// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015-2018, 2020-2021 The Linux Foundation. All rights reserved. */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include "dpu_encoder_phys.h" #include "dpu_hw_interrupts.h" #include "dpu_hw_merge3d.h" #include "dpu_core_irq.h" #include "dpu_formats.h" #include "dpu_trace.h" #include "disp/msm_disp_snapshot.h" #include #include #define DPU_DEBUG_VIDENC(e, fmt, ...) DPU_DEBUG("enc%d intf%d " fmt, \ (e) && (e)->parent ? \ (e)->parent->base.id : -1, \ (e) && (e)->hw_intf ? \ (e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__) #define DPU_ERROR_VIDENC(e, fmt, ...) DPU_ERROR("enc%d intf%d " fmt, \ (e) && (e)->parent ? \ (e)->parent->base.id : -1, \ (e) && (e)->hw_intf ? \ (e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__) #define to_dpu_encoder_phys_vid(x) \ container_of(x, struct dpu_encoder_phys_vid, base) static bool dpu_encoder_phys_vid_is_master( struct dpu_encoder_phys *phys_enc) { bool ret = false; if (phys_enc->split_role != ENC_ROLE_SLAVE) ret = true; return ret; } static void drm_mode_to_intf_timing_params( const struct dpu_encoder_phys *phys_enc, const struct drm_display_mode *mode, struct dpu_hw_intf_timing_params *timing) { memset(timing, 0, sizeof(*timing)); if ((mode->htotal < mode->hsync_end) || (mode->hsync_start < mode->hdisplay) || (mode->vtotal < mode->vsync_end) || (mode->vsync_start < mode->vdisplay) || (mode->hsync_end < mode->hsync_start) || (mode->vsync_end < mode->vsync_start)) { DPU_ERROR( "invalid params - hstart:%d,hend:%d,htot:%d,hdisplay:%d\n", mode->hsync_start, mode->hsync_end, mode->htotal, mode->hdisplay); DPU_ERROR("vstart:%d,vend:%d,vtot:%d,vdisplay:%d\n", mode->vsync_start, mode->vsync_end, mode->vtotal, mode->vdisplay); return; } /* * https://www.kernel.org/doc/htmldocs/drm/ch02s05.html * Active Region Front Porch Sync Back Porch * <-----------------><------------><-----><-----------> * <- [hv]display ---> * <--------- [hv]sync_start ------> * <----------------- [hv]sync_end -------> * <---------------------------- [hv]total -------------> */ timing->width = mode->hdisplay; /* active width */ timing->height = mode->vdisplay; /* active height */ timing->xres = timing->width; timing->yres = timing->height; timing->h_back_porch = mode->htotal - mode->hsync_end; timing->h_front_porch = mode->hsync_start - mode->hdisplay; timing->v_back_porch = mode->vtotal - mode->vsync_end; timing->v_front_porch = mode->vsync_start - mode->vdisplay; timing->hsync_pulse_width = mode->hsync_end - mode->hsync_start; timing->vsync_pulse_width = mode->vsync_end - mode->vsync_start; timing->hsync_polarity = (mode->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0; timing->vsync_polarity = (mode->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0; timing->border_clr = 0; timing->underflow_clr = 0xff; timing->hsync_skew = mode->hskew; /* DSI controller cannot handle active-low sync signals. */ if (phys_enc->hw_intf->cap->type == INTF_DSI) { timing->hsync_polarity = 0; timing->vsync_polarity = 0; } /* for DP/EDP, Shift timings to align it to bottom right */ if (phys_enc->hw_intf->cap->type == INTF_DP) { timing->h_back_porch += timing->h_front_porch; timing->h_front_porch = 0; timing->v_back_porch += timing->v_front_porch; timing->v_front_porch = 0; } timing->wide_bus_en = dpu_encoder_is_widebus_enabled(phys_enc->parent); timing->compression_en = dpu_encoder_is_dsc_enabled(phys_enc->parent); /* * for DP, divide the horizonal parameters by 2 when * widebus is enabled */ if (phys_enc->hw_intf->cap->type == INTF_DP && timing->wide_bus_en) { timing->width = timing->width >> 1; timing->xres = timing->xres >> 1; timing->h_back_porch = timing->h_back_porch >> 1; timing->h_front_porch = timing->h_front_porch >> 1; timing->hsync_pulse_width = timing->hsync_pulse_width >> 1; } /* * for DSI, if compression is enabled, then divide the horizonal active * timing parameters by compression ratio. bits of 3 components(R/G/B) * is compressed into bits of 1 pixel. */ if (phys_enc->hw_intf->cap->type != INTF_DP && timing->compression_en) { struct drm_dsc_config *dsc = dpu_encoder_get_dsc_config(phys_enc->parent); /* * TODO: replace drm_dsc_get_bpp_int with logic to handle * fractional part if there is fraction */ timing->width = timing->width * drm_dsc_get_bpp_int(dsc) / (dsc->bits_per_component * 3); timing->xres = timing->width; } } static u32 get_horizontal_total(const struct dpu_hw_intf_timing_params *timing) { u32 active = timing->xres; u32 inactive = timing->h_back_porch + timing->h_front_porch + timing->hsync_pulse_width; return active + inactive; } static u32 get_vertical_total(const struct dpu_hw_intf_timing_params *timing) { u32 active = timing->yres; u32 inactive = timing->v_back_porch + timing->v_front_porch + timing->vsync_pulse_width; return active + inactive; } /* * programmable_fetch_get_num_lines: * Number of fetch lines in vertical front porch * @timing: Pointer to the intf timing information for the requested mode * * Returns the number of fetch lines in vertical front porch at which mdp * can start fetching the next frame. * * Number of needed prefetch lines is anything that cannot be absorbed in the * start of frame time (back porch + vsync pulse width). * * Some panels have very large VFP, however we only need a total number of * lines based on the chip worst case latencies. */ static u32 programmable_fetch_get_num_lines( struct dpu_encoder_phys *phys_enc, const struct dpu_hw_intf_timing_params *timing) { u32 worst_case_needed_lines = phys_enc->hw_intf->cap->prog_fetch_lines_worst_case; u32 start_of_frame_lines = timing->v_back_porch + timing->vsync_pulse_width; u32 needed_vfp_lines = worst_case_needed_lines - start_of_frame_lines; u32 actual_vfp_lines = 0; /* Fetch must be outside active lines, otherwise undefined. */ if (start_of_frame_lines >= worst_case_needed_lines) { DPU_DEBUG_VIDENC(phys_enc, "prog fetch is not needed, large vbp+vsw\n"); actual_vfp_lines = 0; } else if (timing->v_front_porch < needed_vfp_lines) { /* Warn fetch needed, but not enough porch in panel config */ pr_warn_once ("low vbp+vfp may lead to perf issues in some cases\n"); DPU_DEBUG_VIDENC(phys_enc, "less vfp than fetch req, using entire vfp\n"); actual_vfp_lines = timing->v_front_porch; } else { DPU_DEBUG_VIDENC(phys_enc, "room in vfp for needed prefetch\n"); actual_vfp_lines = needed_vfp_lines; } DPU_DEBUG_VIDENC(phys_enc, "v_front_porch %u v_back_porch %u vsync_pulse_width %u\n", timing->v_front_porch, timing->v_back_porch, timing->vsync_pulse_width); DPU_DEBUG_VIDENC(phys_enc, "wc_lines %u needed_vfp_lines %u actual_vfp_lines %u\n", worst_case_needed_lines, needed_vfp_lines, actual_vfp_lines); return actual_vfp_lines; } /* * programmable_fetch_config: Programs HW to prefetch lines by offsetting * the start of fetch into the vertical front porch for cases where the * vsync pulse width and vertical back porch time is insufficient * * Gets # of lines to pre-fetch, then calculate VSYNC counter value. * HW layer requires VSYNC counter of first pixel of tgt VFP line. * * @timing: Pointer to the intf timing information for the requested mode */ static void programmable_fetch_config(struct dpu_encoder_phys *phys_enc, const struct dpu_hw_intf_timing_params *timing) { struct dpu_hw_intf_prog_fetch f = { 0 }; u32 vfp_fetch_lines = 0; u32 horiz_total = 0; u32 vert_total = 0; u32 vfp_fetch_start_vsync_counter = 0; unsigned long lock_flags; if (WARN_ON_ONCE(!phys_enc->hw_intf->ops.setup_prg_fetch)) return; vfp_fetch_lines = programmable_fetch_get_num_lines(phys_enc, timing); if (vfp_fetch_lines) { vert_total = get_vertical_total(timing); horiz_total = get_horizontal_total(timing); vfp_fetch_start_vsync_counter = (vert_total - vfp_fetch_lines) * horiz_total + 1; f.enable = 1; f.fetch_start = vfp_fetch_start_vsync_counter; } DPU_DEBUG_VIDENC(phys_enc, "vfp_fetch_lines %u vfp_fetch_start_vsync_counter %u\n", vfp_fetch_lines, vfp_fetch_start_vsync_counter); spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); phys_enc->hw_intf->ops.setup_prg_fetch(phys_enc->hw_intf, &f); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); } static void dpu_encoder_phys_vid_setup_timing_engine( struct dpu_encoder_phys *phys_enc) { struct drm_display_mode mode; struct dpu_hw_intf_timing_params timing_params = { 0 }; const struct msm_format *fmt = NULL; u32 fmt_fourcc; unsigned long lock_flags; struct dpu_hw_intf_cfg intf_cfg = { 0 }; drm_mode_init(&mode, &phys_enc->cached_mode); if (!phys_enc->hw_ctl->ops.setup_intf_cfg) { DPU_ERROR("invalid encoder %d\n", phys_enc != NULL); return; } if (!phys_enc->hw_intf->ops.setup_timing_gen) { DPU_ERROR("timing engine setup is not supported\n"); return; } DPU_DEBUG_VIDENC(phys_enc, "enabling mode:\n"); drm_mode_debug_printmodeline(&mode); fmt_fourcc = dpu_encoder_get_drm_fmt(phys_enc); if (phys_enc->split_role != ENC_ROLE_SOLO || fmt_fourcc == DRM_FORMAT_YUV420) { mode.hdisplay >>= 1; mode.htotal >>= 1; mode.hsync_start >>= 1; mode.hsync_end >>= 1; mode.hskew >>= 1; DPU_DEBUG_VIDENC(phys_enc, "split_role %d, halve horizontal %d %d %d %d %d\n", phys_enc->split_role, mode.hdisplay, mode.htotal, mode.hsync_start, mode.hsync_end, mode.hskew); } drm_mode_to_intf_timing_params(phys_enc, &mode, &timing_params); fmt = mdp_get_format(&phys_enc->dpu_kms->base, fmt_fourcc, 0); DPU_DEBUG_VIDENC(phys_enc, "fmt_fourcc 0x%X\n", fmt_fourcc); if (phys_enc->hw_cdm) intf_cfg.cdm = phys_enc->hw_cdm->idx; intf_cfg.intf = phys_enc->hw_intf->idx; intf_cfg.intf_mode_sel = DPU_CTL_MODE_SEL_VID; intf_cfg.stream_sel = 0; /* Don't care value for video mode */ intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc); intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc); if (intf_cfg.mode_3d && phys_enc->hw_pp->merge_3d) intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx; spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); phys_enc->hw_intf->ops.setup_timing_gen(phys_enc->hw_intf, &timing_params, fmt, phys_enc->dpu_kms->catalog->mdss_ver); phys_enc->hw_ctl->ops.setup_intf_cfg(phys_enc->hw_ctl, &intf_cfg); /* setup which pp blk will connect to this intf */ if (phys_enc->hw_intf->ops.bind_pingpong_blk) phys_enc->hw_intf->ops.bind_pingpong_blk( phys_enc->hw_intf, phys_enc->hw_pp->idx); if (phys_enc->hw_pp->merge_3d) phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d, intf_cfg.mode_3d); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); programmable_fetch_config(phys_enc, &timing_params); } static void dpu_encoder_phys_vid_vblank_irq(void *arg) { struct dpu_encoder_phys *phys_enc = arg; struct dpu_hw_ctl *hw_ctl; unsigned long lock_flags; u32 flush_register = 0; hw_ctl = phys_enc->hw_ctl; DPU_ATRACE_BEGIN("vblank_irq"); dpu_encoder_vblank_callback(phys_enc->parent, phys_enc); atomic_read(&phys_enc->pending_kickoff_cnt); /* * only decrement the pending flush count if we've actually flushed * hardware. due to sw irq latency, vblank may have already happened * so we need to double-check with hw that it accepted the flush bits */ spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); if (hw_ctl->ops.get_flush_register) flush_register = hw_ctl->ops.get_flush_register(hw_ctl); if (!(flush_register & hw_ctl->ops.get_pending_flush(hw_ctl))) atomic_add_unless(&phys_enc->pending_kickoff_cnt, -1, 0); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); /* Signal any waiting atomic commit thread */ wake_up_all(&phys_enc->pending_kickoff_wq); dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc, DPU_ENCODER_FRAME_EVENT_DONE); DPU_ATRACE_END("vblank_irq"); } static void dpu_encoder_phys_vid_underrun_irq(void *arg) { struct dpu_encoder_phys *phys_enc = arg; dpu_encoder_underrun_callback(phys_enc->parent, phys_enc); } static bool dpu_encoder_phys_vid_needs_single_flush( struct dpu_encoder_phys *phys_enc) { return phys_enc->split_role != ENC_ROLE_SOLO; } static void dpu_encoder_phys_vid_atomic_mode_set( struct dpu_encoder_phys *phys_enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { phys_enc->irq[INTR_IDX_VSYNC] = phys_enc->hw_intf->cap->intr_vsync; phys_enc->irq[INTR_IDX_UNDERRUN] = phys_enc->hw_intf->cap->intr_underrun; } static int dpu_encoder_phys_vid_control_vblank_irq( struct dpu_encoder_phys *phys_enc, bool enable) { int ret = 0; int refcount; mutex_lock(&phys_enc->vblank_ctl_lock); refcount = phys_enc->vblank_refcount; /* Slave encoders don't report vblank */ if (!dpu_encoder_phys_vid_is_master(phys_enc)) goto end; /* protect against negative */ if (!enable && refcount == 0) { ret = -EINVAL; goto end; } DRM_DEBUG_VBL("id:%u enable=%d/%d\n", DRMID(phys_enc->parent), enable, refcount); if (enable) { if (phys_enc->vblank_refcount == 0) ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, phys_enc->irq[INTR_IDX_VSYNC], dpu_encoder_phys_vid_vblank_irq, phys_enc); if (!ret) phys_enc->vblank_refcount++; } else if (!enable) { if (phys_enc->vblank_refcount == 1) ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, phys_enc->irq[INTR_IDX_VSYNC]); if (!ret) phys_enc->vblank_refcount--; } end: mutex_unlock(&phys_enc->vblank_ctl_lock); if (ret) { DRM_ERROR("failed: id:%u intf:%d ret:%d enable:%d refcnt:%d\n", DRMID(phys_enc->parent), phys_enc->hw_intf->idx - INTF_0, ret, enable, refcount); } return ret; } static void dpu_encoder_phys_vid_enable(struct dpu_encoder_phys *phys_enc) { struct dpu_hw_ctl *ctl; const struct msm_format *fmt; u32 fmt_fourcc; u32 mode_3d; ctl = phys_enc->hw_ctl; fmt_fourcc = dpu_encoder_get_drm_fmt(phys_enc); fmt = mdp_get_format(&phys_enc->dpu_kms->base, fmt_fourcc, 0); mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc); DPU_DEBUG_VIDENC(phys_enc, "\n"); if (WARN_ON(!phys_enc->hw_intf->ops.enable_timing)) return; dpu_encoder_helper_split_config(phys_enc, phys_enc->hw_intf->idx); dpu_encoder_helper_phys_setup_cdm(phys_enc, fmt, CDM_CDWN_OUTPUT_HDMI); dpu_encoder_phys_vid_setup_timing_engine(phys_enc); /* * For single flush cases (dual-ctl or pp-split), skip setting the * flush bit for the slave intf, since both intfs use same ctl * and HW will only flush the master. */ if (dpu_encoder_phys_vid_needs_single_flush(phys_enc) && !dpu_encoder_phys_vid_is_master(phys_enc)) goto skip_flush; ctl->ops.update_pending_flush_intf(ctl, phys_enc->hw_intf->idx); if (mode_3d && ctl->ops.update_pending_flush_merge_3d && phys_enc->hw_pp->merge_3d) ctl->ops.update_pending_flush_merge_3d(ctl, phys_enc->hw_pp->merge_3d->idx); if (ctl->ops.update_pending_flush_cdm && phys_enc->hw_cdm) ctl->ops.update_pending_flush_cdm(ctl, phys_enc->hw_cdm->idx); /* * Peripheral flush must be updated whenever flushing SDP packets is needed. * SDP packets are required for any YUV format (YUV420, YUV422, YUV444). */ if (ctl->ops.update_pending_flush_periph && dpu_encoder_needs_periph_flush(phys_enc)) ctl->ops.update_pending_flush_periph(ctl, phys_enc->hw_intf->idx); skip_flush: DPU_DEBUG_VIDENC(phys_enc, "update pending flush ctl %d intf %d\n", ctl->idx - CTL_0, phys_enc->hw_intf->idx); atomic_set(&phys_enc->underrun_cnt, 0); /* ctl_flush & timing engine enable will be triggered by framework */ if (phys_enc->enable_state == DPU_ENC_DISABLED) phys_enc->enable_state = DPU_ENC_ENABLING; } static int dpu_encoder_phys_vid_wait_for_tx_complete( struct dpu_encoder_phys *phys_enc) { struct dpu_encoder_wait_info wait_info; int ret; wait_info.wq = &phys_enc->pending_kickoff_wq; wait_info.atomic_cnt = &phys_enc->pending_kickoff_cnt; wait_info.timeout_ms = KICKOFF_TIMEOUT_MS; if (!dpu_encoder_phys_vid_is_master(phys_enc)) { return 0; } /* Wait for kickoff to complete */ ret = dpu_encoder_helper_wait_for_irq(phys_enc, phys_enc->irq[INTR_IDX_VSYNC], dpu_encoder_phys_vid_vblank_irq, &wait_info); if (ret == -ETIMEDOUT) { dpu_encoder_helper_report_irq_timeout(phys_enc, INTR_IDX_VSYNC); } return ret; } static int dpu_encoder_phys_vid_wait_for_commit_done( struct dpu_encoder_phys *phys_enc) { struct dpu_hw_ctl *hw_ctl = phys_enc->hw_ctl; int ret; if (!hw_ctl) return 0; ret = wait_event_timeout(phys_enc->pending_kickoff_wq, (hw_ctl->ops.get_flush_register(hw_ctl) == 0), msecs_to_jiffies(50)); if (ret <= 0) { DPU_ERROR("vblank timeout: %x\n", hw_ctl->ops.get_flush_register(hw_ctl)); return -ETIMEDOUT; } return 0; } static void dpu_encoder_phys_vid_prepare_for_kickoff( struct dpu_encoder_phys *phys_enc) { struct dpu_hw_ctl *ctl; int rc; struct drm_encoder *drm_enc; drm_enc = phys_enc->parent; ctl = phys_enc->hw_ctl; if (!ctl->ops.wait_reset_status) return; /* * hw supports hardware initiated ctl reset, so before we kickoff a new * frame, need to check and wait for hw initiated ctl reset completion */ rc = ctl->ops.wait_reset_status(ctl); if (rc) { DPU_ERROR_VIDENC(phys_enc, "ctl %d reset failure: %d\n", ctl->idx, rc); msm_disp_snapshot_state(drm_enc->dev); dpu_core_irq_unregister_callback(phys_enc->dpu_kms, phys_enc->irq[INTR_IDX_VSYNC]); } } static void dpu_encoder_phys_vid_disable(struct dpu_encoder_phys *phys_enc) { unsigned long lock_flags; int ret; struct dpu_hw_intf_status intf_status = {0}; if (!phys_enc->parent || !phys_enc->parent->dev) { DPU_ERROR("invalid encoder/device\n"); return; } if (!phys_enc->hw_intf) { DPU_ERROR("invalid hw_intf %d hw_ctl %d\n", phys_enc->hw_intf != NULL, phys_enc->hw_ctl != NULL); return; } if (WARN_ON(!phys_enc->hw_intf->ops.enable_timing)) return; if (phys_enc->enable_state == DPU_ENC_DISABLED) { DPU_ERROR("already disabled\n"); return; } spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); phys_enc->hw_intf->ops.enable_timing(phys_enc->hw_intf, 0); if (dpu_encoder_phys_vid_is_master(phys_enc)) dpu_encoder_phys_inc_pending(phys_enc); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); /* * Wait for a vsync so we know the ENABLE=0 latched before * the (connector) source of the vsync's gets disabled, * otherwise we end up in a funny state if we re-enable * before the disable latches, which results that some of * the settings changes for the new modeset (like new * scanout buffer) don't latch properly.. */ if (dpu_encoder_phys_vid_is_master(phys_enc)) { ret = dpu_encoder_phys_vid_wait_for_tx_complete(phys_enc); if (ret) { atomic_set(&phys_enc->pending_kickoff_cnt, 0); DRM_ERROR("wait disable failed: id:%u intf:%d ret:%d\n", DRMID(phys_enc->parent), phys_enc->hw_intf->idx - INTF_0, ret); } } if (phys_enc->hw_intf && phys_enc->hw_intf->ops.get_status) phys_enc->hw_intf->ops.get_status(phys_enc->hw_intf, &intf_status); /* * Wait for a vsync if timing en status is on after timing engine * is disabled. */ if (intf_status.is_en && dpu_encoder_phys_vid_is_master(phys_enc)) { spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); dpu_encoder_phys_inc_pending(phys_enc); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); ret = dpu_encoder_phys_vid_wait_for_tx_complete(phys_enc); if (ret) { atomic_set(&phys_enc->pending_kickoff_cnt, 0); DRM_ERROR("wait disable failed: id:%u intf:%d ret:%d\n", DRMID(phys_enc->parent), phys_enc->hw_intf->idx - INTF_0, ret); } } dpu_encoder_helper_phys_cleanup(phys_enc); phys_enc->enable_state = DPU_ENC_DISABLED; } static void dpu_encoder_phys_vid_handle_post_kickoff( struct dpu_encoder_phys *phys_enc) { unsigned long lock_flags; /* * Video mode must flush CTL before enabling timing engine * Video encoders need to turn on their interfaces now */ if (phys_enc->enable_state == DPU_ENC_ENABLING) { trace_dpu_enc_phys_vid_post_kickoff(DRMID(phys_enc->parent), phys_enc->hw_intf->idx - INTF_0); spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags); phys_enc->hw_intf->ops.enable_timing(phys_enc->hw_intf, 1); spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags); phys_enc->enable_state = DPU_ENC_ENABLED; } } static void dpu_encoder_phys_vid_irq_enable(struct dpu_encoder_phys *phys_enc) { int ret; trace_dpu_enc_phys_vid_irq_enable(DRMID(phys_enc->parent), phys_enc->hw_intf->idx - INTF_0, phys_enc->vblank_refcount); ret = dpu_encoder_phys_vid_control_vblank_irq(phys_enc, true); if (WARN_ON(ret)) return; dpu_core_irq_register_callback(phys_enc->dpu_kms, phys_enc->irq[INTR_IDX_UNDERRUN], dpu_encoder_phys_vid_underrun_irq, phys_enc); } static void dpu_encoder_phys_vid_irq_disable(struct dpu_encoder_phys *phys_enc) { trace_dpu_enc_phys_vid_irq_disable(DRMID(phys_enc->parent), phys_enc->hw_intf->idx - INTF_0, phys_enc->vblank_refcount); dpu_encoder_phys_vid_control_vblank_irq(phys_enc, false); dpu_core_irq_unregister_callback(phys_enc->dpu_kms, phys_enc->irq[INTR_IDX_UNDERRUN]); } static int dpu_encoder_phys_vid_get_line_count( struct dpu_encoder_phys *phys_enc) { if (!dpu_encoder_phys_vid_is_master(phys_enc)) return -EINVAL; if (!phys_enc->hw_intf || !phys_enc->hw_intf->ops.get_line_count) return -EINVAL; return phys_enc->hw_intf->ops.get_line_count(phys_enc->hw_intf); } static int dpu_encoder_phys_vid_get_frame_count( struct dpu_encoder_phys *phys_enc) { struct dpu_hw_intf_status s = {0}; u32 fetch_start = 0; struct drm_display_mode mode; drm_mode_init(&mode, &phys_enc->cached_mode); if (!dpu_encoder_phys_vid_is_master(phys_enc)) return -EINVAL; if (!phys_enc->hw_intf || !phys_enc->hw_intf->ops.get_status) return -EINVAL; phys_enc->hw_intf->ops.get_status(phys_enc->hw_intf, &s); if (s.is_prog_fetch_en && s.is_en) { fetch_start = mode.vtotal - (mode.vsync_start - mode.vdisplay); if ((s.line_count > fetch_start) && (s.line_count <= mode.vtotal)) return s.frame_count + 1; } return s.frame_count; } static void dpu_encoder_phys_vid_init_ops(struct dpu_encoder_phys_ops *ops) { ops->is_master = dpu_encoder_phys_vid_is_master; ops->atomic_mode_set = dpu_encoder_phys_vid_atomic_mode_set; ops->enable = dpu_encoder_phys_vid_enable; ops->disable = dpu_encoder_phys_vid_disable; ops->control_vblank_irq = dpu_encoder_phys_vid_control_vblank_irq; ops->wait_for_commit_done = dpu_encoder_phys_vid_wait_for_commit_done; ops->wait_for_tx_complete = dpu_encoder_phys_vid_wait_for_tx_complete; ops->irq_enable = dpu_encoder_phys_vid_irq_enable; ops->irq_disable = dpu_encoder_phys_vid_irq_disable; ops->prepare_for_kickoff = dpu_encoder_phys_vid_prepare_for_kickoff; ops->handle_post_kickoff = dpu_encoder_phys_vid_handle_post_kickoff; ops->needs_single_flush = dpu_encoder_phys_vid_needs_single_flush; ops->get_line_count = dpu_encoder_phys_vid_get_line_count; ops->get_frame_count = dpu_encoder_phys_vid_get_frame_count; } struct dpu_encoder_phys *dpu_encoder_phys_vid_init(struct drm_device *dev, struct dpu_enc_phys_init_params *p) { struct dpu_encoder_phys *phys_enc = NULL; if (!p) { DPU_ERROR("failed to create encoder due to invalid parameter\n"); return ERR_PTR(-EINVAL); } phys_enc = drmm_kzalloc(dev, sizeof(*phys_enc), GFP_KERNEL); if (!phys_enc) { DPU_ERROR("failed to create encoder due to memory allocation error\n"); return ERR_PTR(-ENOMEM); } DPU_DEBUG_VIDENC(phys_enc, "\n"); dpu_encoder_phys_init(phys_enc, p); mutex_init(&phys_enc->vblank_ctl_lock); phys_enc->vblank_refcount = 0; dpu_encoder_phys_vid_init_ops(&phys_enc->ops); phys_enc->intf_mode = INTF_MODE_VIDEO; DPU_DEBUG_VIDENC(phys_enc, "created intf idx:%d\n", p->hw_intf->idx); return phys_enc; }