// SPDX-License-Identifier: GPL-2.0 /* * MEMSensing digital 3-Axis accelerometer * * MSA311 is a tri-axial, low-g accelerometer with I2C digital output for * sensitivity consumer applications. It has dynamic user-selectable full * scales range of +-2g/+-4g/+-8g/+-16g and allows acceleration measurements * with output data rates from 1Hz to 1000Hz. * * MSA311 is available in an ultra small (2mm x 2mm, height 0.95mm) LGA package * and is guaranteed to operate over -40C to +85C. * * This driver supports following MSA311 features: * - IIO interface * - Different power modes: NORMAL, SUSPEND * - ODR (Output Data Rate) selection * - Scale selection * - IIO triggered buffer * - NEW_DATA interrupt + trigger * * Below features to be done: * - Motion Events: ACTIVE, TAP, ORIENT, FREEFALL * - Low Power mode * * Copyright (c) 2022, SberDevices. All Rights Reserved. * * Author: Dmitry Rokosov */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MSA311_SOFT_RESET_REG 0x00 #define MSA311_PARTID_REG 0x01 #define MSA311_ACC_X_REG 0x02 #define MSA311_ACC_Y_REG 0x04 #define MSA311_ACC_Z_REG 0x06 #define MSA311_MOTION_INT_REG 0x09 #define MSA311_DATA_INT_REG 0x0A #define MSA311_TAP_ACTIVE_STS_REG 0x0B #define MSA311_ORIENT_STS_REG 0x0C #define MSA311_RANGE_REG 0x0F #define MSA311_ODR_REG 0x10 #define MSA311_PWR_MODE_REG 0x11 #define MSA311_SWAP_POLARITY_REG 0x12 #define MSA311_INT_SET_0_REG 0x16 #define MSA311_INT_SET_1_REG 0x17 #define MSA311_INT_MAP_0_REG 0x19 #define MSA311_INT_MAP_1_REG 0x1A #define MSA311_INT_CONFIG_REG 0x20 #define MSA311_INT_LATCH_REG 0x21 #define MSA311_FREEFALL_DUR_REG 0x22 #define MSA311_FREEFALL_TH_REG 0x23 #define MSA311_FREEFALL_HY_REG 0x24 #define MSA311_ACTIVE_DUR_REG 0x27 #define MSA311_ACTIVE_TH_REG 0x28 #define MSA311_TAP_DUR_REG 0x2A #define MSA311_TAP_TH_REG 0x2B #define MSA311_ORIENT_HY_REG 0x2C #define MSA311_Z_BLOCK_REG 0x2D #define MSA311_OFFSET_X_REG 0x38 #define MSA311_OFFSET_Y_REG 0x39 #define MSA311_OFFSET_Z_REG 0x3A enum msa311_fields { /* Soft_Reset */ F_SOFT_RESET_I2C, F_SOFT_RESET_SPI, /* Motion_Interrupt */ F_ORIENT_INT, F_S_TAP_INT, F_D_TAP_INT, F_ACTIVE_INT, F_FREEFALL_INT, /* Data_Interrupt */ F_NEW_DATA_INT, /* Tap_Active_Status */ F_TAP_SIGN, F_TAP_FIRST_X, F_TAP_FIRST_Y, F_TAP_FIRST_Z, F_ACTV_SIGN, F_ACTV_FIRST_X, F_ACTV_FIRST_Y, F_ACTV_FIRST_Z, /* Orientation_Status */ F_ORIENT_Z, F_ORIENT_X_Y, /* Range */ F_FS, /* ODR */ F_X_AXIS_DIS, F_Y_AXIS_DIS, F_Z_AXIS_DIS, F_ODR, /* Power Mode/Bandwidth */ F_PWR_MODE, F_LOW_POWER_BW, /* Swap_Polarity */ F_X_POLARITY, F_Y_POLARITY, F_Z_POLARITY, F_X_Y_SWAP, /* Int_Set_0 */ F_ORIENT_INT_EN, F_S_TAP_INT_EN, F_D_TAP_INT_EN, F_ACTIVE_INT_EN_Z, F_ACTIVE_INT_EN_Y, F_ACTIVE_INT_EN_X, /* Int_Set_1 */ F_NEW_DATA_INT_EN, F_FREEFALL_INT_EN, /* Int_Map_0 */ F_INT1_ORIENT, F_INT1_S_TAP, F_INT1_D_TAP, F_INT1_ACTIVE, F_INT1_FREEFALL, /* Int_Map_1 */ F_INT1_NEW_DATA, /* Int_Config */ F_INT1_OD, F_INT1_LVL, /* Int_Latch */ F_RESET_INT, F_LATCH_INT, /* Freefall_Hy */ F_FREEFALL_MODE, F_FREEFALL_HY, /* Active_Dur */ F_ACTIVE_DUR, /* Tap_Dur */ F_TAP_QUIET, F_TAP_SHOCK, F_TAP_DUR, /* Tap_Th */ F_TAP_TH, /* Orient_Hy */ F_ORIENT_HYST, F_ORIENT_BLOCKING, F_ORIENT_MODE, /* Z_Block */ F_Z_BLOCKING, /* End of register map */ F_MAX_FIELDS, }; static const struct reg_field msa311_reg_fields[] = { /* Soft_Reset */ [F_SOFT_RESET_I2C] = REG_FIELD(MSA311_SOFT_RESET_REG, 2, 2), [F_SOFT_RESET_SPI] = REG_FIELD(MSA311_SOFT_RESET_REG, 5, 5), /* Motion_Interrupt */ [F_ORIENT_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 6, 6), [F_S_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 5, 5), [F_D_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 4, 4), [F_ACTIVE_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 2, 2), [F_FREEFALL_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 0, 0), /* Data_Interrupt */ [F_NEW_DATA_INT] = REG_FIELD(MSA311_DATA_INT_REG, 0, 0), /* Tap_Active_Status */ [F_TAP_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 7, 7), [F_TAP_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 6, 6), [F_TAP_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 5, 5), [F_TAP_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 4, 4), [F_ACTV_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 3, 3), [F_ACTV_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 2, 2), [F_ACTV_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 1, 1), [F_ACTV_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 0, 0), /* Orientation_Status */ [F_ORIENT_Z] = REG_FIELD(MSA311_ORIENT_STS_REG, 6, 6), [F_ORIENT_X_Y] = REG_FIELD(MSA311_ORIENT_STS_REG, 4, 5), /* Range */ [F_FS] = REG_FIELD(MSA311_RANGE_REG, 0, 1), /* ODR */ [F_X_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 7, 7), [F_Y_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 6, 6), [F_Z_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 5, 5), [F_ODR] = REG_FIELD(MSA311_ODR_REG, 0, 3), /* Power Mode/Bandwidth */ [F_PWR_MODE] = REG_FIELD(MSA311_PWR_MODE_REG, 6, 7), [F_LOW_POWER_BW] = REG_FIELD(MSA311_PWR_MODE_REG, 1, 4), /* Swap_Polarity */ [F_X_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 3, 3), [F_Y_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 2, 2), [F_Z_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 1, 1), [F_X_Y_SWAP] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 0, 0), /* Int_Set_0 */ [F_ORIENT_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 6, 6), [F_S_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 5, 5), [F_D_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 4, 4), [F_ACTIVE_INT_EN_Z] = REG_FIELD(MSA311_INT_SET_0_REG, 2, 2), [F_ACTIVE_INT_EN_Y] = REG_FIELD(MSA311_INT_SET_0_REG, 1, 1), [F_ACTIVE_INT_EN_X] = REG_FIELD(MSA311_INT_SET_0_REG, 0, 0), /* Int_Set_1 */ [F_NEW_DATA_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 4, 4), [F_FREEFALL_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 3, 3), /* Int_Map_0 */ [F_INT1_ORIENT] = REG_FIELD(MSA311_INT_MAP_0_REG, 6, 6), [F_INT1_S_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 5, 5), [F_INT1_D_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 4, 4), [F_INT1_ACTIVE] = REG_FIELD(MSA311_INT_MAP_0_REG, 2, 2), [F_INT1_FREEFALL] = REG_FIELD(MSA311_INT_MAP_0_REG, 0, 0), /* Int_Map_1 */ [F_INT1_NEW_DATA] = REG_FIELD(MSA311_INT_MAP_1_REG, 0, 0), /* Int_Config */ [F_INT1_OD] = REG_FIELD(MSA311_INT_CONFIG_REG, 1, 1), [F_INT1_LVL] = REG_FIELD(MSA311_INT_CONFIG_REG, 0, 0), /* Int_Latch */ [F_RESET_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 7, 7), [F_LATCH_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 0, 3), /* Freefall_Hy */ [F_FREEFALL_MODE] = REG_FIELD(MSA311_FREEFALL_HY_REG, 2, 2), [F_FREEFALL_HY] = REG_FIELD(MSA311_FREEFALL_HY_REG, 0, 1), /* Active_Dur */ [F_ACTIVE_DUR] = REG_FIELD(MSA311_ACTIVE_DUR_REG, 0, 1), /* Tap_Dur */ [F_TAP_QUIET] = REG_FIELD(MSA311_TAP_DUR_REG, 7, 7), [F_TAP_SHOCK] = REG_FIELD(MSA311_TAP_DUR_REG, 6, 6), [F_TAP_DUR] = REG_FIELD(MSA311_TAP_DUR_REG, 0, 2), /* Tap_Th */ [F_TAP_TH] = REG_FIELD(MSA311_TAP_TH_REG, 0, 4), /* Orient_Hy */ [F_ORIENT_HYST] = REG_FIELD(MSA311_ORIENT_HY_REG, 4, 6), [F_ORIENT_BLOCKING] = REG_FIELD(MSA311_ORIENT_HY_REG, 2, 3), [F_ORIENT_MODE] = REG_FIELD(MSA311_ORIENT_HY_REG, 0, 1), /* Z_Block */ [F_Z_BLOCKING] = REG_FIELD(MSA311_Z_BLOCK_REG, 0, 3), }; #define MSA311_WHO_AM_I 0x13 /* * Possible Full Scale ranges * * Axis data is 12-bit signed value, so * * fs0 = (2 + 2) * 9.81 / (2^11) = 0.009580 * fs1 = (4 + 4) * 9.81 / (2^11) = 0.019160 * fs2 = (8 + 8) * 9.81 / (2^11) = 0.038320 * fs3 = (16 + 16) * 9.81 / (2^11) = 0.076641 */ enum { MSA311_FS_2G, MSA311_FS_4G, MSA311_FS_8G, MSA311_FS_16G, }; struct iio_decimal_fract { int integral; int microfract; }; static const struct iio_decimal_fract msa311_fs_table[] = { {0, 9580}, {0, 19160}, {0, 38320}, {0, 76641}, }; /* Possible Output Data Rate values */ enum { MSA311_ODR_1_HZ, MSA311_ODR_1_95_HZ, MSA311_ODR_3_9_HZ, MSA311_ODR_7_81_HZ, MSA311_ODR_15_63_HZ, MSA311_ODR_31_25_HZ, MSA311_ODR_62_5_HZ, MSA311_ODR_125_HZ, MSA311_ODR_250_HZ, MSA311_ODR_500_HZ, MSA311_ODR_1000_HZ, }; static const struct iio_decimal_fract msa311_odr_table[] = { {1, 0}, {1, 950000}, {3, 900000}, {7, 810000}, {15, 630000}, {31, 250000}, {62, 500000}, {125, 0}, {250, 0}, {500, 0}, {1000, 0}, }; /* All supported power modes */ #define MSA311_PWR_MODE_NORMAL 0b00 #define MSA311_PWR_MODE_LOW 0b01 #define MSA311_PWR_MODE_UNKNOWN 0b10 #define MSA311_PWR_MODE_SUSPEND 0b11 static const char * const msa311_pwr_modes[] = { [MSA311_PWR_MODE_NORMAL] = "normal", [MSA311_PWR_MODE_LOW] = "low", [MSA311_PWR_MODE_UNKNOWN] = "unknown", [MSA311_PWR_MODE_SUSPEND] = "suspend", }; /* Autosuspend delay */ #define MSA311_PWR_SLEEP_DELAY_MS 2000 /* Possible INT1 types and levels */ enum { MSA311_INT1_OD_PUSH_PULL, MSA311_INT1_OD_OPEN_DRAIN, }; enum { MSA311_INT1_LVL_LOW, MSA311_INT1_LVL_HIGH, }; /* Latch INT modes */ #define MSA311_LATCH_INT_NOT_LATCHED 0b0000 #define MSA311_LATCH_INT_250MS 0b0001 #define MSA311_LATCH_INT_500MS 0b0010 #define MSA311_LATCH_INT_1S 0b0011 #define MSA311_LATCH_INT_2S 0b0100 #define MSA311_LATCH_INT_4S 0b0101 #define MSA311_LATCH_INT_8S 0b0110 #define MSA311_LATCH_INT_1MS 0b1010 #define MSA311_LATCH_INT_2MS 0b1011 #define MSA311_LATCH_INT_25MS 0b1100 #define MSA311_LATCH_INT_50MS 0b1101 #define MSA311_LATCH_INT_100MS 0b1110 #define MSA311_LATCH_INT_LATCHED 0b0111 static const struct regmap_range msa311_readonly_registers[] = { regmap_reg_range(MSA311_PARTID_REG, MSA311_ORIENT_STS_REG), }; static const struct regmap_access_table msa311_writeable_table = { .no_ranges = msa311_readonly_registers, .n_no_ranges = ARRAY_SIZE(msa311_readonly_registers), }; static const struct regmap_range msa311_writeonly_registers[] = { regmap_reg_range(MSA311_SOFT_RESET_REG, MSA311_SOFT_RESET_REG), }; static const struct regmap_access_table msa311_readable_table = { .no_ranges = msa311_writeonly_registers, .n_no_ranges = ARRAY_SIZE(msa311_writeonly_registers), }; static const struct regmap_range msa311_volatile_registers[] = { regmap_reg_range(MSA311_ACC_X_REG, MSA311_ORIENT_STS_REG), }; static const struct regmap_access_table msa311_volatile_table = { .yes_ranges = msa311_volatile_registers, .n_yes_ranges = ARRAY_SIZE(msa311_volatile_registers), }; static const struct regmap_config msa311_regmap_config = { .name = "msa311", .reg_bits = 8, .val_bits = 8, .max_register = MSA311_OFFSET_Z_REG, .wr_table = &msa311_writeable_table, .rd_table = &msa311_readable_table, .volatile_table = &msa311_volatile_table, .cache_type = REGCACHE_RBTREE, }; #define MSA311_GENMASK(field) ({ \ typeof(&(msa311_reg_fields)[0]) _field; \ _field = &msa311_reg_fields[(field)]; \ GENMASK(_field->msb, _field->lsb); \ }) /** * struct msa311_priv - MSA311 internal private state * @regs: Underlying I2C bus adapter used to abstract slave * register accesses * @fields: Abstract objects for each registers fields access * @dev: Device handler associated with appropriate bus client * @lock: Protects msa311 device state between setup and data access routines * (power transitions, samp_freq/scale tune, retrieving axes data, etc) * @chip_name: Chip name in the format "msa311-%02x" % partid * @new_data_trig: Optional NEW_DATA interrupt driven trigger used * to notify external consumers a new sample is ready */ struct msa311_priv { struct regmap *regs; struct regmap_field *fields[F_MAX_FIELDS]; struct device *dev; struct mutex lock; char *chip_name; struct iio_trigger *new_data_trig; }; enum msa311_si { MSA311_SI_X, MSA311_SI_Y, MSA311_SI_Z, MSA311_SI_TIMESTAMP, }; #define MSA311_ACCEL_CHANNEL(axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = MSA311_SI_##axis, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_LE, \ }, \ .datasheet_name = "ACC_"#axis, \ } static const struct iio_chan_spec msa311_channels[] = { MSA311_ACCEL_CHANNEL(X), MSA311_ACCEL_CHANNEL(Y), MSA311_ACCEL_CHANNEL(Z), IIO_CHAN_SOFT_TIMESTAMP(MSA311_SI_TIMESTAMP), }; /** * msa311_get_odr() - Read Output Data Rate (ODR) value from MSA311 accel * @msa311: MSA311 internal private state * @odr: output ODR value * * This function should be called under msa311->lock. * * Return: 0 on success, -ERRNO in other failures */ static int msa311_get_odr(struct msa311_priv *msa311, unsigned int *odr) { int err; err = regmap_field_read(msa311->fields[F_ODR], odr); if (err) return err; /* * Filter the same 1000Hz ODR register values based on datasheet info. * ODR can be equal to 1010-1111 for 1000Hz, but function returns 1010 * all the time. */ if (*odr > MSA311_ODR_1000_HZ) *odr = MSA311_ODR_1000_HZ; return 0; } /** * msa311_set_odr() - Setup Output Data Rate (ODR) value for MSA311 accel * @msa311: MSA311 internal private state * @odr: requested ODR value * * This function should be called under msa311->lock. Possible ODR values: * - 1Hz (not available in normal mode) * - 1.95Hz (not available in normal mode) * - 3.9Hz * - 7.81Hz * - 15.63Hz * - 31.25Hz * - 62.5Hz * - 125Hz * - 250Hz * - 500Hz * - 1000Hz * * Return: 0 on success, -EINVAL for bad ODR value in the certain power mode, * -ERRNO in other failures */ static int msa311_set_odr(struct msa311_priv *msa311, unsigned int odr) { struct device *dev = msa311->dev; unsigned int pwr_mode; bool good_odr; int err; err = regmap_field_read(msa311->fields[F_PWR_MODE], &pwr_mode); if (err) return err; /* Filter bad ODR values */ if (pwr_mode == MSA311_PWR_MODE_NORMAL) good_odr = (odr > MSA311_ODR_1_95_HZ); else good_odr = false; if (!good_odr) { dev_err(dev, "can't set odr %u.%06uHz, not available in %s mode\n", msa311_odr_table[odr].integral, msa311_odr_table[odr].microfract, msa311_pwr_modes[pwr_mode]); return -EINVAL; } return regmap_field_write(msa311->fields[F_ODR], odr); } /** * msa311_wait_for_next_data() - Wait next accel data available after resume * @msa311: MSA311 internal private state * * Return: 0 on success, -EINTR if msleep() was interrupted, * -ERRNO in other failures */ static int msa311_wait_for_next_data(struct msa311_priv *msa311) { static const unsigned int unintr_thresh_ms = 20; struct device *dev = msa311->dev; unsigned long freq_uhz; unsigned long wait_ms; unsigned int odr; int err; err = msa311_get_odr(msa311, &odr); if (err) { dev_err(dev, "can't get actual frequency (%pe)\n", ERR_PTR(err)); return err; } /* * After msa311 resuming is done, we need to wait for data * to be refreshed by accel logic. * A certain timeout is calculated based on the current ODR value. * If requested timeout isn't so long (let's assume 20ms), * we can wait for next data in uninterruptible sleep. */ freq_uhz = msa311_odr_table[odr].integral * MICROHZ_PER_HZ + msa311_odr_table[odr].microfract; wait_ms = (MICROHZ_PER_HZ / freq_uhz) * MSEC_PER_SEC; if (wait_ms < unintr_thresh_ms) usleep_range(wait_ms * USEC_PER_MSEC, unintr_thresh_ms * USEC_PER_MSEC); else if (msleep_interruptible(wait_ms)) return -EINTR; return 0; } /** * msa311_set_pwr_mode() - Install certain MSA311 power mode * @msa311: MSA311 internal private state * @mode: Power mode can be equal to NORMAL or SUSPEND * * This function should be called under msa311->lock. * * Return: 0 on success, -ERRNO on failure */ static int msa311_set_pwr_mode(struct msa311_priv *msa311, unsigned int mode) { struct device *dev = msa311->dev; unsigned int prev_mode; int err; if (mode >= ARRAY_SIZE(msa311_pwr_modes)) return -EINVAL; dev_dbg(dev, "transition to %s mode\n", msa311_pwr_modes[mode]); err = regmap_field_read(msa311->fields[F_PWR_MODE], &prev_mode); if (err) return err; err = regmap_field_write(msa311->fields[F_PWR_MODE], mode); if (err) return err; /* Wait actual data if we wake up */ if (prev_mode == MSA311_PWR_MODE_SUSPEND && mode == MSA311_PWR_MODE_NORMAL) return msa311_wait_for_next_data(msa311); return 0; } /** * msa311_get_axis() - Read MSA311 accel data for certain IIO channel axis spec * @msa311: MSA311 internal private state * @chan: IIO channel specification * @axis: Output accel axis data for requested IIO channel spec * * This function should be called under msa311->lock. * * Return: 0 on success, -EINVAL for unknown IIO channel specification, * -ERRNO in other failures */ static int msa311_get_axis(struct msa311_priv *msa311, const struct iio_chan_spec * const chan, __le16 *axis) { struct device *dev = msa311->dev; unsigned int axis_reg; if (chan->scan_index < MSA311_SI_X || chan->scan_index > MSA311_SI_Z) { dev_err(dev, "invalid scan_index value [%d]\n", chan->scan_index); return -EINVAL; } /* Axes data layout has 2 byte gap for each axis starting from X axis */ axis_reg = MSA311_ACC_X_REG + (chan->scan_index << 1); return regmap_bulk_read(msa311->regs, axis_reg, axis, sizeof(*axis)); } static int msa311_read_raw_data(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; __le16 axis; int err; err = pm_runtime_resume_and_get(dev); if (err) return err; err = iio_device_claim_direct_mode(indio_dev); if (err) return err; mutex_lock(&msa311->lock); err = msa311_get_axis(msa311, chan, &axis); mutex_unlock(&msa311->lock); iio_device_release_direct_mode(indio_dev); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (err) { dev_err(dev, "can't get axis %s (%pe)\n", chan->datasheet_name, ERR_PTR(err)); return err; } /* * Axis data format is: * ACC_X = (ACC_X_MSB[7:0] << 4) | ACC_X_LSB[7:4] */ *val = sign_extend32(le16_to_cpu(axis) >> chan->scan_type.shift, chan->scan_type.realbits - 1); return IIO_VAL_INT; } static int msa311_read_scale(struct iio_dev *indio_dev, int *val, int *val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; unsigned int fs; int err; mutex_lock(&msa311->lock); err = regmap_field_read(msa311->fields[F_FS], &fs); mutex_unlock(&msa311->lock); if (err) { dev_err(dev, "can't get actual scale (%pe)\n", ERR_PTR(err)); return err; } *val = msa311_fs_table[fs].integral; *val2 = msa311_fs_table[fs].microfract; return IIO_VAL_INT_PLUS_MICRO; } static int msa311_read_samp_freq(struct iio_dev *indio_dev, int *val, int *val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; unsigned int odr; int err; mutex_lock(&msa311->lock); err = msa311_get_odr(msa311, &odr); mutex_unlock(&msa311->lock); if (err) { dev_err(dev, "can't get actual frequency (%pe)\n", ERR_PTR(err)); return err; } *val = msa311_odr_table[odr].integral; *val2 = msa311_odr_table[odr].microfract; return IIO_VAL_INT_PLUS_MICRO; } static int msa311_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { switch (mask) { case IIO_CHAN_INFO_RAW: return msa311_read_raw_data(indio_dev, chan, val, val2); case IIO_CHAN_INFO_SCALE: return msa311_read_scale(indio_dev, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: return msa311_read_samp_freq(indio_dev, val, val2); default: return -EINVAL; } } static int msa311_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (int *)msa311_odr_table; *type = IIO_VAL_INT_PLUS_MICRO; /* ODR value has 2 ints (integer and fractional parts) */ *length = ARRAY_SIZE(msa311_odr_table) * 2; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SCALE: *vals = (int *)msa311_fs_table; *type = IIO_VAL_INT_PLUS_MICRO; /* FS value has 2 ints (integer and fractional parts) */ *length = ARRAY_SIZE(msa311_fs_table) * 2; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int msa311_write_scale(struct iio_dev *indio_dev, int val, int val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; unsigned int fs; int err; /* We do not have fs >= 1, so skip such values */ if (val) return 0; err = pm_runtime_resume_and_get(dev); if (err) return err; err = -EINVAL; for (fs = 0; fs < ARRAY_SIZE(msa311_fs_table); fs++) /* Do not check msa311_fs_table[fs].integral, it's always 0 */ if (val2 == msa311_fs_table[fs].microfract) { mutex_lock(&msa311->lock); err = regmap_field_write(msa311->fields[F_FS], fs); mutex_unlock(&msa311->lock); break; } pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (err) dev_err(dev, "can't update scale (%pe)\n", ERR_PTR(err)); return err; } static int msa311_write_samp_freq(struct iio_dev *indio_dev, int val, int val2) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; unsigned int odr; int err; err = pm_runtime_resume_and_get(dev); if (err) return err; /* * Sampling frequency changing is prohibited when buffer mode is * enabled, because sometimes MSA311 chip returns outliers during * frequency values growing up in the read operation moment. */ err = iio_device_claim_direct_mode(indio_dev); if (err) return err; err = -EINVAL; for (odr = 0; odr < ARRAY_SIZE(msa311_odr_table); odr++) if (val == msa311_odr_table[odr].integral && val2 == msa311_odr_table[odr].microfract) { mutex_lock(&msa311->lock); err = msa311_set_odr(msa311, odr); mutex_unlock(&msa311->lock); break; } iio_device_release_direct_mode(indio_dev); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (err) dev_err(dev, "can't update frequency (%pe)\n", ERR_PTR(err)); return err; } static int msa311_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return msa311_write_scale(indio_dev, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: return msa311_write_samp_freq(indio_dev, val, val2); default: return -EINVAL; } } static int msa311_debugfs_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; int err; if (reg > regmap_get_max_register(msa311->regs)) return -EINVAL; err = pm_runtime_resume_and_get(dev); if (err) return err; mutex_lock(&msa311->lock); if (readval) err = regmap_read(msa311->regs, reg, readval); else err = regmap_write(msa311->regs, reg, writeval); mutex_unlock(&msa311->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (err) dev_err(dev, "can't %s register %u from debugfs (%pe)\n", str_read_write(readval), reg, ERR_PTR(err)); return err; } static int msa311_buffer_preenable(struct iio_dev *indio_dev) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; return pm_runtime_resume_and_get(dev); } static int msa311_buffer_postdisable(struct iio_dev *indio_dev) { struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; } static int msa311_set_new_data_trig_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct msa311_priv *msa311 = iio_priv(indio_dev); struct device *dev = msa311->dev; int err; mutex_lock(&msa311->lock); err = regmap_field_write(msa311->fields[F_NEW_DATA_INT_EN], state); mutex_unlock(&msa311->lock); if (err) dev_err(dev, "can't %s buffer due to new_data_int failure (%pe)\n", str_enable_disable(state), ERR_PTR(err)); return err; } static int msa311_validate_device(struct iio_trigger *trig, struct iio_dev *indio_dev) { return iio_trigger_get_drvdata(trig) == indio_dev ? 0 : -EINVAL; } static irqreturn_t msa311_buffer_thread(int irq, void *p) { struct iio_poll_func *pf = p; struct msa311_priv *msa311 = iio_priv(pf->indio_dev); struct iio_dev *indio_dev = pf->indio_dev; const struct iio_chan_spec *chan; struct device *dev = msa311->dev; int bit, err, i = 0; __le16 axis; struct { __le16 channels[MSA311_SI_Z + 1]; s64 ts __aligned(8); } buf; memset(&buf, 0, sizeof(buf)); mutex_lock(&msa311->lock); iio_for_each_active_channel(indio_dev, bit) { chan = &msa311_channels[bit]; err = msa311_get_axis(msa311, chan, &axis); if (err) { mutex_unlock(&msa311->lock); dev_err(dev, "can't get axis %s (%pe)\n", chan->datasheet_name, ERR_PTR(err)); goto notify_done; } buf.channels[i++] = axis; } mutex_unlock(&msa311->lock); iio_push_to_buffers_with_timestamp(indio_dev, &buf, iio_get_time_ns(indio_dev)); notify_done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static irqreturn_t msa311_irq_thread(int irq, void *p) { struct msa311_priv *msa311 = iio_priv(p); unsigned int new_data_int_enabled; struct device *dev = msa311->dev; int err; mutex_lock(&msa311->lock); /* * We do not check NEW_DATA int status, because based on the * specification it's cleared automatically after a fixed time. * So just check that is enabled by driver logic. */ err = regmap_field_read(msa311->fields[F_NEW_DATA_INT_EN], &new_data_int_enabled); mutex_unlock(&msa311->lock); if (err) { dev_err(dev, "can't read new_data interrupt state (%pe)\n", ERR_PTR(err)); return IRQ_NONE; } if (new_data_int_enabled) iio_trigger_poll_nested(msa311->new_data_trig); return IRQ_HANDLED; } static const struct iio_info msa311_info = { .read_raw = msa311_read_raw, .read_avail = msa311_read_avail, .write_raw = msa311_write_raw, .debugfs_reg_access = msa311_debugfs_reg_access, }; static const struct iio_buffer_setup_ops msa311_buffer_setup_ops = { .preenable = msa311_buffer_preenable, .postdisable = msa311_buffer_postdisable, }; static const struct iio_trigger_ops msa311_new_data_trig_ops = { .set_trigger_state = msa311_set_new_data_trig_state, .validate_device = msa311_validate_device, }; static int msa311_check_partid(struct msa311_priv *msa311) { struct device *dev = msa311->dev; unsigned int partid; int err; err = regmap_read(msa311->regs, MSA311_PARTID_REG, &partid); if (err) return dev_err_probe(dev, err, "failed to read partid\n"); if (partid != MSA311_WHO_AM_I) dev_warn(dev, "invalid partid (%#x), expected (%#x)\n", partid, MSA311_WHO_AM_I); msa311->chip_name = devm_kasprintf(dev, GFP_KERNEL, "msa311-%02x", partid); if (!msa311->chip_name) return dev_err_probe(dev, -ENOMEM, "can't alloc chip name\n"); return 0; } static int msa311_soft_reset(struct msa311_priv *msa311) { struct device *dev = msa311->dev; int err; err = regmap_write(msa311->regs, MSA311_SOFT_RESET_REG, MSA311_GENMASK(F_SOFT_RESET_I2C) | MSA311_GENMASK(F_SOFT_RESET_SPI)); if (err) return dev_err_probe(dev, err, "can't soft reset all logic\n"); return 0; } static int msa311_chip_init(struct msa311_priv *msa311) { struct device *dev = msa311->dev; const char zero_bulk[2] = { }; int err; err = regmap_write(msa311->regs, MSA311_RANGE_REG, MSA311_FS_16G); if (err) return dev_err_probe(dev, err, "failed to setup accel range\n"); /* Disable all interrupts by default */ err = regmap_bulk_write(msa311->regs, MSA311_INT_SET_0_REG, zero_bulk, sizeof(zero_bulk)); if (err) return dev_err_probe(dev, err, "can't disable set0/set1 interrupts\n"); /* Unmap all INT1 interrupts by default */ err = regmap_bulk_write(msa311->regs, MSA311_INT_MAP_0_REG, zero_bulk, sizeof(zero_bulk)); if (err) return dev_err_probe(dev, err, "failed to unmap map0/map1 interrupts\n"); /* Disable all axes by default */ err = regmap_clear_bits(msa311->regs, MSA311_ODR_REG, MSA311_GENMASK(F_X_AXIS_DIS) | MSA311_GENMASK(F_Y_AXIS_DIS) | MSA311_GENMASK(F_Z_AXIS_DIS)); if (err) return dev_err_probe(dev, err, "can't enable all axes\n"); err = msa311_set_odr(msa311, MSA311_ODR_125_HZ); if (err) return dev_err_probe(dev, err, "failed to set accel frequency\n"); return 0; } static int msa311_setup_interrupts(struct msa311_priv *msa311) { struct device *dev = msa311->dev; struct i2c_client *i2c = to_i2c_client(dev); struct iio_dev *indio_dev = i2c_get_clientdata(i2c); struct iio_trigger *trig; int err; /* Keep going without interrupts if no initialized I2C IRQ */ if (i2c->irq <= 0) return 0; err = devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL, msa311_irq_thread, IRQF_ONESHOT, msa311->chip_name, indio_dev); if (err) return dev_err_probe(dev, err, "failed to request IRQ\n"); trig = devm_iio_trigger_alloc(dev, "%s-new-data", msa311->chip_name); if (!trig) return dev_err_probe(dev, -ENOMEM, "can't allocate newdata trigger\n"); msa311->new_data_trig = trig; msa311->new_data_trig->ops = &msa311_new_data_trig_ops; iio_trigger_set_drvdata(msa311->new_data_trig, indio_dev); err = devm_iio_trigger_register(dev, msa311->new_data_trig); if (err) return dev_err_probe(dev, err, "can't register newdata trigger\n"); err = regmap_field_write(msa311->fields[F_INT1_OD], MSA311_INT1_OD_PUSH_PULL); if (err) return dev_err_probe(dev, err, "can't enable push-pull interrupt\n"); err = regmap_field_write(msa311->fields[F_INT1_LVL], MSA311_INT1_LVL_HIGH); if (err) return dev_err_probe(dev, err, "can't set active interrupt level\n"); err = regmap_field_write(msa311->fields[F_LATCH_INT], MSA311_LATCH_INT_LATCHED); if (err) return dev_err_probe(dev, err, "can't latch interrupt\n"); err = regmap_field_write(msa311->fields[F_RESET_INT], 1); if (err) return dev_err_probe(dev, err, "can't reset interrupt\n"); err = regmap_field_write(msa311->fields[F_INT1_NEW_DATA], 1); if (err) return dev_err_probe(dev, err, "can't map new data interrupt\n"); return 0; } static int msa311_regmap_init(struct msa311_priv *msa311) { struct regmap_field **fields = msa311->fields; struct device *dev = msa311->dev; struct i2c_client *i2c = to_i2c_client(dev); struct regmap *regmap; int i; regmap = devm_regmap_init_i2c(i2c, &msa311_regmap_config); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "failed to register i2c regmap\n"); msa311->regs = regmap; for (i = 0; i < F_MAX_FIELDS; i++) { fields[i] = devm_regmap_field_alloc(dev, msa311->regs, msa311_reg_fields[i]); if (IS_ERR(msa311->fields[i])) return dev_err_probe(dev, PTR_ERR(msa311->fields[i]), "can't alloc field[%d]\n", i); } return 0; } static void msa311_powerdown(void *msa311) { msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND); } static int msa311_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct msa311_priv *msa311; struct iio_dev *indio_dev; int err; indio_dev = devm_iio_device_alloc(dev, sizeof(*msa311)); if (!indio_dev) return dev_err_probe(dev, -ENOMEM, "IIO device allocation failed\n"); msa311 = iio_priv(indio_dev); msa311->dev = dev; i2c_set_clientdata(i2c, indio_dev); err = msa311_regmap_init(msa311); if (err) return err; mutex_init(&msa311->lock); err = devm_regulator_get_enable(dev, "vdd"); if (err) return dev_err_probe(dev, err, "can't get vdd supply\n"); err = msa311_check_partid(msa311); if (err) return err; err = msa311_soft_reset(msa311); if (err) return err; err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL); if (err) return dev_err_probe(dev, err, "failed to power on device\n"); /* * Register powerdown deferred callback which suspends the chip * after module unloaded. * * MSA311 should be in SUSPEND mode in the two cases: * 1) When driver is loaded, but we do not have any data or * configuration requests to it (we are solving it using * autosuspend feature). * 2) When driver is unloaded and device is not used (devm action is * used in this case). */ err = devm_add_action_or_reset(dev, msa311_powerdown, msa311); if (err) return dev_err_probe(dev, err, "can't add powerdown action\n"); err = pm_runtime_set_active(dev); if (err) return err; err = devm_pm_runtime_enable(dev); if (err) return err; pm_runtime_get_noresume(dev); pm_runtime_set_autosuspend_delay(dev, MSA311_PWR_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(dev); err = msa311_chip_init(msa311); if (err) return err; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = msa311_channels; indio_dev->num_channels = ARRAY_SIZE(msa311_channels); indio_dev->name = msa311->chip_name; indio_dev->info = &msa311_info; err = devm_iio_triggered_buffer_setup(dev, indio_dev, iio_pollfunc_store_time, msa311_buffer_thread, &msa311_buffer_setup_ops); if (err) return dev_err_probe(dev, err, "can't setup IIO trigger buffer\n"); err = msa311_setup_interrupts(msa311); if (err) return err; pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); err = devm_iio_device_register(dev, indio_dev); if (err) return dev_err_probe(dev, err, "IIO device register failed\n"); return 0; } static int msa311_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct msa311_priv *msa311 = iio_priv(indio_dev); int err; mutex_lock(&msa311->lock); err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND); mutex_unlock(&msa311->lock); if (err) dev_err(dev, "failed to power off device (%pe)\n", ERR_PTR(err)); return err; } static int msa311_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct msa311_priv *msa311 = iio_priv(indio_dev); int err; mutex_lock(&msa311->lock); err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL); mutex_unlock(&msa311->lock); if (err) dev_err(dev, "failed to power on device (%pe)\n", ERR_PTR(err)); return err; } static DEFINE_RUNTIME_DEV_PM_OPS(msa311_pm_ops, msa311_runtime_suspend, msa311_runtime_resume, NULL); static const struct i2c_device_id msa311_i2c_id[] = { { .name = "msa311" }, { } }; MODULE_DEVICE_TABLE(i2c, msa311_i2c_id); static const struct of_device_id msa311_of_match[] = { { .compatible = "memsensing,msa311" }, { } }; MODULE_DEVICE_TABLE(of, msa311_of_match); static struct i2c_driver msa311_driver = { .driver = { .name = "msa311", .of_match_table = msa311_of_match, .pm = pm_ptr(&msa311_pm_ops), }, .probe = msa311_probe, .id_table = msa311_i2c_id, }; module_i2c_driver(msa311_driver); MODULE_AUTHOR("Dmitry Rokosov "); MODULE_DESCRIPTION("MEMSensing MSA311 3-axis accelerometer driver"); MODULE_LICENSE("GPL");