ret = cpt_inline_ipsec_cfg_inbound(rvu, blkaddr, cptlf, req); break; case CPT_INLINE_OUTBOUND: ret = cpt_inline_ipsec_cfg_outbound(rvu, blkaddr, cptlf, req); break; default: return CPT_AF_ERR_PARAM; } return ret; } static bool validate_and_update_reg_offset(struct rvu *rvu, struct cpt_rd_wr_reg_msg *req, u64 *reg_offset) { u64 offset = req->reg_offset; int blkaddr, num_lfs, lf; struct rvu_block *block; struct rvu_pfvf *pfvf; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return false; /* Registers that can be accessed from PF/VF */ if ((offset & 0xFF000) == CPT_AF_LFX_CTL(0) || (offset & 0xFF000) == CPT_AF_LFX_CTL2(0)) { if (offset & 7) return false; lf = (offset & 0xFFF) >> 3; block = &rvu->hw->block[blkaddr]; pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr); if (lf >= num_lfs) /* Slot is not valid for that PF/VF */ return false; /* Translate local LF used by VFs to global CPT LF */ lf = rvu_get_lf(rvu, &rvu->hw->block[blkaddr], req->hdr.pcifunc, lf); if (lf < 0) return false; /* Translate local LF's offset to global CPT LF's offset to * access LFX register. */ *reg_offset = (req->reg_offset & 0xFF000) + (lf << 3); return true; } else if (!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK)) { /* Registers that can be accessed from PF */ switch (offset) { case CPT_AF_DIAG: case CPT_AF_CTL: case CPT_AF_PF_FUNC: case CPT_AF_BLK_RST: case CPT_AF_CONSTANTS1: case CPT_AF_CTX_FLUSH_TIMER: case CPT_AF_RXC_CFG1: return true; } switch (offset & 0xFF000) { case CPT_AF_EXEX_STS(0): case CPT_AF_EXEX_CTL(0): case CPT_AF_EXEX_CTL2(0): case CPT_AF_EXEX_UCODE_BASE(0): if (offset & 7) return false; break; default: return false; } return true; } return false; } int rvu_mbox_handler_cpt_rd_wr_register(struct rvu *rvu, struct cpt_rd_wr_reg_msg *req, struct cpt_rd_wr_reg_msg *rsp) { u64 offset = req->reg_offset; int blkaddr; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; /* This message is accepted only if sent from CPT PF/VF */ if (!is_cpt_pf(rvu, req->hdr.pcifunc) && !is_cpt_vf(rvu, req->hdr.pcifunc)) return CPT_AF_ERR_ACCESS_DENIED; if (!validate_and_update_reg_offset(rvu, req, &offset)) return CPT_AF_ERR_ACCESS_DENIED; rsp->reg_offset = req->reg_offset; rsp->ret_val = req->ret_val; rsp->is_write = req->is_write; if (req->is_write) rvu_write64(rvu, blkaddr, offset, req->val); else rsp->val = rvu_read64(rvu, blkaddr, offset); return 0; } static void get_ctx_pc(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; if (is_rvu_otx2(rvu)) return; rsp->ctx_mis_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_MIS_PC); rsp->ctx_hit_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_HIT_PC); rsp->ctx_aop_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_PC); rsp->ctx_aop_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_LATENCY_PC); rsp->ctx_ifetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_PC); rsp->ctx_ifetch_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_LATENCY_PC); rsp->ctx_ffetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); rsp->ctx_ffetch_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_LATENCY_PC); rsp->ctx_wback_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); rsp->ctx_wback_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_LATENCY_PC); rsp->ctx_psh_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); rsp->ctx_psh_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_LATENCY_PC); rsp->ctx_err = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ERR); rsp->ctx_enc_id = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ENC_ID); rsp->ctx_flush_timer = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FLUSH_TIMER); rsp->x2p_link_cfg0 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0)); rsp->x2p_link_cfg1 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1)); if (!hw->cap.cpt_rxc) return; rsp->rxc_time = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME); rsp->rxc_time_cfg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG); rsp->rxc_active_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS); rsp->rxc_zombie_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS); rsp->rxc_dfrg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG); } static void get_eng_sts(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr) { u16 max_ses, max_ies, max_aes; u32 e_min = 0, e_max = 0; u64 reg; reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS1); max_ses = reg & 0xffff; max_ies = (reg >> 16) & 0xffff; max_aes = (reg >> 32) & 0xffff; /* Get AE status */ e_min = max_ses + max_ies; e_max = max_ses + max_ies + max_aes; cpt_get_eng_sts(e_min, e_max, rsp, ae); /* Get SE status */ e_min = 0; e_max = max_ses; cpt_get_eng_sts(e_min, e_max, rsp, se); /* Get IE status */ e_min = max_ses; e_max = max_ses + max_ies; cpt_get_eng_sts(e_min, e_max, rsp, ie); } int rvu_mbox_handler_cpt_sts(struct rvu *rvu, struct cpt_sts_req *req, struct cpt_sts_rsp *rsp) { int blkaddr; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; /* This message is accepted only if sent from CPT PF/VF */ if (!is_cpt_pf(rvu, req->hdr.pcifunc) && !is_cpt_vf(rvu, req->hdr.pcifunc)) return CPT_AF_ERR_ACCESS_DENIED; get_ctx_pc(rvu, rsp, blkaddr); /* Get CPT engines status */ get_eng_sts(rvu, rsp, blkaddr); /* Read CPT instruction PC registers */ rsp->inst_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_REQ_PC); rsp->inst_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_LATENCY_PC); rsp->rd_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_REQ_PC); rsp->rd_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_LATENCY_PC); rsp->rd_uc_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_UC_PC); rsp->active_cycles_pc = rvu_read64(rvu, blkaddr, CPT_AF_ACTIVE_CYCLES_PC); rsp->exe_err_info = rvu_read64(rvu, blkaddr, CPT_AF_EXE_ERR_INFO); rsp->cptclk_cnt = rvu_read64(rvu, blkaddr, CPT_AF_CPTCLK_CNT); rsp->diag = rvu_read64(rvu, blkaddr, CPT_AF_DIAG); return 0; } #define RXC_ZOMBIE_THRES GENMASK_ULL(59, 48) #define RXC_ZOMBIE_LIMIT GENMASK_ULL(43, 32) #define RXC_ACTIVE_THRES GENMASK_ULL(27, 16) #define RXC_ACTIVE_LIMIT GENMASK_ULL(11, 0) #define RXC_ACTIVE_COUNT GENMASK_ULL(60, 48) #define RXC_ZOMBIE_COUNT GENMASK_ULL(60, 48) static void cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req, int blkaddr, struct cpt_rxc_time_cfg_req *save) { u64 dfrg_reg; if (save) { /* Save older config */ dfrg_reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG); save->zombie_thres = FIELD_GET(RXC_ZOMBIE_THRES, dfrg_reg); save->zombie_limit = FIELD_GET(RXC_ZOMBIE_LIMIT, dfrg_reg); save->active_thres = FIELD_GET(RXC_ACTIVE_THRES, dfrg_reg); save->active_limit = FIELD_GET(RXC_ACTIVE_LIMIT, dfrg_reg); save->step = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG); } dfrg_reg = FIELD_PREP(RXC_ZOMBIE_THRES, req->zombie_thres); dfrg_reg |= FIELD_PREP(RXC_ZOMBIE_LIMIT, req->zombie_limit); dfrg_reg |= FIELD_PREP(RXC_ACTIVE_THRES, req->active_thres); dfrg_reg |= FIELD_PREP(RXC_ACTIVE_LIMIT, req->active_limit); rvu_write64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG, req->step); rvu_write64(rvu, blkaddr, CPT_AF_RXC_DFRG, dfrg_reg); } int rvu_mbox_handler_cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req, struct msg_rsp *rsp) { int blkaddr; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; /* This message is accepted only if sent from CPT PF/VF */ if (!is_cpt_pf(rvu, req->hdr.pcifunc) && !is_cpt_vf(rvu, req->hdr.pcifunc)) return CPT_AF_ERR_ACCESS_DENIED; cpt_rxc_time_cfg(rvu, req, blkaddr, NULL); return 0; } int rvu_mbox_handler_cpt_ctx_cache_sync(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { return rvu_cpt_ctx_flush(rvu, req->hdr.pcifunc); } int rvu_mbox_handler_cpt_lf_reset(struct rvu *rvu, struct cpt_lf_rst_req *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_block *block; int cptlf, blkaddr, ret; u16 actual_slot; u64 ctl, ctl2; blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc, req->slot, &actual_slot); if (blkaddr < 0) return CPT_AF_ERR_LF_INVALID; block = &rvu->hw->block[blkaddr]; cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot); if (cptlf < 0) return CPT_AF_ERR_LF_INVALID; ctl = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); ctl2 = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); ret = rvu_lf_reset(rvu, block, cptlf); if (ret) dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n", block->addr, cptlf); rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), ctl); rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), ctl2); return 0; } int rvu_mbox_handler_cpt_flt_eng_info(struct rvu *rvu, struct cpt_flt_eng_info_req *req, struct cpt_flt_eng_info_rsp *rsp) { struct rvu_block *block; unsigned long flags; int blkaddr, vec; int flt_vecs; u16 max_engs; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; block = &rvu->hw->block[blkaddr]; max_engs = cpt_max_engines_get(rvu); flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs); for (vec = 0; vec < flt_vecs; vec++) { spin_lock_irqsave(&rvu->cpt_intr_lock, flags); rsp->flt_eng_map[vec] = block->cpt_flt_eng_map[vec]; rsp->rcvrd_eng_map[vec] = block->cpt_rcvrd_eng_map[vec]; if (req->reset) { block->cpt_flt_eng_map[vec] = 0x0; block->cpt_rcvrd_eng_map[vec] = 0x0; } spin_unlock_irqrestore(&rvu->cpt_intr_lock, flags); } return 0; } static void cpt_rxc_teardown(struct rvu *rvu, int blkaddr) { struct cpt_rxc_time_cfg_req req, prev; struct rvu_hwinfo *hw = rvu->hw; int timeout = 2000; u64 reg; if (!hw->cap.cpt_rxc) return; /* Set time limit to minimum values, so that rxc entries will be * flushed out quickly. */ req.step = 1; req.zombie_thres = 1; req.zombie_limit = 1; req.active_thres = 1; req.active_limit = 1; cpt_rxc_time_cfg(rvu, &req, blkaddr, &prev); do { reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS); udelay(1); if (FIELD_GET(RXC_ACTIVE_COUNT, reg)) timeout--; else break; } while (timeout); if (timeout == 0) dev_warn(rvu->dev, "Poll for RXC active count hits hard loop counter\n"); timeout = 2000; do { reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS); udelay(1); if (FIELD_GET(RXC_ZOMBIE_COUNT, reg)) timeout--; else break; } while (timeout); if (timeout == 0) dev_warn(rvu->dev, "Poll for RXC zombie count hits hard loop counter\n"); /* Restore config */ cpt_rxc_time_cfg(rvu, &prev, blkaddr, NULL); } #define INFLIGHT GENMASK_ULL(8, 0) #define GRB_CNT GENMASK_ULL(39, 32) #define GWB_CNT GENMASK_ULL(47, 40) #define XQ_XOR GENMASK_ULL(63, 63) #define DQPTR GENMASK_ULL(19, 0) #define NQPTR GENMASK_ULL(51, 32) static void cpt_lf_disable_iqueue(struct rvu *rvu, int blkaddr, int slot) { int timeout = 1000000; u64 inprog, inst_ptr; u64 qsize, pending; int i = 0; /* Disable instructions enqueuing */ rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTL), 0x0); inprog = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG)); inprog |= BIT_ULL(16); rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), inprog); qsize = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_SIZE)) & 0x7FFF; do { inst_ptr = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_INST_PTR)); pending = (FIELD_GET(XQ_XOR, inst_ptr) * qsize * 40) + FIELD_GET(NQPTR, inst_ptr) - FIELD_GET(DQPTR, inst_ptr); udelay(1); timeout--; } while ((pending != 0) && (timeout != 0)); if (timeout == 0) dev_warn(rvu->dev, "TIMEOUT: CPT poll on pending instructions\n"); timeout = 1000000; /* Wait for CPT queue to become execution-quiescent */ do { inprog = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG)); if ((FIELD_GET(INFLIGHT, inprog) == 0) && (FIELD_GET(GRB_CNT, inprog) == 0)) { i++; } else { i = 0; timeout--; } } while ((timeout != 0) && (i < 10)); if (timeout == 0) dev_warn(rvu->dev, "TIMEOUT: CPT poll on inflight count\n"); /* Wait for 2 us to flush all queue writes to memory */ udelay(2); } int rvu_cpt_lf_teardown(struct rvu *rvu, u16 pcifunc, int blkaddr, int lf, int slot) { u64 reg; if (is_cpt_pf(rvu, pcifunc) || is_cpt_vf(rvu, pcifunc)) cpt_rxc_teardown(rvu, blkaddr); mutex_lock(&rvu->alias_lock); /* Enable BAR2 ALIAS for this pcifunc. */ reg = BIT_ULL(16) | pcifunc; rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg); cpt_lf_disable_iqueue(rvu, blkaddr, slot); rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0); mutex_unlock(&rvu->alias_lock); return 0; } #define CPT_RES_LEN 16 #define CPT_SE_IE_EGRP 1ULL static int cpt_inline_inb_lf_cmd_send(struct rvu *rvu, int blkaddr, int nix_blkaddr) { int cpt_pf_num = rvu->cpt_pf_num; struct cpt_inst_lmtst_req *req; dma_addr_t res_daddr; int timeout = 3000; u8 cpt_idx; u64 *inst; u16 *res; int rc; res = kzalloc(CPT_RES_LEN, GFP_KERNEL); if (!res) return -ENOMEM; res_daddr = dma_map_single(rvu->dev, res, CPT_RES_LEN, DMA_BIDIRECTIONAL); if (dma_mapping_error(rvu->dev, res_daddr)) { dev_err(rvu->dev, "DMA mapping failed for CPT result\n"); rc = -EFAULT; goto res_free; } *res = 0xFFFF; /* Send mbox message to CPT PF */ req = (struct cpt_inst_lmtst_req *) otx2_mbox_alloc_msg_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num, sizeof(*req), sizeof(struct msg_rsp)); if (!req) { rc = -ENOMEM; goto res_daddr_unmap; } req->hdr.sig = OTX2_MBOX_REQ_SIG; req->hdr.id = MBOX_MSG_CPT_INST_LMTST; inst = req->inst; /* Prepare CPT_INST_S */ inst[0] = 0; inst[1] = res_daddr; /* AF PF FUNC */ inst[2] = 0; /* Set QORD */ inst[3] = 1; inst[4] = 0; inst[5] = 0; inst[6] = 0; /* Set EGRP */ inst[7] = CPT_SE_IE_EGRP << 61; /* Subtract 1 from the NIX-CPT credit count to preserve * credit counts. */ cpt_idx = (blkaddr == BLKADDR_CPT0) ? 0 : 1; rvu_write64(rvu, nix_blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx), BIT_ULL(22) - 1); otx2_mbox_msg_send(&rvu->afpf_wq_info.mbox_up, cpt_pf_num); rc = otx2_mbox_wait_for_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num); if (rc) dev_warn(rvu->dev, "notification to pf %d failed\n", cpt_pf_num); /* Wait for CPT instruction to be completed */ do { mdelay(1); if (*res == 0xFFFF) timeout--; else break; } while (timeout); if (timeout == 0) dev_warn(rvu->dev, "Poll for result hits hard loop counter\n"); res_daddr_unmap: dma_unmap_single(rvu->dev, res_daddr, CPT_RES_LEN, DMA_BIDIRECTIONAL); res_free: kfree(res); return 0; } #define CTX_CAM_PF_FUNC GENMASK_ULL(61, 46) #define CTX_CAM_CPTR GENMASK_ULL(45, 0) int rvu_cpt_ctx_flush(struct rvu *rvu, u16 pcifunc) { int nix_blkaddr, blkaddr; u16 max_ctx_entries, i; int slot = 0, num_lfs; u64 reg, cam_data; int rc; nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (nix_blkaddr < 0) return -EINVAL; if (is_rvu_otx2(rvu)) return 0; blkaddr = (nix_blkaddr == BLKADDR_NIX1) ? BLKADDR_CPT1 : BLKADDR_CPT0; /* Submit CPT_INST_S to track when all packets have been * flushed through for the NIX PF FUNC in inline inbound case. */ rc = cpt_inline_inb_lf_cmd_send(rvu, blkaddr, nix_blkaddr); if (rc) return rc; /* Wait for rxc entries to be flushed out */ cpt_rxc_teardown(rvu, blkaddr); reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0); max_ctx_entries = (reg >> 48) & 0xFFF; mutex_lock(&rvu->rsrc_lock); num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), blkaddr); if (num_lfs == 0) { dev_warn(rvu->dev, "CPT LF is not configured\n"); goto unlock; } /* Enable BAR2 ALIAS for this pcifunc. */ reg = BIT_ULL(16) | pcifunc; rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg); for (i = 0; i < max_ctx_entries; i++) { cam_data = rvu_read64(rvu, blkaddr, CPT_AF_CTX_CAM_DATA(i)); if ((FIELD_GET(CTX_CAM_PF_FUNC, cam_data) == pcifunc) && FIELD_GET(CTX_CAM_CPTR, cam_data)) { reg = BIT_ULL(46) | FIELD_GET(CTX_CAM_CPTR, cam_data); rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTX_FLUSH), reg); } } rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0); unlock: mutex_unlock(&rvu->rsrc_lock); return 0; } #define MAX_RXC_ICB_CNT GENMASK_ULL(40, 32) int rvu_cpt_init(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; u64 reg_val; /* Retrieve CPT PF number */ rvu->cpt_pf_num = get_cpt_pf_num(rvu); if (is_block_implemented(rvu->hw, BLKADDR_CPT0) && !is_rvu_otx2(rvu) && !is_cn10kb(rvu)) hw->cap.cpt_rxc = true; if (hw->cap.cpt_rxc && !is_cn10ka_a0(rvu) && !is_cn10ka_a1(rvu)) { /* Set CPT_AF_RXC_CFG1:max_rxc_icb_cnt to 0xc0 to not effect * inline inbound peak performance */ reg_val = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_RXC_CFG1); reg_val &= ~MAX_RXC_ICB_CNT; reg_val |= FIELD_PREP(MAX_RXC_ICB_CNT, CPT_DFLT_MAX_RXC_ICB_CNT); rvu_write64(rvu, BLKADDR_CPT0, CPT_AF_RXC_CFG1, reg_val); } spin_lock_init(&rvu->cpt_intr_lock); return 0; }