/* * Broadcom NetXtreme-E RoCE driver. * * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term * Broadcom refers to Broadcom Limited and/or its subsidiaries. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * BSD license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Description: Main component of the bnxt_re driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bnxt_ulp.h" #include "roce_hsi.h" #include "qplib_res.h" #include "qplib_sp.h" #include "qplib_fp.h" #include "qplib_rcfw.h" #include "bnxt_re.h" #include "ib_verbs.h" #include #include "bnxt.h" #include "hw_counters.h" static char version[] = BNXT_RE_DESC "\n"; MODULE_AUTHOR("Eddie Wai "); MODULE_DESCRIPTION(BNXT_RE_DESC); MODULE_LICENSE("Dual BSD/GPL"); /* globals */ static DEFINE_MUTEX(bnxt_re_mutex); static void bnxt_re_stop_irq(void *handle); static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev); static int bnxt_re_netdev_event(struct notifier_block *notifier, unsigned long event, void *ptr); static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev); static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev, u8 op_type); static int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev); static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len, u32 *offset); static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable); static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev) { struct bnxt_qplib_chip_ctx *cctx; struct bnxt_en_dev *en_dev; struct bnxt_qplib_res *res; u32 l2db_len = 0; u32 offset = 0; u32 barlen; int rc; res = &rdev->qplib_res; en_dev = rdev->en_dev; cctx = rdev->chip_ctx; /* Issue qcfg */ rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset); if (rc) dev_info(rdev_to_dev(rdev), "Couldn't get DB bar size, Low latency framework is disabled\n"); /* set register offsets for both UC and WC */ if (bnxt_qplib_is_chip_gen_p7(cctx)) { res->dpi_tbl.ucreg.offset = offset; res->dpi_tbl.wcreg.offset = en_dev->l2_db_size; } else { res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET : BNXT_QPLIB_DBR_PF_DB_OFFSET; res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset; } /* If WC mapping is disabled by L2 driver then en_dev->l2_db_size * is equal to the DB-Bar actual size. This indicates that L2 * is mapping entire bar as UC-. RoCE driver can't enable WC mapping * in such cases and DB-push will be disabled. */ barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION); if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) { res->dpi_tbl.wcreg.offset = en_dev->l2_db_size; dev_info(rdev_to_dev(rdev), "Low latency framework is enabled\n"); } } static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev) { struct bnxt_qplib_chip_ctx *cctx; cctx = rdev->chip_ctx; cctx->modes.wqe_mode = bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx) ? BNXT_QPLIB_WQE_MODE_VARIABLE : BNXT_QPLIB_WQE_MODE_STATIC; if (bnxt_re_hwrm_qcaps(rdev)) dev_err(rdev_to_dev(rdev), "Failed to query hwrm qcaps\n"); if (bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx)) { cctx->modes.toggle_bits |= BNXT_QPLIB_CQ_TOGGLE_BIT; cctx->modes.toggle_bits |= BNXT_QPLIB_SRQ_TOGGLE_BIT; } } static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev) { struct bnxt_qplib_chip_ctx *chip_ctx; if (!rdev->chip_ctx) return; chip_ctx = rdev->chip_ctx; rdev->chip_ctx = NULL; rdev->rcfw.res = NULL; rdev->qplib_res.cctx = NULL; rdev->qplib_res.pdev = NULL; rdev->qplib_res.netdev = NULL; kfree(chip_ctx); } static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev) { struct bnxt_qplib_chip_ctx *chip_ctx; struct bnxt_en_dev *en_dev; int rc; en_dev = rdev->en_dev; rdev->qplib_res.pdev = en_dev->pdev; chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL); if (!chip_ctx) return -ENOMEM; chip_ctx->chip_num = en_dev->chip_num; chip_ctx->hw_stats_size = en_dev->hw_ring_stats_size; rdev->chip_ctx = chip_ctx; /* rest members to follow eventually */ rdev->qplib_res.cctx = rdev->chip_ctx; rdev->rcfw.res = &rdev->qplib_res; rdev->qplib_res.dattr = &rdev->dev_attr; rdev->qplib_res.is_vf = BNXT_EN_VF(en_dev); bnxt_re_set_drv_mode(rdev); bnxt_re_set_db_offset(rdev); rc = bnxt_qplib_map_db_bar(&rdev->qplib_res); if (rc) { kfree(rdev->chip_ctx); rdev->chip_ctx = NULL; return rc; } if (bnxt_qplib_determine_atomics(en_dev->pdev)) ibdev_info(&rdev->ibdev, "platform doesn't support global atomics."); return 0; } /* SR-IOV helper functions */ static void bnxt_re_get_sriov_func_type(struct bnxt_re_dev *rdev) { if (BNXT_EN_VF(rdev->en_dev)) rdev->is_virtfn = 1; } /* Set the maximum number of each resource that the driver actually wants * to allocate. This may be up to the maximum number the firmware has * reserved for the function. The driver may choose to allocate fewer * resources than the firmware maximum. */ static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev) { struct bnxt_qplib_dev_attr *attr; struct bnxt_qplib_ctx *ctx; int i; attr = &rdev->dev_attr; ctx = &rdev->qplib_ctx; ctx->qpc_count = min_t(u32, BNXT_RE_MAX_QPC_COUNT, attr->max_qp); ctx->mrw_count = BNXT_RE_MAX_MRW_COUNT_256K; /* Use max_mr from fw since max_mrw does not get set */ ctx->mrw_count = min_t(u32, ctx->mrw_count, attr->max_mr); ctx->srqc_count = min_t(u32, BNXT_RE_MAX_SRQC_COUNT, attr->max_srq); ctx->cq_count = min_t(u32, BNXT_RE_MAX_CQ_COUNT, attr->max_cq); if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) rdev->qplib_ctx.tqm_ctx.qcount[i] = rdev->dev_attr.tqm_alloc_reqs[i]; } static void bnxt_re_limit_vf_res(struct bnxt_qplib_ctx *qplib_ctx, u32 num_vf) { struct bnxt_qplib_vf_res *vf_res; u32 mrws = 0; u32 vf_pct; u32 nvfs; vf_res = &qplib_ctx->vf_res; /* * Reserve a set of resources for the PF. Divide the remaining * resources among the VFs */ vf_pct = 100 - BNXT_RE_PCT_RSVD_FOR_PF; nvfs = num_vf; num_vf = 100 * num_vf; vf_res->max_qp_per_vf = (qplib_ctx->qpc_count * vf_pct) / num_vf; vf_res->max_srq_per_vf = (qplib_ctx->srqc_count * vf_pct) / num_vf; vf_res->max_cq_per_vf = (qplib_ctx->cq_count * vf_pct) / num_vf; /* * The driver allows many more MRs than other resources. If the * firmware does also, then reserve a fixed amount for the PF and * divide the rest among VFs. VFs may use many MRs for NFS * mounts, ISER, NVME applications, etc. If the firmware severely * restricts the number of MRs, then let PF have half and divide * the rest among VFs, as for the other resource types. */ if (qplib_ctx->mrw_count < BNXT_RE_MAX_MRW_COUNT_64K) { mrws = qplib_ctx->mrw_count * vf_pct; nvfs = num_vf; } else { mrws = qplib_ctx->mrw_count - BNXT_RE_RESVD_MR_FOR_PF; } vf_res->max_mrw_per_vf = (mrws / nvfs); vf_res->max_gid_per_vf = BNXT_RE_MAX_GID_PER_VF; } static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev) { u32 num_vfs; memset(&rdev->qplib_ctx.vf_res, 0, sizeof(struct bnxt_qplib_vf_res)); bnxt_re_limit_pf_res(rdev); num_vfs = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ? BNXT_RE_GEN_P5_MAX_VF : rdev->num_vfs; if (num_vfs) bnxt_re_limit_vf_res(&rdev->qplib_ctx, num_vfs); } static void bnxt_re_vf_res_config(struct bnxt_re_dev *rdev) { rdev->num_vfs = pci_sriov_get_totalvfs(rdev->en_dev->pdev); if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) { bnxt_re_set_resource_limits(rdev); bnxt_qplib_set_func_resources(&rdev->qplib_res, &rdev->rcfw, &rdev->qplib_ctx); } } static void bnxt_re_shutdown(struct auxiliary_device *adev) { struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev); struct bnxt_re_dev *rdev; rdev = en_info->rdev; ib_unregister_device(&rdev->ibdev); bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE); } static void bnxt_re_stop_irq(void *handle) { struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle); struct bnxt_qplib_rcfw *rcfw; struct bnxt_re_dev *rdev; struct bnxt_qplib_nq *nq; int indx; rdev = en_info->rdev; rcfw = &rdev->rcfw; for (indx = BNXT_RE_NQ_IDX; indx < rdev->num_msix; indx++) { nq = &rdev->nq[indx - 1]; bnxt_qplib_nq_stop_irq(nq, false); } bnxt_qplib_rcfw_stop_irq(rcfw, false); } static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent) { struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle); struct bnxt_msix_entry *msix_ent; struct bnxt_qplib_rcfw *rcfw; struct bnxt_re_dev *rdev; struct bnxt_qplib_nq *nq; int indx, rc; rdev = en_info->rdev; msix_ent = rdev->en_dev->msix_entries; rcfw = &rdev->rcfw; if (!ent) { /* Not setting the f/w timeout bit in rcfw. * During the driver unload the first command * to f/w will timeout and that will set the * timeout bit. */ ibdev_err(&rdev->ibdev, "Failed to re-start IRQs\n"); return; } /* Vectors may change after restart, so update with new vectors * in device sctructure. */ for (indx = 0; indx < rdev->num_msix; indx++) rdev->en_dev->msix_entries[indx].vector = ent[indx].vector; rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector, false); if (rc) { ibdev_warn(&rdev->ibdev, "Failed to reinit CREQ\n"); return; } for (indx = BNXT_RE_NQ_IDX ; indx < rdev->num_msix; indx++) { nq = &rdev->nq[indx - 1]; rc = bnxt_qplib_nq_start_irq(nq, indx - 1, msix_ent[indx].vector, false); if (rc) { ibdev_warn(&rdev->ibdev, "Failed to reinit NQ index %d\n", indx - 1); return; } } } static struct bnxt_ulp_ops bnxt_re_ulp_ops = { .ulp_irq_stop = bnxt_re_stop_irq, .ulp_irq_restart = bnxt_re_start_irq }; /* RoCE -> Net driver */ static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev) { struct bnxt_en_dev *en_dev; en_dev = rdev->en_dev; return bnxt_register_dev(en_dev, &bnxt_re_ulp_ops, rdev->adev); } static void bnxt_re_init_hwrm_hdr(struct input *hdr, u16 opcd) { hdr->req_type = cpu_to_le16(opcd); hdr->cmpl_ring = cpu_to_le16(-1); hdr->target_id = cpu_to_le16(-1); } static void bnxt_re_fill_fw_msg(struct bnxt_fw_msg *fw_msg, void *msg, int msg_len, void *resp, int resp_max_len, int timeout) { fw_msg->msg = msg; fw_msg->msg_len = msg_len; fw_msg->resp = resp; fw_msg->resp_max_len = resp_max_len; fw_msg->timeout = timeout; } /* Query device config using common hwrm */ static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len, u32 *offset) { struct bnxt_en_dev *en_dev = rdev->en_dev; struct hwrm_func_qcfg_output resp = {0}; struct hwrm_func_qcfg_input req = {0}; struct bnxt_fw_msg fw_msg = {}; int rc; bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCFG); req.fid = cpu_to_le16(0xffff); bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); rc = bnxt_send_msg(en_dev, &fw_msg); if (!rc) { *db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024); *offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024); } return rc; } /* Query function capabilities using common hwrm */ int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev) { struct bnxt_en_dev *en_dev = rdev->en_dev; struct hwrm_func_qcaps_output resp = {}; struct hwrm_func_qcaps_input req = {}; struct bnxt_qplib_chip_ctx *cctx; struct bnxt_fw_msg fw_msg = {}; u32 flags_ext2; int rc; cctx = rdev->chip_ctx; bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCAPS); req.fid = cpu_to_le16(0xffff); bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); rc = bnxt_send_msg(en_dev, &fw_msg); if (rc) return rc; cctx->modes.db_push = le32_to_cpu(resp.flags) & FUNC_QCAPS_RESP_FLAGS_WCB_PUSH_MODE; flags_ext2 = le32_to_cpu(resp.flags_ext2); cctx->modes.dbr_pacing = flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED || flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_V0_SUPPORTED; return 0; } static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev) { struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data; struct hwrm_func_dbr_pacing_qcfg_output resp = {}; struct hwrm_func_dbr_pacing_qcfg_input req = {}; struct bnxt_en_dev *en_dev = rdev->en_dev; struct bnxt_qplib_chip_ctx *cctx; struct bnxt_fw_msg fw_msg = {}; int rc; cctx = rdev->chip_ctx; bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_DBR_PACING_QCFG); bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); rc = bnxt_send_msg(en_dev, &fw_msg); if (rc) return rc; if ((le32_to_cpu(resp.dbr_stat_db_fifo_reg) & FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) == FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC) cctx->dbr_stat_db_fifo = le32_to_cpu(resp.dbr_stat_db_fifo_reg) & ~FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK; pacing_data->fifo_max_depth = le32_to_cpu(resp.dbr_stat_db_max_fifo_depth); if (!pacing_data->fifo_max_depth) pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH(cctx); pacing_data->fifo_room_mask = le32_to_cpu(resp.dbr_stat_db_fifo_reg_fifo_room_mask); pacing_data->fifo_room_shift = resp.dbr_stat_db_fifo_reg_fifo_room_shift; return 0; } /* Update the pacing tunable parameters to the default values */ static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev) { struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data; pacing_data->do_pacing = rdev->pacing.dbr_def_do_pacing; pacing_data->pacing_th = rdev->pacing.pacing_algo_th; pacing_data->alarm_th = pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE; } static u32 __get_fifo_occupancy(struct bnxt_re_dev *rdev) { struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data; u32 read_val, fifo_occup; read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off); fifo_occup = pacing_data->fifo_max_depth - ((read_val & pacing_data->fifo_room_mask) >> pacing_data->fifo_room_shift); return fifo_occup; } static bool is_dbr_fifo_full(struct bnxt_re_dev *rdev) { u32 max_occup, fifo_occup; fifo_occup = __get_fifo_occupancy(rdev); max_occup = BNXT_RE_MAX_FIFO_DEPTH(rdev->chip_ctx) - 1; if (fifo_occup == max_occup) return true; return false; } static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev) { struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data; u32 retry_fifo_check = 1000; u32 fifo_occup; /* loop shouldn't run infintely as the occupancy usually goes * below pacing algo threshold as soon as pacing kicks in. */ while (1) { fifo_occup = __get_fifo_occupancy(rdev); /* Fifo occupancy cannot be greater the MAX FIFO depth */ if (fifo_occup > pacing_data->fifo_max_depth) break; if (fifo_occup < pacing_data->pacing_th) break; if (!retry_fifo_check--) { dev_info_once(rdev_to_dev(rdev), "%s: fifo_occup = 0x%xfifo_max_depth = 0x%x pacing_th = 0x%x\n", __func__, fifo_occup, pacing_data->fifo_max_depth, pacing_data->pacing_th); break; } } } static void bnxt_re_db_fifo_check(struct work_struct *work) { struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, dbq_fifo_check_work); struct bnxt_qplib_db_pacing_data *pacing_data; u32 pacing_save; if (!mutex_trylock(&rdev->pacing.dbq_lock)) return; pacing_data = rdev->qplib_res.pacing_data; pacing_save = rdev->pacing.do_pacing_save; __wait_for_fifo_occupancy_below_th(rdev); cancel_delayed_work_sync(&rdev->dbq_pacing_work); if (pacing_save > rdev->pacing.dbr_def_do_pacing) { /* Double the do_pacing value during the congestion */ pacing_save = pacing_save << 1; } else { /* * when a new congestion is detected increase the do_pacing * by 8 times. And also increase the pacing_th by 4 times. The * reason to increase pacing_th is to give more space for the * queue to oscillate down without getting empty, but also more * room for the queue to increase without causing another alarm. */ pacing_save = pacing_save << 3; pacing_data->pacing_th = rdev->pacing.pacing_algo_th * 4; } if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING) pacing_save = BNXT_RE_MAX_DBR_DO_PACING; pacing_data->do_pacing = pacing_save; rdev->pacing.do_pacing_save = pacing_data->do_pacing; pacing_data->alarm_th = pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE; schedule_delayed_work(&rdev->dbq_pacing_work, msecs_to_jiffies(rdev->pacing.dbq_pacing_time)); rdev->stats.pacing.alerts++; mutex_unlock(&rdev->pacing.dbq_lock); } static void bnxt_re_pacing_timer_exp(struct work_struct *work) { struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, dbq_pacing_work.work); struct bnxt_qplib_db_pacing_data *pacing_data; u32 fifo_occup; if (!mutex_trylock(&rdev->pacing.dbq_lock)) return; pacing_data = rdev->qplib_res.pacing_data; fifo_occup = __get_fifo_occupancy(rdev); if (fifo_occup > pacing_data->pacing_th) goto restart_timer; /* * Instead of immediately going back to the default do_pacing * reduce it by 1/8 times and restart the timer. */ pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3); pacing_data->do_pacing = max_t(u32, rdev->pacing.dbr_def_do_pacing, pacing_data->do_pacing); if (pacing_data->do_pacing <= rdev->pacing.dbr_def_do_pacing) { bnxt_re_set_default_pacing_data(rdev); rdev->stats.pacing.complete++; goto dbq_unlock; } restart_timer: schedule_delayed_work(&rdev->dbq_pacing_work, msecs_to_jiffies(rdev->pacing.dbq_pacing_time)); rdev->stats.pacing.resched++; dbq_unlock: rdev->pacing.do_pacing_save = pacing_data->do_pacing; mutex_unlock(&rdev->pacing.dbq_lock); } void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev) { struct bnxt_qplib_db_pacing_data *pacing_data; if (!rdev->pacing.dbr_pacing) return; mutex_lock(&rdev->pacing.dbq_lock); pacing_data = rdev->qplib_res.pacing_data; /* * Increase the alarm_th to max so that other user lib instances do not * keep alerting the driver. */ pacing_data->alarm_th = pacing_data->fifo_max_depth; pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING; cancel_work_sync(&rdev->dbq_fifo_check_work); schedule_work(&rdev->dbq_fifo_check_work); mutex_unlock(&rdev->pacing.dbq_lock); } static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev) { /* Allocate a page for app use */ rdev->pacing.dbr_page = (void *)__get_free_page(GFP_KERNEL); if (!rdev->pacing.dbr_page) return -ENOMEM; memset((u8 *)rdev->pacing.dbr_page, 0, PAGE_SIZE); rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->pacing.dbr_page; if (bnxt_re_hwrm_dbr_pacing_qcfg(rdev)) { free_page((u64)rdev->pacing.dbr_page); rdev->pacing.dbr_page = NULL; return -EIO; } /* MAP HW window 2 for reading db fifo depth */ writel(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK, rdev->en_dev->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); rdev->pacing.dbr_db_fifo_reg_off = (rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) + BNXT_RE_GRC_FIFO_REG_BASE; rdev->pacing.dbr_bar_addr = pci_resource_start(rdev->qplib_res.pdev, 0) + rdev->pacing.dbr_db_fifo_reg_off; if (is_dbr_fifo_full(rdev)) { free_page((u64)rdev->pacing.dbr_page); rdev->pacing.dbr_page = NULL; return -EIO; } rdev->pacing.pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD; rdev->pacing.dbq_pacing_time = BNXT_RE_DBR_PACING_TIME; rdev->pacing.dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION; rdev->pacing.do_pacing_save = rdev->pacing.dbr_def_do_pacing; rdev->qplib_res.pacing_data->grc_reg_offset = rdev->pacing.dbr_db_fifo_reg_off; bnxt_re_set_default_pacing_data(rdev); /* Initialize worker for DBR Pacing */ INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check); INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp); return 0; } static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev) { cancel_work_sync(&rdev->dbq_fifo_check_work); cancel_delayed_work_sync(&rdev->dbq_pacing_work); if (rdev->pacing.dbr_page) free_page((u64)rdev->pacing.dbr_page); rdev->pacing.dbr_page = NULL; rdev->pacing.dbr_pacing = false; } static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev, u16 fw_ring_id, int type) { struct bnxt_en_dev *en_dev; struct hwrm_ring_free_input req = {}; struct hwrm_ring_free_output resp; struct bnxt_fw_msg fw_msg = {}; int rc = -EINVAL; if (!rdev) return rc; en_dev = rdev->en_dev; if (!en_dev) return rc; if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) return 0; bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_FREE); req.ring_type = type; req.ring_id = cpu_to_le16(fw_ring_id); bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); rc = bnxt_send_msg(en_dev, &fw_msg); if (rc) ibdev_err(&rdev->ibdev, "Failed to free HW ring:%d :%#x", req.ring_id, rc); return rc; } static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev, struct bnxt_re_ring_attr *ring_attr, u16 *fw_ring_id) { struct bnxt_en_dev *en_dev = rdev->en_dev; struct hwrm_ring_alloc_input req = {}; struct hwrm_ring_alloc_output resp; struct bnxt_fw_msg fw_msg = {}; int rc = -EINVAL; if (!en_dev) return rc; bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_ALLOC); req.enables = 0; req.page_tbl_addr = cpu_to_le64(ring_attr->dma_arr[0]); if (ring_attr->pages > 1) { /* Page size is in log2 units */ req.page_size = BNXT_PAGE_SHIFT; req.page_tbl_depth = 1; } req.fbo = 0; /* Association of ring index with doorbell index and MSIX number */ req.logical_id = cpu_to_le16(ring_attr->lrid); req.length = cpu_to_le32(ring_attr->depth + 1); req.ring_type = ring_attr->type; req.int_mode = ring_attr->mode; bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); rc = bnxt_send_msg(en_dev, &fw_msg); if (!rc) *fw_ring_id = le16_to_cpu(resp.ring_id); return rc; } static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev, u32 fw_stats_ctx_id) { struct bnxt_en_dev *en_dev = rdev->en_dev; struct hwrm_stat_ctx_free_input req = {}; struct hwrm_stat_ctx_free_output resp = {}; struct bnxt_fw_msg fw_msg = {}; int rc = -EINVAL; if (!en_dev) return rc; if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) return 0; bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_FREE); req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id); bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); rc = bnxt_send_msg(en_dev, &fw_msg); if (rc) ibdev_err(&rdev->ibdev, "Failed to free HW stats context %#x", rc); return rc; } static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev, dma_addr_t dma_map, u32 *fw_stats_ctx_id) { struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx; struct hwrm_stat_ctx_alloc_output resp = {}; struct hwrm_stat_ctx_alloc_input req = {}; struct bnxt_en_dev *en_dev = rdev->en_dev; struct bnxt_fw_msg fw_msg = {}; int rc = -EINVAL; *fw_stats_ctx_id = INVALID_STATS_CTX_ID; if (!en_dev) return rc; bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_ALLOC); req.update_period_ms = cpu_to_le32(1000); req.stats_dma_addr = cpu_to_le64(dma_map); req.stats_dma_length = cpu_to_le16(chip_ctx->hw_stats_size); req.stat_ctx_flags = STAT_CTX_ALLOC_REQ_STAT_CTX_FLAGS_ROCE; bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); rc = bnxt_send_msg(en_dev, &fw_msg); if (!rc) *fw_stats_ctx_id = le32_to_cpu(resp.stat_ctx_id); return rc; } static void bnxt_re_disassociate_ucontext(struct ib_ucontext *ibcontext) { } /* Device */ static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev) { struct ib_device *ibdev = ib_device_get_by_netdev(netdev, RDMA_DRIVER_BNXT_RE); if (!ibdev) return NULL; return container_of(ibdev, struct bnxt_re_dev, ibdev); } static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr, char *buf) { struct bnxt_re_dev *rdev = rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev); return sysfs_emit(buf, "0x%x\n", rdev->en_dev->pdev->vendor); } static DEVICE_ATTR_RO(hw_rev); static ssize_t hca_type_show(struct device *device, struct device_attribute *attr, char *buf) { struct bnxt_re_dev *rdev = rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev); return sysfs_emit(buf, "%s\n", rdev->ibdev.node_desc); } static DEVICE_ATTR_RO(hca_type); static struct attribute *bnxt_re_attributes[] = { &dev_attr_hw_rev.attr, &dev_attr_hca_type.attr, NULL }; static const struct attribute_group bnxt_re_dev_attr_group = { .attrs = bnxt_re_attributes, }; static const struct ib_device_ops bnxt_re_dev_ops = { .owner = THIS_MODULE, .driver_id = RDMA_DRIVER_BNXT_RE, .uverbs_abi_ver = BNXT_RE_ABI_VERSION, .add_gid = bnxt_re_add_gid, .alloc_hw_port_stats = bnxt_re_ib_alloc_hw_port_stats, .alloc_mr = bnxt_re_alloc_mr, .alloc_pd = bnxt_re_alloc_pd, .alloc_ucontext = bnxt_re_alloc_ucontext, .create_ah = bnxt_re_create_ah, .create_cq = bnxt_re_create_cq, .create_qp = bnxt_re_create_qp, .create_srq = bnxt_re_create_srq, .create_user_ah = bnxt_re_create_ah, .dealloc_pd = bnxt_re_dealloc_pd, .dealloc_ucontext = bnxt_re_dealloc_ucontext, .del_gid = bnxt_re_del_gid, .dereg_mr = bnxt_re_dereg_mr, .destroy_ah = bnxt_re_destroy_ah, .destroy_cq = bnxt_re_destroy_cq, .destroy_qp = bnxt_re_destroy_qp, .destroy_srq = bnxt_re_destroy_srq, .device_group = &bnxt_re_dev_attr_group, .disassociate_ucontext = bnxt_re_disassociate_ucontext, .get_dev_fw_str = bnxt_re_query_fw_str, .get_dma_mr = bnxt_re_get_dma_mr, .get_hw_stats = bnxt_re_ib_get_hw_stats, .get_link_layer = bnxt_re_get_link_layer, .get_port_immutable = bnxt_re_get_port_immutable, .map_mr_sg = bnxt_re_map_mr_sg, .mmap = bnxt_re_mmap, .mmap_free = bnxt_re_mmap_free, .modify_qp = bnxt_re_modify_qp, .modify_srq = bnxt_re_modify_srq, .poll_cq = bnxt_re_poll_cq, .post_recv = bnxt_re_post_recv, .post_send = bnxt_re_post_send, .post_srq_recv = bnxt_re_post_srq_recv, .query_ah = bnxt_re_query_ah, .query_device = bnxt_re_query_device, .query_pkey = bnxt_re_query_pkey, .query_port = bnxt_re_query_port, .query_qp = bnxt_re_query_qp, .query_srq = bnxt_re_query_srq, .reg_user_mr = bnxt_re_reg_user_mr, .reg_user_mr_dmabuf = bnxt_re_reg_user_mr_dmabuf, .req_notify_cq = bnxt_re_req_notify_cq, .resize_cq = bnxt_re_resize_cq, INIT_RDMA_OBJ_SIZE(ib_ah, bnxt_re_ah, ib_ah), INIT_RDMA_OBJ_SIZE(ib_cq, bnxt_re_cq, ib_cq), INIT_RDMA_OBJ_SIZE(ib_pd, bnxt_re_pd, ib_pd), INIT_RDMA_OBJ_SIZE(ib_qp, bnxt_re_qp, ib_qp), INIT_RDMA_OBJ_SIZE(ib_srq, bnxt_re_srq, ib_srq), INIT_RDMA_OBJ_SIZE(ib_ucontext, bnxt_re_ucontext, ib_uctx), }; static int bnxt_re_register_ib(struct bnxt_re_dev *rdev) { struct ib_device *ibdev = &rdev->ibdev; int ret; /* ib device init */ ibdev->node_type = RDMA_NODE_IB_CA; strscpy(ibdev->node_desc, BNXT_RE_DESC " HCA", strlen(BNXT_RE_DESC) + 5); ibdev->phys_port_cnt = 1; addrconf_addr_eui48((u8 *)&ibdev->node_guid, rdev->netdev->dev_addr); ibdev->num_comp_vectors = rdev->num_msix - 1; ibdev->dev.parent = &rdev->en_dev->pdev->dev; ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY; if (IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)) ibdev->driver_def = bnxt_re_uapi_defs; ib_set_device_ops(ibdev, &bnxt_re_dev_ops); ret = ib_device_set_netdev(&rdev->ibdev, rdev->netdev, 1); if (ret) return ret; dma_set_max_seg_size(&rdev->en_dev->pdev->dev, UINT_MAX); ibdev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POLL_CQ); return ib_register_device(ibdev, "bnxt_re%d", &rdev->en_dev->pdev->dev); } static struct bnxt_re_dev *bnxt_re_dev_add(struct auxiliary_device *adev, struct bnxt_en_dev *en_dev) { struct bnxt_re_dev *rdev; /* Allocate bnxt_re_dev instance here */ rdev = ib_alloc_device(bnxt_re_dev, ibdev); if (!rdev) { ibdev_err(NULL, "%s: bnxt_re_dev allocation failure!", ROCE_DRV_MODULE_NAME); return NULL; } /* Default values */ rdev->nb.notifier_call = NULL; rdev->netdev = en_dev->net; rdev->en_dev = en_dev; rdev->adev = adev; rdev->id = rdev->en_dev->pdev->devfn; INIT_LIST_HEAD(&rdev->qp_list); mutex_init(&rdev->qp_lock); mutex_init(&rdev->pacing.dbq_lock); atomic_set(&rdev->stats.res.qp_count, 0); atomic_set(&rdev->stats.res.cq_count, 0); atomic_set(&rdev->stats.res.srq_count, 0); atomic_set(&rdev->stats.res.mr_count, 0); atomic_set(&rdev->stats.res.mw_count, 0); atomic_set(&rdev->stats.res.ah_count, 0); atomic_set(&rdev->stats.res.pd_count, 0); rdev->cosq[0] = 0xFFFF; rdev->cosq[1] = 0xFFFF; return rdev; } static int bnxt_re_handle_unaffi_async_event(struct creq_func_event *unaffi_async) { switch (unaffi_async->event) { case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR: break; case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR: break; case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR: break; case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR: break; case CREQ_FUNC_EVENT_EVENT_CQ_ERROR: break; case CREQ_FUNC_EVENT_EVENT_TQM_ERROR: break; case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR: break; case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR: break; case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR: break; case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR: break; case CREQ_FUNC_EVENT_EVENT_TIM_ERROR: break; default: return -EINVAL; } return 0; } static int bnxt_re_handle_qp_async_event(struct creq_qp_event *qp_event, struct bnxt_re_qp *qp) { struct creq_qp_error_notification *err_event; struct bnxt_re_srq *srq = NULL; struct ib_event event = {}; unsigned int flags; if (qp->qplib_qp.srq) srq = container_of(qp->qplib_qp.srq, struct bnxt_re_srq, qplib_srq); if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR && rdma_is_kernel_res(&qp->ib_qp.res)) { flags = bnxt_re_lock_cqs(qp); bnxt_qplib_add_flush_qp(&qp->qplib_qp); bnxt_re_unlock_cqs(qp, flags); } event.device = &qp->rdev->ibdev; event.element.qp = &qp->ib_qp; event.event = IB_EVENT_QP_FATAL; err_event = (struct creq_qp_error_notification *)qp_event; switch (err_event->req_err_state_reason) { case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_OPCODE_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TIMEOUT_RETRY_LIMIT: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RNR_TIMEOUT_RETRY_LIMIT: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_2: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_3: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_READ_RESP: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_BIND: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_FAST_REG: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_INVALIDATE: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETRAN_LOCAL_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_AV_DOMAIN_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PROD_WQE_MSMTCH_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PSN_RANGE_CHECK_ERROR: event.event = IB_EVENT_QP_ACCESS_ERR; break; case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_1: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_4: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_READ_RESP_LENGTH: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_WQE_FORMAT_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ORRQ_FORMAT_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_AVID_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_SERV_TYPE_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_OP_ERROR: event.event = IB_EVENT_QP_REQ_ERR; break; case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_MEMORY_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_MEMORY_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CMP_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CQ_LOAD_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_PCI_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_PCI_ERROR: case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETX_SETUP_ERROR: event.event = IB_EVENT_QP_FATAL; break; default: break; } switch (err_event->res_err_state_reason) { case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEED_MAX: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PAYLOAD_LENGTH_MISMATCH: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_SEQ_ERROR_RETRY_LIMIT: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_INVALID_R_KEY: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_DOMAIN_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_NO_PERMISSION: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_RANGE_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_INVALID_R_KEY: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_DOMAIN_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_NO_PERMISSION: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_RANGE_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNALIGN_ATOMIC: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_NOT_FOUND: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_INVALID_DUP_RKEY: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_FORMAT_ERROR: event.event = IB_EVENT_QP_ACCESS_ERR; break; case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEEDS_WQE: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_WQE_FORMAT_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNSUPPORTED_OPCODE: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_REM_INVALIDATE: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_OPCODE_ERROR: event.event = IB_EVENT_QP_REQ_ERR; break; case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_OFLOW: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CMP_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CQ_LOAD_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_PCI_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_PCI_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_MEMORY_ERROR: event.event = IB_EVENT_QP_FATAL; break; case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_LOAD_ERROR: case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_ERROR: if (srq) event.event = IB_EVENT_SRQ_ERR; break; default: break; } if (err_event->res_err_state_reason || err_event->req_err_state_reason) { ibdev_dbg(&qp->rdev->ibdev, "%s %s qp_id: %d cons (%d %d) req (%d %d) res (%d %d)\n", __func__, rdma_is_kernel_res(&qp->ib_qp.res) ? "kernel" : "user", qp->qplib_qp.id, err_event->sq_cons_idx, err_event->rq_cons_idx, err_event->req_slow_path_state, err_event->req_err_state_reason, err_event->res_slow_path_state, err_event->res_err_state_reason); } else { if (srq) event.event = IB_EVENT_QP_LAST_WQE_REACHED; } if (event.event == IB_EVENT_SRQ_ERR && srq->ib_srq.event_handler) { (*srq->ib_srq.event_handler)(&event, srq->ib_srq.srq_context); } else if (event.device && qp->ib_qp.event_handler) { qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context); } return 0; } static int bnxt_re_handle_cq_async_error(void *event, struct bnxt_re_cq *cq) { struct creq_cq_error_notification *cqerr; struct ib_event ibevent = {}; cqerr = event; switch (cqerr->cq_err_reason) { case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_INVALID_ERROR: case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_OVERFLOW_ERROR: case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_LOAD_ERROR: case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_INVALID_ERROR: case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_OVERFLOW_ERROR: case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_LOAD_ERROR: ibevent.event = IB_EVENT_CQ_ERR; break; default: break; } if (ibevent.event == IB_EVENT_CQ_ERR && cq->ib_cq.event_handler) { ibevent.element.cq = &cq->ib_cq; ibevent.device = &cq->rdev->ibdev; ibdev_dbg(&cq->rdev->ibdev, "%s err reason %d\n", __func__, cqerr->cq_err_reason); cq->ib_cq.event_handler(&ibevent, cq->ib_cq.cq_context); } return 0; } static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async, void *obj) { struct bnxt_qplib_qp *lib_qp; struct bnxt_qplib_cq *lib_cq; struct bnxt_re_qp *qp; struct bnxt_re_cq *cq; int rc = 0; u8 event; if (!obj) return rc; /* QP was already dead, still return success */ event = affi_async->event; switch (event) { case CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION: lib_qp = obj; qp = container_of(lib_qp, struct bnxt_re_qp, qplib_qp); rc = bnxt_re_handle_qp_async_event(affi_async, qp); break; case CREQ_QP_EVENT_EVENT_CQ_ERROR_NOTIFICATION: lib_cq = obj; cq = container_of(lib_cq, struct bnxt_re_cq, qplib_cq); rc = bnxt_re_handle_cq_async_error(affi_async, cq); break; default: rc = -EINVAL; } return rc; } static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw, void *aeqe, void *obj) { struct creq_qp_event *affi_async; struct creq_func_event *unaffi_async; u8 type; int rc; type = ((struct creq_base *)aeqe)->type; if (type == CREQ_BASE_TYPE_FUNC_EVENT) { unaffi_async = aeqe; rc = bnxt_re_handle_unaffi_async_event(unaffi_async); } else { affi_async = aeqe; rc = bnxt_re_handle_affi_async_event(affi_async, obj); } return rc; } static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq, struct bnxt_qplib_srq *handle, u8 event) { struct bnxt_re_srq *srq = container_of(handle, struct bnxt_re_srq, qplib_srq); struct ib_event ib_event; ib_event.device = &srq->rdev->ibdev; ib_event.element.srq = &srq->ib_srq; if (srq->ib_srq.event_handler) { if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT) ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED; (*srq->ib_srq.event_handler)(&ib_event, srq->ib_srq.srq_context); } return 0; } static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq, struct bnxt_qplib_cq *handle) { struct bnxt_re_cq *cq = container_of(handle, struct bnxt_re_cq, qplib_cq); if (cq->ib_cq.comp_handler) (*cq->ib_cq.comp_handler)(&cq->ib_cq, cq->ib_cq.cq_context); return 0; } static void bnxt_re_cleanup_res(struct bnxt_re_dev *rdev) { int i; for (i = 1; i < rdev->num_msix; i++) bnxt_qplib_disable_nq(&rdev->nq[i - 1]); if (rdev->qplib_res.rcfw) bnxt_qplib_cleanup_res(&rdev->qplib_res); } static int bnxt_re_init_res(struct bnxt_re_dev *rdev) { int num_vec_enabled = 0; int rc = 0, i; u32 db_offt; bnxt_qplib_init_res(&rdev->qplib_res); for (i = 1; i < rdev->num_msix ; i++) { db_offt = rdev->en_dev->msix_entries[i].db_offset; rc = bnxt_qplib_enable_nq(rdev->en_dev->pdev, &rdev->nq[i - 1], i - 1, rdev->en_dev->msix_entries[i].vector, db_offt, &bnxt_re_cqn_handler, &bnxt_re_srqn_handler); if (rc) { ibdev_err(&rdev->ibdev, "Failed to enable NQ with rc = 0x%x", rc); goto fail; } num_vec_enabled++; } return 0; fail: for (i = num_vec_enabled; i >= 0; i--) bnxt_qplib_disable_nq(&rdev->nq[i]); return rc; } static void bnxt_re_free_nq_res(struct bnxt_re_dev *rdev) { u8 type; int i; for (i = 0; i < rdev->num_msix - 1; i++) { type = bnxt_qplib_get_ring_type(rdev->chip_ctx); bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type); bnxt_qplib_free_nq(&rdev->nq[i]); rdev->nq[i].res = NULL; } } static void bnxt_re_free_res(struct bnxt_re_dev *rdev) { bnxt_re_free_nq_res(rdev); if (rdev->qplib_res.dpi_tbl.max) { bnxt_qplib_dealloc_dpi(&rdev->qplib_res, &rdev->dpi_privileged); } if (rdev->qplib_res.rcfw) { bnxt_qplib_free_res(&rdev->qplib_res); rdev->qplib_res.rcfw = NULL; } } static int bnxt_re_alloc_res(struct bnxt_re_dev *rdev) { struct bnxt_re_ring_attr rattr = {}; int num_vec_created = 0; int rc, i; u8 type; /* Configure and allocate resources for qplib */ rdev->qplib_res.rcfw = &rdev->rcfw; rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr); if (rc) goto fail; rc = bnxt_qplib_alloc_res(&rdev->qplib_res, rdev->en_dev->pdev, rdev->netdev, &rdev->dev_attr); if (rc) goto fail; rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res, &rdev->dpi_privileged, rdev, BNXT_QPLIB_DPI_TYPE_KERNEL); if (rc) goto dealloc_res; for (i = 0; i < rdev->num_msix - 1; i++) { struct bnxt_qplib_nq *nq; nq = &rdev->nq[i]; nq->hwq.max_elements = BNXT_QPLIB_NQE_MAX_CNT; rc = bnxt_qplib_alloc_nq(&rdev->qplib_res, &rdev->nq[i]); if (rc) { ibdev_err(&rdev->ibdev, "Alloc Failed NQ%d rc:%#x", i, rc); goto free_nq; } type = bnxt_qplib_get_ring_type(rdev->chip_ctx); rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr; rattr.pages = nq->hwq.pbl[rdev->nq[i].hwq.level].pg_count; rattr.type = type; rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX; rattr.depth = BNXT_QPLIB_NQE_MAX_CNT - 1; rattr.lrid = rdev->en_dev->msix_entries[i + 1].ring_idx; rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id); if (rc) { ibdev_err(&rdev->ibdev, "Failed to allocate NQ fw id with rc = 0x%x", rc); bnxt_qplib_free_nq(&rdev->nq[i]); goto free_nq; } num_vec_created++; } return 0; free_nq: for (i = num_vec_created - 1; i >= 0; i--) { type = bnxt_qplib_get_ring_type(rdev->chip_ctx); bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type); bnxt_qplib_free_nq(&rdev->nq[i]); } bnxt_qplib_dealloc_dpi(&rdev->qplib_res, &rdev->dpi_privileged); dealloc_res: bnxt_qplib_free_res(&rdev->qplib_res); fail: rdev->qplib_res.rcfw = NULL; return rc; } static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp, u8 port_num, enum ib_event_type event) { struct ib_event ib_event; ib_event.device = ibdev; if (qp) { ib_event.element.qp = qp; ib_event.event = event; if (qp->event_handler) qp->event_handler(&ib_event, qp->qp_context); } else { ib_event.element.port_num = port_num; ib_event.event = event; ib_dispatch_event(&ib_event); } } static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev, struct bnxt_re_qp *qp) { return (qp->ib_qp.qp_type == IB_QPT_GSI) || (qp == rdev->gsi_ctx.gsi_sqp); } static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev) { int mask = IB_QP_STATE; struct ib_qp_attr qp_attr; struct bnxt_re_qp *qp; qp_attr.qp_state = IB_QPS_ERR; mutex_lock(&rdev->qp_lock); list_for_each_entry(qp, &rdev->qp_list, list) { /* Modify the state of all QPs except QP1/Shadow QP */ if (!bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) { if (qp->qplib_qp.state != CMDQ_MODIFY_QP_NEW_STATE_RESET && qp->qplib_qp.state != CMDQ_MODIFY_QP_NEW_STATE_ERR) { bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp, 1, IB_EVENT_QP_FATAL); bnxt_re_modify_qp(&qp->ib_qp, &qp_attr, mask, NULL); } } } mutex_unlock(&rdev->qp_lock); } static int bnxt_re_update_gid(struct bnxt_re_dev *rdev) { struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl; struct bnxt_qplib_gid gid; u16 gid_idx, index; int rc = 0; if (!ib_device_try_get(&rdev->ibdev)) return 0; for (index = 0; index < sgid_tbl->active; index++) { gid_idx = sgid_tbl->hw_id[index]; if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero, sizeof(bnxt_qplib_gid_zero))) continue; /* need to modify the VLAN enable setting of non VLAN GID only * as setting is done for VLAN GID while adding GID */ if (sgid_tbl->vlan[index]) continue; memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid)); rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx, rdev->qplib_res.netdev->dev_addr); } ib_device_put(&rdev->ibdev); return rc; } static u32 bnxt_re_get_priority_mask(struct bnxt_re_dev *rdev) { u32 prio_map = 0, tmp_map = 0; struct net_device *netdev; struct dcb_app app = {}; netdev = rdev->netdev; app.selector = IEEE_8021QAZ_APP_SEL_ETHERTYPE; app.protocol = ETH_P_IBOE; tmp_map = dcb_ieee_getapp_mask(netdev, &app); prio_map = tmp_map; app.selector = IEEE_8021QAZ_APP_SEL_DGRAM; app.protocol = ROCE_V2_UDP_DPORT; tmp_map = dcb_ieee_getapp_mask(netdev, &app); prio_map |= tmp_map; return prio_map; } static int bnxt_re_setup_qos(struct bnxt_re_dev *rdev) { u8 prio_map = 0; /* Get priority for roce */ prio_map = bnxt_re_get_priority_mask(rdev); if (prio_map == rdev->cur_prio_map) return 0; rdev->cur_prio_map = prio_map; /* Actual priorities are not programmed as they are already * done by L2 driver; just enable or disable priority vlan tagging */ if ((prio_map == 0 && rdev->qplib_res.prio) || (prio_map != 0 && !rdev->qplib_res.prio)) { rdev->qplib_res.prio = prio_map; bnxt_re_update_gid(rdev); } return 0; } static void bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev) { struct bnxt_en_dev *en_dev = rdev->en_dev; struct hwrm_ver_get_output resp = {}; struct hwrm_ver_get_input req = {}; struct bnxt_qplib_chip_ctx *cctx; struct bnxt_fw_msg fw_msg = {}; int rc; bnxt_re_init_hwrm_hdr((void *)&req, HWRM_VER_GET); req.hwrm_intf_maj = HWRM_VERSION_MAJOR; req.hwrm_intf_min = HWRM_VERSION_MINOR; req.hwrm_intf_upd = HWRM_VERSION_UPDATE; bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); rc = bnxt_send_msg(en_dev, &fw_msg); if (rc) { ibdev_err(&rdev->ibdev, "Failed to query HW version, rc = 0x%x", rc); return; } cctx = rdev->chip_ctx; cctx->hwrm_intf_ver = (u64)le16_to_cpu(resp.hwrm_intf_major) << 48 | (u64)le16_to_cpu(resp.hwrm_intf_minor) << 32 | (u64)le16_to_cpu(resp.hwrm_intf_build) << 16 | le16_to_cpu(resp.hwrm_intf_patch); cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout); if (!cctx->hwrm_cmd_max_timeout) cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT; } static int bnxt_re_ib_init(struct bnxt_re_dev *rdev) { int rc; u32 event; /* Register ib dev */ rc = bnxt_re_register_ib(rdev); if (rc) { pr_err("Failed to register with IB: %#x\n", rc); return rc; } dev_info(rdev_to_dev(rdev), "Device registered with IB successfully"); set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags); event = netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev) ? IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR; bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, event); return rc; } static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev, u8 op_type) { u8 type; int rc; if (test_and_clear_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags)) cancel_delayed_work_sync(&rdev->worker); if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags)) bnxt_re_cleanup_res(rdev); if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags)) bnxt_re_free_res(rdev); if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags)) { rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw); if (rc) ibdev_warn(&rdev->ibdev, "Failed to deinitialize RCFW: %#x", rc); bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id); bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx); bnxt_qplib_disable_rcfw_channel(&rdev->rcfw); type = bnxt_qplib_get_ring_type(rdev->chip_ctx); bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type); bnxt_qplib_free_rcfw_channel(&rdev->rcfw); } rdev->num_msix = 0; if (rdev->pacing.dbr_pacing) bnxt_re_deinitialize_dbr_pacing(rdev); bnxt_re_destroy_chip_ctx(rdev); if (op_type == BNXT_RE_COMPLETE_REMOVE) { if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags)) bnxt_unregister_dev(rdev->en_dev); } } /* worker thread for polling periodic events. Now used for QoS programming*/ static void bnxt_re_worker(struct work_struct *work) { struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, worker.work); bnxt_re_setup_qos(rdev); schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000)); } static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 op_type) { struct bnxt_re_ring_attr rattr = {}; struct bnxt_qplib_creq_ctx *creq; u32 db_offt; int vid; u8 type; int rc; if (op_type == BNXT_RE_COMPLETE_INIT) { /* Registered a new RoCE device instance to netdev */ rc = bnxt_re_register_netdev(rdev); if (rc) { ibdev_err(&rdev->ibdev, "Failed to register with netedev: %#x\n", rc); return -EINVAL; } } set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags); rc = bnxt_re_setup_chip_ctx(rdev); if (rc) { bnxt_unregister_dev(rdev->en_dev); clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags); ibdev_err(&rdev->ibdev, "Failed to get chip context\n"); return -EINVAL; } /* Check whether VF or PF */ bnxt_re_get_sriov_func_type(rdev); if (!rdev->en_dev->ulp_tbl->msix_requested) { ibdev_err(&rdev->ibdev, "Failed to get MSI-X vectors: %#x\n", rc); rc = -EINVAL; goto fail; } ibdev_dbg(&rdev->ibdev, "Got %d MSI-X vectors\n", rdev->en_dev->ulp_tbl->msix_requested); rdev->num_msix = rdev->en_dev->ulp_tbl->msix_requested; bnxt_re_query_hwrm_intf_version(rdev); /* Establish RCFW Communication Channel to initialize the context * memory for the function and all child VFs */ rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res, &rdev->rcfw, &rdev->qplib_ctx, BNXT_RE_MAX_QPC_COUNT); if (rc) { ibdev_err(&rdev->ibdev, "Failed to allocate RCFW Channel: %#x\n", rc); goto fail; } type = bnxt_qplib_get_ring_type(rdev->chip_ctx); creq = &rdev->rcfw.creq; rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr; rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count; rattr.type = type; rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX; rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1; rattr.lrid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].ring_idx; rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id); if (rc) { ibdev_err(&rdev->ibdev, "Failed to allocate CREQ: %#x\n", rc); goto free_rcfw; } db_offt = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].db_offset; vid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].vector; rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw, vid, db_offt, &bnxt_re_aeq_handler); if (rc) { ibdev_err(&rdev->ibdev, "Failed to enable RCFW channel: %#x\n", rc); goto free_ring; } if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx)) { rc = bnxt_re_initialize_dbr_pacing(rdev); if (!rc) { rdev->pacing.dbr_pacing = true; } else { ibdev_err(&rdev->ibdev, "DBR pacing disabled with error : %d\n", rc); rdev->pacing.dbr_pacing = false; } } rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr); if (rc) goto disable_rcfw; bnxt_re_set_resource_limits(rdev); rc = bnxt_qplib_alloc_ctx(&rdev->qplib_res, &rdev->qplib_ctx, 0, bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)); if (rc) { ibdev_err(&rdev->ibdev, "Failed to allocate QPLIB context: %#x\n", rc); goto disable_rcfw; } rc = bnxt_re_net_stats_ctx_alloc(rdev, rdev->qplib_ctx.stats.dma_map, &rdev->qplib_ctx.stats.fw_id); if (rc) { ibdev_err(&rdev->ibdev, "Failed to allocate stats context: %#x\n", rc); goto free_ctx; } rc = bnxt_qplib_init_rcfw(&rdev->rcfw, &rdev->qplib_ctx, rdev->is_virtfn); if (rc) { ibdev_err(&rdev->ibdev, "Failed to initialize RCFW: %#x\n", rc); goto free_sctx; } set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags); /* Resources based on the 'new' device caps */ rc = bnxt_re_alloc_res(rdev); if (rc) { ibdev_err(&rdev->ibdev, "Failed to allocate resources: %#x\n", rc); goto fail; } set_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags); rc = bnxt_re_init_res(rdev); if (rc) { ibdev_err(&rdev->ibdev, "Failed to initialize resources: %#x\n", rc); goto fail; } set_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags); if (!rdev->is_virtfn) { rc = bnxt_re_setup_qos(rdev); if (rc) ibdev_info(&rdev->ibdev, "RoCE priority not yet configured\n"); INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker); set_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags); schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000)); /* * Use the total VF count since the actual VF count may not be * available at this point. */ bnxt_re_vf_res_config(rdev); } hash_init(rdev->cq_hash); if (rdev->chip_ctx->modes.toggle_bits & BNXT_QPLIB_SRQ_TOGGLE_BIT) hash_init(rdev->srq_hash); return 0; free_sctx: bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id); free_ctx: bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx); disable_rcfw: bnxt_qplib_disable_rcfw_channel(&rdev->rcfw); free_ring: type = bnxt_qplib_get_ring_type(rdev->chip_ctx); bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type); free_rcfw: bnxt_qplib_free_rcfw_channel(&rdev->rcfw); fail: bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE); return rc; } static void bnxt_re_update_en_info_rdev(struct bnxt_re_dev *rdev, struct bnxt_re_en_dev_info *en_info, struct auxiliary_device *adev) { /* Before updating the rdev pointer in bnxt_re_en_dev_info structure, * take the rtnl lock to avoid accessing invalid rdev pointer from * L2 ULP callbacks. This is applicable in all the places where rdev * pointer is updated in bnxt_re_en_dev_info. */ rtnl_lock(); en_info->rdev = rdev; rtnl_unlock(); } static int bnxt_re_add_device(struct auxiliary_device *adev, u8 op_type) { struct bnxt_aux_priv *aux_priv = container_of(adev, struct bnxt_aux_priv, aux_dev); struct bnxt_re_en_dev_info *en_info; struct bnxt_en_dev *en_dev; struct bnxt_re_dev *rdev; int rc; en_info = auxiliary_get_drvdata(adev); en_dev = en_info->en_dev; rdev = bnxt_re_dev_add(adev, en_dev); if (!rdev || !rdev_to_dev(rdev)) { rc = -ENOMEM; goto exit; } bnxt_re_update_en_info_rdev(rdev, en_info, adev); rc = bnxt_re_dev_init(rdev, op_type); if (rc) goto re_dev_dealloc; rc = bnxt_re_ib_init(rdev); if (rc) { pr_err("Failed to register with IB: %s", aux_priv->aux_dev.name); goto re_dev_uninit; } rdev->nb.notifier_call = bnxt_re_netdev_event; rc = register_netdevice_notifier(&rdev->nb); if (rc) { rdev->nb.notifier_call = NULL; pr_err("%s: Cannot register to netdevice_notifier", ROCE_DRV_MODULE_NAME); goto re_dev_unreg; } bnxt_re_setup_cc(rdev, true); return 0; re_dev_unreg: ib_unregister_device(&rdev->ibdev); re_dev_uninit: bnxt_re_update_en_info_rdev(NULL, en_info, adev); bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE); re_dev_dealloc: ib_dealloc_device(&rdev->ibdev); exit: return rc; } static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable) { struct bnxt_qplib_cc_param cc_param = {}; /* Do not enable congestion control on VFs */ if (rdev->is_virtfn) return; /* Currently enabling only for GenP5 adapters */ if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) return; if (enable) { cc_param.enable = 1; cc_param.cc_mode = CMDQ_MODIFY_ROCE_CC_CC_MODE_PROBABILISTIC_CC_MODE; } cc_param.mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_CC_MODE | CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC | CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN); if (bnxt_qplib_modify_cc(&rdev->qplib_res, &cc_param)) ibdev_err(&rdev->ibdev, "Failed to setup CC enable = %d\n", enable); } /* * "Notifier chain callback can be invoked for the same chain from * different CPUs at the same time". * * For cases when the netdev is already present, our call to the * register_netdevice_notifier() will actually get the rtnl_lock() * before sending NETDEV_REGISTER and (if up) NETDEV_UP * events. * * But for cases when the netdev is not already present, the notifier * chain is subjected to be invoked from different CPUs simultaneously. * * This is protected by the netdev_mutex. */ static int bnxt_re_netdev_event(struct notifier_block *notifier, unsigned long event, void *ptr) { struct net_device *real_dev, *netdev = netdev_notifier_info_to_dev(ptr); struct bnxt_re_dev *rdev; real_dev = rdma_vlan_dev_real_dev(netdev); if (!real_dev) real_dev = netdev; if (real_dev != netdev) goto exit; rdev = bnxt_re_from_netdev(real_dev); if (!rdev) return NOTIFY_DONE; switch (event) { case NETDEV_UP: case NETDEV_DOWN: case NETDEV_CHANGE: bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, netif_carrier_ok(real_dev) ? IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR); break; default: break; } ib_device_put(&rdev->ibdev); exit: return NOTIFY_DONE; } #define BNXT_ADEV_NAME "bnxt_en" static void bnxt_re_remove_device(struct bnxt_re_dev *rdev, u8 op_type, struct auxiliary_device *aux_dev) { if (rdev->nb.notifier_call) { unregister_netdevice_notifier(&rdev->nb); rdev->nb.notifier_call = NULL; } else { /* If notifier is null, we should have already done a * clean up before coming here. */ return; } bnxt_re_setup_cc(rdev, false); ib_unregister_device(&rdev->ibdev); bnxt_re_dev_uninit(rdev, op_type); ib_dealloc_device(&rdev->ibdev); } static void bnxt_re_remove(struct auxiliary_device *adev) { struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev); struct bnxt_re_dev *rdev; mutex_lock(&bnxt_re_mutex); rdev = en_info->rdev; if (rdev) bnxt_re_remove_device(rdev, BNXT_RE_COMPLETE_REMOVE, adev); kfree(en_info); mutex_unlock(&bnxt_re_mutex); } static int bnxt_re_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct bnxt_aux_priv *aux_priv = container_of(adev, struct bnxt_aux_priv, aux_dev); struct bnxt_re_en_dev_info *en_info; struct bnxt_en_dev *en_dev; int rc; en_dev = aux_priv->edev; mutex_lock(&bnxt_re_mutex); en_info = kzalloc(sizeof(*en_info), GFP_KERNEL); if (!en_info) { mutex_unlock(&bnxt_re_mutex); return -ENOMEM; } en_info->en_dev = en_dev; auxiliary_set_drvdata(adev, en_info); rc = bnxt_re_add_device(adev, BNXT_RE_COMPLETE_INIT); if (rc) goto err; mutex_unlock(&bnxt_re_mutex); return 0; err: mutex_unlock(&bnxt_re_mutex); kfree(en_info); return rc; } static int bnxt_re_suspend(struct auxiliary_device *adev, pm_message_t state) { struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev); struct bnxt_en_dev *en_dev; struct bnxt_re_dev *rdev; rdev = en_info->rdev; en_dev = en_info->en_dev; mutex_lock(&bnxt_re_mutex); /* L2 driver may invoke this callback during device error/crash or device * reset. Current RoCE driver doesn't recover the device in case of * error. Handle the error by dispatching fatal events to all qps * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as * L2 driver want to modify the MSIx table. */ ibdev_info(&rdev->ibdev, "Handle device suspend call"); /* Check the current device state from bnxt_en_dev and move the * device to detached state if FW_FATAL_COND is set. * This prevents more commands to HW during clean-up, * in case the device is already in error. */ if (test_bit(BNXT_STATE_FW_FATAL_COND, &rdev->en_dev->en_state)) set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags); bnxt_re_dev_stop(rdev); bnxt_re_stop_irq(adev); /* Move the device states to detached and avoid sending any more * commands to HW */ set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags); set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags); wake_up_all(&rdev->rcfw.cmdq.waitq); if (rdev->pacing.dbr_pacing) bnxt_re_set_pacing_dev_state(rdev); ibdev_info(&rdev->ibdev, "%s: L2 driver notified to stop en_state 0x%lx", __func__, en_dev->en_state); bnxt_re_remove_device(rdev, BNXT_RE_PRE_RECOVERY_REMOVE, adev); mutex_unlock(&bnxt_re_mutex); return 0; } static int bnxt_re_resume(struct auxiliary_device *adev) { struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev); struct bnxt_re_dev *rdev; mutex_lock(&bnxt_re_mutex); /* L2 driver may invoke this callback during device recovery, resume. * reset. Current RoCE driver doesn't recover the device in case of * error. Handle the error by dispatching fatal events to all qps * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as * L2 driver want to modify the MSIx table. */ bnxt_re_add_device(adev, BNXT_RE_POST_RECOVERY_INIT); rdev = en_info->rdev; ibdev_info(&rdev->ibdev, "Device resume completed"); mutex_unlock(&bnxt_re_mutex); return 0; } static const struct auxiliary_device_id bnxt_re_id_table[] = { { .name = BNXT_ADEV_NAME ".rdma", }, {}, }; MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table); static struct auxiliary_driver bnxt_re_driver = { .name = "rdma", .probe = bnxt_re_probe, .remove = bnxt_re_remove, .shutdown = bnxt_re_shutdown, .suspend = bnxt_re_suspend, .resume = bnxt_re_resume, .id_table = bnxt_re_id_table, }; static int __init bnxt_re_mod_init(void) { int rc; pr_info("%s: %s", ROCE_DRV_MODULE_NAME, version); rc = auxiliary_driver_register(&bnxt_re_driver); if (rc) { pr_err("%s: Failed to register auxiliary driver\n", ROCE_DRV_MODULE_NAME); return rc; } return 0; } static void __exit bnxt_re_mod_exit(void) { auxiliary_driver_unregister(&bnxt_re_driver); } module_init(bnxt_re_mod_init); module_exit(bnxt_re_mod_exit);