/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #define SWSMU_CODE_LAYER_L2 #include #include #include #include "amdgpu.h" #include "amdgpu_dpm.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_atombios.h" #include "smu_v11_0.h" #include "smu11_driver_if_sienna_cichlid.h" #include "soc15_common.h" #include "atom.h" #include "sienna_cichlid_ppt.h" #include "smu_v11_0_7_pptable.h" #include "smu_v11_0_7_ppsmc.h" #include "nbio/nbio_2_3_offset.h" #include "nbio/nbio_2_3_sh_mask.h" #include "thm/thm_11_0_2_offset.h" #include "thm/thm_11_0_2_sh_mask.h" #include "mp/mp_11_0_offset.h" #include "mp/mp_11_0_sh_mask.h" #include "asic_reg/mp/mp_11_0_sh_mask.h" #include "amdgpu_ras.h" #include "smu_cmn.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define FEATURE_MASK(feature) (1ULL << feature) #define SMC_DPM_FEATURE ( \ FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | \ FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \ FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)) #define SMU_11_0_7_GFX_BUSY_THRESHOLD 15 #define GET_PPTABLE_MEMBER(field, member) \ do { \ if (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == \ IP_VERSION(11, 0, 13)) \ (*member) = (smu->smu_table.driver_pptable + \ offsetof(PPTable_beige_goby_t, field)); \ else \ (*member) = (smu->smu_table.driver_pptable + \ offsetof(PPTable_t, field)); \ } while (0) /* STB FIFO depth is in 64bit units */ #define SIENNA_CICHLID_STB_DEPTH_UNIT_BYTES 8 /* * SMU support ECCTABLE since version 58.70.0, * use this to check whether ECCTABLE feature is supported. */ #define SUPPORT_ECCTABLE_SMU_VERSION 0x003a4600 static int get_table_size(struct smu_context *smu) { if (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 13)) return sizeof(PPTable_beige_goby_t); else return sizeof(PPTable_t); } static struct cmn2asic_msg_mapping sienna_cichlid_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1), MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0), MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0), MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0), MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0), MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 1), MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 1), MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 1), MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 1), MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetRunningSmuFeaturesLow, 1), MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetRunningSmuFeaturesHigh, 1), MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1), MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1), MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0), MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0), MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0), MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0), MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0), MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 1), MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 1), MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 1), MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0), MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 1), MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 1), MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1), MSG_MAP(SetGeminiMode, PPSMC_MSG_SetGeminiMode, 0), MSG_MAP(SetGeminiApertureHigh, PPSMC_MSG_SetGeminiApertureHigh, 0), MSG_MAP(SetGeminiApertureLow, PPSMC_MSG_SetGeminiApertureLow, 0), MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters, 0), MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt, 0), MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource, 0), MSG_MAP(SetUclkFastSwitch, PPSMC_MSG_SetUclkFastSwitch, 0), MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps, 0), MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 1), MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0), MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0), MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq, 1), MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0), MSG_MAP(BacoAudioD3PME, PPSMC_MSG_BacoAudioD3PME, 0), MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0), MSG_MAP(Mode1Reset, PPSMC_MSG_Mode1Reset, 0), MSG_MAP(SetMGpuFanBoostLimitRpm, PPSMC_MSG_SetMGpuFanBoostLimitRpm, 0), MSG_MAP(SetGpoFeaturePMask, PPSMC_MSG_SetGpoFeaturePMask, 0), MSG_MAP(DisallowGpo, PPSMC_MSG_DisallowGpo, 0), MSG_MAP(Enable2ndUSB20Port, PPSMC_MSG_Enable2ndUSB20Port, 0), MSG_MAP(DriverMode2Reset, PPSMC_MSG_DriverMode2Reset, 0), }; static struct cmn2asic_mapping sienna_cichlid_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, PPCLK_GFXCLK), CLK_MAP(SCLK, PPCLK_GFXCLK), CLK_MAP(SOCCLK, PPCLK_SOCCLK), CLK_MAP(FCLK, PPCLK_FCLK), CLK_MAP(UCLK, PPCLK_UCLK), CLK_MAP(MCLK, PPCLK_UCLK), CLK_MAP(DCLK, PPCLK_DCLK_0), CLK_MAP(DCLK1, PPCLK_DCLK_1), CLK_MAP(VCLK, PPCLK_VCLK_0), CLK_MAP(VCLK1, PPCLK_VCLK_1), CLK_MAP(DCEFCLK, PPCLK_DCEFCLK), CLK_MAP(DISPCLK, PPCLK_DISPCLK), CLK_MAP(PIXCLK, PPCLK_PIXCLK), CLK_MAP(PHYCLK, PPCLK_PHYCLK), }; static struct cmn2asic_mapping sienna_cichlid_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(DPM_PREFETCHER), FEA_MAP(DPM_GFXCLK), FEA_MAP(DPM_GFX_GPO), FEA_MAP(DPM_UCLK), FEA_MAP(DPM_FCLK), FEA_MAP(DPM_SOCCLK), FEA_MAP(DPM_MP0CLK), FEA_MAP(DPM_LINK), FEA_MAP(DPM_DCEFCLK), FEA_MAP(DPM_XGMI), FEA_MAP(MEM_VDDCI_SCALING), FEA_MAP(MEM_MVDD_SCALING), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_FCLK), FEA_MAP(DS_LCLK), FEA_MAP(DS_DCEFCLK), FEA_MAP(DS_UCLK), FEA_MAP(GFX_ULV), FEA_MAP(FW_DSTATE), FEA_MAP(GFXOFF), FEA_MAP(BACO), FEA_MAP(MM_DPM_PG), FEA_MAP(RSMU_SMN_CG), FEA_MAP(PPT), FEA_MAP(TDC), FEA_MAP(APCC_PLUS), FEA_MAP(GTHR), FEA_MAP(ACDC), FEA_MAP(VR0HOT), FEA_MAP(VR1HOT), FEA_MAP(FW_CTF), FEA_MAP(FAN_CONTROL), FEA_MAP(THERMAL), FEA_MAP(GFX_DCS), FEA_MAP(RM), FEA_MAP(LED_DISPLAY), FEA_MAP(GFX_SS), FEA_MAP(OUT_OF_BAND_MONITOR), FEA_MAP(TEMP_DEPENDENT_VMIN), FEA_MAP(MMHUB_PG), FEA_MAP(ATHUB_PG), FEA_MAP(APCC_DFLL), }; static struct cmn2asic_mapping sienna_cichlid_table_map[SMU_TABLE_COUNT] = { TAB_MAP(PPTABLE), TAB_MAP(WATERMARKS), TAB_MAP(AVFS_PSM_DEBUG), TAB_MAP(AVFS_FUSE_OVERRIDE), TAB_MAP(PMSTATUSLOG), TAB_MAP(SMU_METRICS), TAB_MAP(DRIVER_SMU_CONFIG), TAB_MAP(ACTIVITY_MONITOR_COEFF), TAB_MAP(OVERDRIVE), TAB_MAP(I2C_COMMANDS), TAB_MAP(PACE), TAB_MAP(ECCINFO), }; static struct cmn2asic_mapping sienna_cichlid_pwr_src_map[SMU_POWER_SOURCE_COUNT] = { PWR_MAP(AC), PWR_MAP(DC), }; static struct cmn2asic_mapping sienna_cichlid_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), }; static const uint8_t sienna_cichlid_throttler_map[] = { [THROTTLER_TEMP_EDGE_BIT] = (SMU_THROTTLER_TEMP_EDGE_BIT), [THROTTLER_TEMP_HOTSPOT_BIT] = (SMU_THROTTLER_TEMP_HOTSPOT_BIT), [THROTTLER_TEMP_MEM_BIT] = (SMU_THROTTLER_TEMP_MEM_BIT), [THROTTLER_TEMP_VR_GFX_BIT] = (SMU_THROTTLER_TEMP_VR_GFX_BIT), [THROTTLER_TEMP_VR_MEM0_BIT] = (SMU_THROTTLER_TEMP_VR_MEM0_BIT), [THROTTLER_TEMP_VR_MEM1_BIT] = (SMU_THROTTLER_TEMP_VR_MEM1_BIT), [THROTTLER_TEMP_VR_SOC_BIT] = (SMU_THROTTLER_TEMP_VR_SOC_BIT), [THROTTLER_TEMP_LIQUID0_BIT] = (SMU_THROTTLER_TEMP_LIQUID0_BIT), [THROTTLER_TEMP_LIQUID1_BIT] = (SMU_THROTTLER_TEMP_LIQUID1_BIT), [THROTTLER_TDC_GFX_BIT] = (SMU_THROTTLER_TDC_GFX_BIT), [THROTTLER_TDC_SOC_BIT] = (SMU_THROTTLER_TDC_SOC_BIT), [THROTTLER_PPT0_BIT] = (SMU_THROTTLER_PPT0_BIT), [THROTTLER_PPT1_BIT] = (SMU_THROTTLER_PPT1_BIT), [THROTTLER_PPT2_BIT] = (SMU_THROTTLER_PPT2_BIT), [THROTTLER_PPT3_BIT] = (SMU_THROTTLER_PPT3_BIT), [THROTTLER_FIT_BIT] = (SMU_THROTTLER_FIT_BIT), [THROTTLER_PPM_BIT] = (SMU_THROTTLER_PPM_BIT), [THROTTLER_APCC_BIT] = (SMU_THROTTLER_APCC_BIT), }; static int sienna_cichlid_get_allowed_feature_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { struct amdgpu_device *adev = smu->adev; if (num > 2) return -EINVAL; memset(feature_mask, 0, sizeof(uint32_t) * num); *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | FEATURE_MASK(FEATURE_DS_SOCCLK_BIT) | FEATURE_MASK(FEATURE_DS_DCEFCLK_BIT) | FEATURE_MASK(FEATURE_DS_FCLK_BIT) | FEATURE_MASK(FEATURE_DS_UCLK_BIT) | FEATURE_MASK(FEATURE_FW_DSTATE_BIT) | FEATURE_MASK(FEATURE_DF_CSTATE_BIT) | FEATURE_MASK(FEATURE_RSMU_SMN_CG_BIT) | FEATURE_MASK(FEATURE_GFX_SS_BIT) | FEATURE_MASK(FEATURE_VR0HOT_BIT) | FEATURE_MASK(FEATURE_PPT_BIT) | FEATURE_MASK(FEATURE_TDC_BIT) | FEATURE_MASK(FEATURE_BACO_BIT) | FEATURE_MASK(FEATURE_APCC_DFLL_BIT) | FEATURE_MASK(FEATURE_FW_CTF_BIT) | FEATURE_MASK(FEATURE_FAN_CONTROL_BIT) | FEATURE_MASK(FEATURE_THERMAL_BIT) | FEATURE_MASK(FEATURE_OUT_OF_BAND_MONITOR_BIT); if (adev->pm.pp_feature & PP_SCLK_DPM_MASK) { *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT); *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFX_GPO_BIT); } if ((adev->pm.pp_feature & PP_GFX_DCS_MASK) && (amdgpu_ip_version(adev, MP1_HWIP, 0) > IP_VERSION(11, 0, 7)) && !(adev->flags & AMD_IS_APU)) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFX_DCS_BIT); if (adev->pm.pp_feature & PP_MCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT) | FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT); if (adev->pm.pp_feature & PP_PCIE_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_LINK_BIT); if (adev->pm.pp_feature & PP_DCEFCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT); if (adev->pm.pp_feature & PP_SOCCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT); if (adev->pm.pp_feature & PP_ULV_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFX_ULV_BIT); if (adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DS_GFXCLK_BIT); if (adev->pm.pp_feature & PP_GFXOFF_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFXOFF_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_ATHUB) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ATHUB_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_MMHUB) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MMHUB_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_VCN || smu->adev->pg_flags & AMD_PG_SUPPORT_JPEG) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MM_DPM_PG_BIT); if (smu->dc_controlled_by_gpio) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ACDC_BIT); if (amdgpu_device_should_use_aspm(adev)) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DS_LCLK_BIT); return 0; } static void sienna_cichlid_check_bxco_support(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_7_powerplay_table *powerplay_table = table_context->power_play_table; struct smu_baco_context *smu_baco = &smu->smu_baco; struct amdgpu_device *adev = smu->adev; uint32_t val; if (powerplay_table->platform_caps & SMU_11_0_7_PP_PLATFORM_CAP_BACO) { val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0); smu_baco->platform_support = (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) ? true : false; /* * Disable BACO entry/exit completely on below SKUs to * avoid hardware intermittent failures. */ if (((adev->pdev->device == 0x73A1) && (adev->pdev->revision == 0x00)) || ((adev->pdev->device == 0x73BF) && (adev->pdev->revision == 0xCF)) || ((adev->pdev->device == 0x7422) && (adev->pdev->revision == 0x00)) || ((adev->pdev->device == 0x73A3) && (adev->pdev->revision == 0x00)) || ((adev->pdev->device == 0x73E3) && (adev->pdev->revision == 0x00))) smu_baco->platform_support = false; } } static void sienna_cichlid_check_fan_support(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; uint64_t features = *(uint64_t *) pptable->FeaturesToRun; /* Fan control is not possible if PPTable has it disabled */ smu->adev->pm.no_fan = !(features & (1ULL << FEATURE_FAN_CONTROL_BIT)); if (smu->adev->pm.no_fan) dev_info_once(smu->adev->dev, "PMFW based fan control disabled"); } static int sienna_cichlid_check_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_7_powerplay_table *powerplay_table = table_context->power_play_table; if (powerplay_table->platform_caps & SMU_11_0_7_PP_PLATFORM_CAP_HARDWAREDC) smu->dc_controlled_by_gpio = true; sienna_cichlid_check_bxco_support(smu); sienna_cichlid_check_fan_support(smu); table_context->thermal_controller_type = powerplay_table->thermal_controller_type; /* * Instead of having its own buffer space and get overdrive_table copied, * smu->od_settings just points to the actual overdrive_table */ smu->od_settings = &powerplay_table->overdrive_table; return 0; } static int sienna_cichlid_append_powerplay_table(struct smu_context *smu) { struct atom_smc_dpm_info_v4_9 *smc_dpm_table; int index, ret; PPTable_beige_goby_t *ppt_beige_goby; PPTable_t *ppt; if (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 13)) ppt_beige_goby = smu->smu_table.driver_pptable; else ppt = smu->smu_table.driver_pptable; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smc_dpm_info); ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table); if (ret) return ret; if (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 13)) smu_memcpy_trailing(ppt_beige_goby, I2cControllers, BoardReserved, smc_dpm_table, I2cControllers); else smu_memcpy_trailing(ppt, I2cControllers, BoardReserved, smc_dpm_table, I2cControllers); return 0; } static int sienna_cichlid_store_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_7_powerplay_table *powerplay_table = table_context->power_play_table; int table_size; table_size = get_table_size(smu); memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable, table_size); return 0; } static int sienna_cichlid_patch_pptable_quirk(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t *board_reserved; uint16_t *freq_table_gfx; uint32_t i; /* Fix some OEM SKU specific stability issues */ GET_PPTABLE_MEMBER(BoardReserved, &board_reserved); if ((adev->pdev->device == 0x73DF) && (adev->pdev->revision == 0XC3) && (adev->pdev->subsystem_device == 0x16C2) && (adev->pdev->subsystem_vendor == 0x1043)) board_reserved[0] = 1387; GET_PPTABLE_MEMBER(FreqTableGfx, &freq_table_gfx); if ((adev->pdev->device == 0x73DF) && (adev->pdev->revision == 0XC3) && ((adev->pdev->subsystem_device == 0x16C2) || (adev->pdev->subsystem_device == 0x133C)) && (adev->pdev->subsystem_vendor == 0x1043)) { for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++) { if (freq_table_gfx[i] > 2500) freq_table_gfx[i] = 2500; } } return 0; } static int sienna_cichlid_setup_pptable(struct smu_context *smu) { int ret = 0; ret = smu_v11_0_setup_pptable(smu); if (ret) return ret; ret = sienna_cichlid_store_powerplay_table(smu); if (ret) return ret; ret = sienna_cichlid_append_powerplay_table(smu); if (ret) return ret; ret = sienna_cichlid_check_powerplay_table(smu); if (ret) return ret; return sienna_cichlid_patch_pptable_quirk(smu); } static int sienna_cichlid_tables_init(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; int table_size; table_size = get_table_size(smu); SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, table_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetricsExternal_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffIntExternal_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ECCINFO, sizeof(EccInfoTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_DRIVER_SMU_CONFIG, sizeof(DriverSmuConfigExternal_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetricsExternal_t), GFP_KERNEL); if (!smu_table->metrics_table) goto err0_out; smu_table->metrics_time = 0; smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3); smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL); if (!smu_table->gpu_metrics_table) goto err1_out; smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); if (!smu_table->watermarks_table) goto err2_out; smu_table->ecc_table = kzalloc(tables[SMU_TABLE_ECCINFO].size, GFP_KERNEL); if (!smu_table->ecc_table) goto err3_out; smu_table->driver_smu_config_table = kzalloc(tables[SMU_TABLE_DRIVER_SMU_CONFIG].size, GFP_KERNEL); if (!smu_table->driver_smu_config_table) goto err4_out; return 0; err4_out: kfree(smu_table->ecc_table); err3_out: kfree(smu_table->watermarks_table); err2_out: kfree(smu_table->gpu_metrics_table); err1_out: kfree(smu_table->metrics_table); err0_out: return -ENOMEM; } static uint32_t sienna_cichlid_get_throttler_status_locked(struct smu_context *smu, bool use_metrics_v3, bool use_metrics_v2) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetricsExternal_t *metrics_ext = (SmuMetricsExternal_t *)(smu_table->metrics_table); uint32_t throttler_status = 0; int i; if (use_metrics_v3) { for (i = 0; i < THROTTLER_COUNT; i++) throttler_status |= (metrics_ext->SmuMetrics_V3.ThrottlingPercentage[i] ? 1U << i : 0); } else if (use_metrics_v2) { for (i = 0; i < THROTTLER_COUNT; i++) throttler_status |= (metrics_ext->SmuMetrics_V2.ThrottlingPercentage[i] ? 1U << i : 0); } else { throttler_status = metrics_ext->SmuMetrics.ThrottlerStatus; } return throttler_status; } static bool sienna_cichlid_is_od_feature_supported(struct smu_11_0_7_overdrive_table *od_table, enum SMU_11_0_7_ODFEATURE_CAP cap) { return od_table->cap[cap]; } static int sienna_cichlid_get_power_limit(struct smu_context *smu, uint32_t *current_power_limit, uint32_t *default_power_limit, uint32_t *max_power_limit, uint32_t *min_power_limit) { struct smu_11_0_7_powerplay_table *powerplay_table = (struct smu_11_0_7_powerplay_table *)smu->smu_table.power_play_table; struct smu_11_0_7_overdrive_table *od_settings = smu->od_settings; uint32_t power_limit, od_percent_upper = 0, od_percent_lower = 0; uint16_t *table_member; GET_PPTABLE_MEMBER(SocketPowerLimitAc, &table_member); if (smu_v11_0_get_current_power_limit(smu, &power_limit)) { power_limit = table_member[PPT_THROTTLER_PPT0]; } if (current_power_limit) *current_power_limit = power_limit; if (default_power_limit) *default_power_limit = power_limit; if (powerplay_table) { if (smu->od_enabled && sienna_cichlid_is_od_feature_supported(od_settings, SMU_11_0_7_ODCAP_POWER_LIMIT)) { od_percent_upper = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_7_ODSETTING_POWERPERCENTAGE]); od_percent_lower = le32_to_cpu(powerplay_table->overdrive_table.min[SMU_11_0_7_ODSETTING_POWERPERCENTAGE]); } else if ((sienna_cichlid_is_od_feature_supported(od_settings, SMU_11_0_7_ODCAP_POWER_LIMIT))) { od_percent_upper = 0; od_percent_lower = le32_to_cpu(powerplay_table->overdrive_table.min[SMU_11_0_7_ODSETTING_POWERPERCENTAGE]); } } dev_dbg(smu->adev->dev, "od percent upper:%d, od percent lower:%d (default power: %d)\n", od_percent_upper, od_percent_lower, power_limit); if (max_power_limit) { *max_power_limit = power_limit * (100 + od_percent_upper); *max_power_limit /= 100; } if (min_power_limit) { *min_power_limit = power_limit * (100 - od_percent_lower); *min_power_limit /= 100; } return 0; } static void sienna_cichlid_get_smartshift_power_percentage(struct smu_context *smu, uint32_t *apu_percent, uint32_t *dgpu_percent) { struct smu_table_context *smu_table = &smu->smu_table; SmuMetrics_V4_t *metrics_v4 = &(((SmuMetricsExternal_t *)(smu_table->metrics_table))->SmuMetrics_V4); uint16_t powerRatio = 0; uint16_t apu_power_limit = 0; uint16_t dgpu_power_limit = 0; uint32_t apu_boost = 0; uint32_t dgpu_boost = 0; uint32_t cur_power_limit; if (metrics_v4->ApuSTAPMSmartShiftLimit != 0) { sienna_cichlid_get_power_limit(smu, &cur_power_limit, NULL, NULL, NULL); apu_power_limit = metrics_v4->ApuSTAPMLimit; dgpu_power_limit = cur_power_limit; powerRatio = (((apu_power_limit + dgpu_power_limit) * 100) / metrics_v4->ApuSTAPMSmartShiftLimit); if (powerRatio > 100) { apu_power_limit = (apu_power_limit * 100) / powerRatio; dgpu_power_limit = (dgpu_power_limit * 100) / powerRatio; } if (metrics_v4->AverageApuSocketPower > apu_power_limit && apu_power_limit != 0) { apu_boost = ((metrics_v4->AverageApuSocketPower - apu_power_limit) * 100) / apu_power_limit; if (apu_boost > 100) apu_boost = 100; } if (metrics_v4->AverageSocketPower > dgpu_power_limit && dgpu_power_limit != 0) { dgpu_boost = ((metrics_v4->AverageSocketPower - dgpu_power_limit) * 100) / dgpu_power_limit; if (dgpu_boost > 100) dgpu_boost = 100; } if (dgpu_boost >= apu_boost) apu_boost = 0; else dgpu_boost = 0; } *apu_percent = apu_boost; *dgpu_percent = dgpu_boost; } static int sienna_cichlid_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetrics_t *metrics = &(((SmuMetricsExternal_t *)(smu_table->metrics_table))->SmuMetrics); SmuMetrics_V2_t *metrics_v2 = &(((SmuMetricsExternal_t *)(smu_table->metrics_table))->SmuMetrics_V2); SmuMetrics_V3_t *metrics_v3 = &(((SmuMetricsExternal_t *)(smu_table->metrics_table))->SmuMetrics_V3); bool use_metrics_v2 = false; bool use_metrics_v3 = false; uint16_t average_gfx_activity; int ret = 0; uint32_t apu_percent = 0; uint32_t dgpu_percent = 0; switch (amdgpu_ip_version(smu->adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 7): if (smu->smc_fw_version >= 0x3A4900) use_metrics_v3 = true; else if (smu->smc_fw_version >= 0x3A4300) use_metrics_v2 = true; break; case IP_VERSION(11, 0, 11): if (smu->smc_fw_version >= 0x412D00) use_metrics_v2 = true; break; case IP_VERSION(11, 0, 12): if (smu->smc_fw_version >= 0x3B2300) use_metrics_v2 = true; break; case IP_VERSION(11, 0, 13): if (smu->smc_fw_version >= 0x491100) use_metrics_v2 = true; break; default: break; } ret = smu_cmn_get_metrics_table(smu, NULL, false); if (ret) return ret; switch (member) { case METRICS_CURR_GFXCLK: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_GFXCLK] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_GFXCLK] : metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_SOCCLK] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_SOCCLK] : metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_UCLK] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_UCLK] : metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_VCLK_0] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_VCLK_0] : metrics->CurrClock[PPCLK_VCLK_0]; break; case METRICS_CURR_VCLK1: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_VCLK_1] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_VCLK_1] : metrics->CurrClock[PPCLK_VCLK_1]; break; case METRICS_CURR_DCLK: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_DCLK_0] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_DCLK_0] : metrics->CurrClock[PPCLK_DCLK_0]; break; case METRICS_CURR_DCLK1: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_DCLK_1] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_DCLK_1] : metrics->CurrClock[PPCLK_DCLK_1]; break; case METRICS_CURR_DCEFCLK: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_DCEFCLK] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_DCEFCLK] : metrics->CurrClock[PPCLK_DCEFCLK]; break; case METRICS_CURR_FCLK: *value = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_FCLK] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_FCLK] : metrics->CurrClock[PPCLK_FCLK]; break; case METRICS_AVERAGE_GFXCLK: average_gfx_activity = use_metrics_v3 ? metrics_v3->AverageGfxActivity : use_metrics_v2 ? metrics_v2->AverageGfxActivity : metrics->AverageGfxActivity; if (average_gfx_activity <= SMU_11_0_7_GFX_BUSY_THRESHOLD) *value = use_metrics_v3 ? metrics_v3->AverageGfxclkFrequencyPostDs : use_metrics_v2 ? metrics_v2->AverageGfxclkFrequencyPostDs : metrics->AverageGfxclkFrequencyPostDs; else *value = use_metrics_v3 ? metrics_v3->AverageGfxclkFrequencyPreDs : use_metrics_v2 ? metrics_v2->AverageGfxclkFrequencyPreDs : metrics->AverageGfxclkFrequencyPreDs; break; case METRICS_AVERAGE_FCLK: *value = use_metrics_v3 ? metrics_v3->AverageFclkFrequencyPostDs : use_metrics_v2 ? metrics_v2->AverageFclkFrequencyPostDs : metrics->AverageFclkFrequencyPostDs; break; case METRICS_AVERAGE_UCLK: *value = use_metrics_v3 ? metrics_v3->AverageUclkFrequencyPostDs : use_metrics_v2 ? metrics_v2->AverageUclkFrequencyPostDs : metrics->AverageUclkFrequencyPostDs; break; case METRICS_AVERAGE_GFXACTIVITY: *value = use_metrics_v3 ? metrics_v3->AverageGfxActivity : use_metrics_v2 ? metrics_v2->AverageGfxActivity : metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = use_metrics_v3 ? metrics_v3->AverageUclkActivity : use_metrics_v2 ? metrics_v2->AverageUclkActivity : metrics->AverageUclkActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = use_metrics_v3 ? metrics_v3->AverageSocketPower << 8 : use_metrics_v2 ? metrics_v2->AverageSocketPower << 8 : metrics->AverageSocketPower << 8; break; case METRICS_TEMPERATURE_EDGE: *value = (use_metrics_v3 ? metrics_v3->TemperatureEdge : use_metrics_v2 ? metrics_v2->TemperatureEdge : metrics->TemperatureEdge) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = (use_metrics_v3 ? metrics_v3->TemperatureHotspot : use_metrics_v2 ? metrics_v2->TemperatureHotspot : metrics->TemperatureHotspot) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = (use_metrics_v3 ? metrics_v3->TemperatureMem : use_metrics_v2 ? metrics_v2->TemperatureMem : metrics->TemperatureMem) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = (use_metrics_v3 ? metrics_v3->TemperatureVrGfx : use_metrics_v2 ? metrics_v2->TemperatureVrGfx : metrics->TemperatureVrGfx) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = (use_metrics_v3 ? metrics_v3->TemperatureVrSoc : use_metrics_v2 ? metrics_v2->TemperatureVrSoc : metrics->TemperatureVrSoc) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = sienna_cichlid_get_throttler_status_locked(smu, use_metrics_v3, use_metrics_v2); break; case METRICS_CURR_FANSPEED: *value = use_metrics_v3 ? metrics_v3->CurrFanSpeed : use_metrics_v2 ? metrics_v2->CurrFanSpeed : metrics->CurrFanSpeed; break; case METRICS_UNIQUE_ID_UPPER32: /* Only supported in 0x3A5300+, metrics_v3 requires 0x3A4900+ */ *value = use_metrics_v3 ? metrics_v3->PublicSerialNumUpper32 : 0; break; case METRICS_UNIQUE_ID_LOWER32: /* Only supported in 0x3A5300+, metrics_v3 requires 0x3A4900+ */ *value = use_metrics_v3 ? metrics_v3->PublicSerialNumLower32 : 0; break; case METRICS_SS_APU_SHARE: sienna_cichlid_get_smartshift_power_percentage(smu, &apu_percent, &dgpu_percent); *value = apu_percent; break; case METRICS_SS_DGPU_SHARE: sienna_cichlid_get_smartshift_power_percentage(smu, &apu_percent, &dgpu_percent); *value = dgpu_percent; break; default: *value = UINT_MAX; break; } return ret; } static int sienna_cichlid_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context); return 0; } static void sienna_cichlid_stb_init(struct smu_context *smu); static int sienna_cichlid_init_smc_tables(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; ret = sienna_cichlid_tables_init(smu); if (ret) return ret; ret = sienna_cichlid_allocate_dpm_context(smu); if (ret) return ret; if (!amdgpu_sriov_vf(adev)) sienna_cichlid_stb_init(smu); return smu_v11_0_init_smc_tables(smu); } static int sienna_cichlid_set_default_dpm_table(struct smu_context *smu) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_11_0_dpm_table *dpm_table; struct amdgpu_device *adev = smu->adev; int i, ret = 0; DpmDescriptor_t *table_member; /* socclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.soc_table; GET_PPTABLE_MEMBER(DpmDescriptor, &table_member); if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_SOCCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[PPCLK_SOCCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* gfxclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.gfx_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_GFXCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[PPCLK_GFXCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* uclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.uclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_UCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[PPCLK_UCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* fclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.fclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_FCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[PPCLK_FCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* vclk0/1 dpm table setup */ for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i)) continue; dpm_table = &dpm_context->dpm_tables.vclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, i ? SMU_VCLK1 : SMU_VCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[i ? PPCLK_VCLK_1 : PPCLK_VCLK_0].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } } /* dclk0/1 dpm table setup */ for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i)) continue; dpm_table = &dpm_context->dpm_tables.dclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, i ? SMU_DCLK1 : SMU_DCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[i ? PPCLK_DCLK_1 : PPCLK_DCLK_0].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } } /* dcefclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.dcef_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DCEFCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[PPCLK_DCEFCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* pixelclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.pixel_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_PIXCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[PPCLK_PIXCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* displayclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.display_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DISPCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[PPCLK_DISPCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* phyclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.phy_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_PHYCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !table_member[PPCLK_PHYCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } return 0; } static int sienna_cichlid_dpm_set_vcn_enable(struct smu_context *smu, bool enable) { struct amdgpu_device *adev = smu->adev; int i, ret = 0; for (i = 0; i < adev->vcn.num_vcn_inst; i++) { if (adev->vcn.harvest_config & (1 << i)) continue; /* vcn dpm on is a prerequisite for vcn power gate messages */ if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, enable ? SMU_MSG_PowerUpVcn : SMU_MSG_PowerDownVcn, 0x10000 * i, NULL); if (ret) return ret; } } return ret; } static int sienna_cichlid_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { int ret = 0; if (enable) { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL); if (ret) return ret; } } else { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL); if (ret) return ret; } } return ret; } static int sienna_cichlid_get_current_clk_freq_by_table(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { MetricsMember_t member_type; int clk_id = 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; switch (clk_id) { case PPCLK_GFXCLK: member_type = METRICS_CURR_GFXCLK; break; case PPCLK_UCLK: member_type = METRICS_CURR_UCLK; break; case PPCLK_SOCCLK: member_type = METRICS_CURR_SOCCLK; break; case PPCLK_FCLK: member_type = METRICS_CURR_FCLK; break; case PPCLK_VCLK_0: member_type = METRICS_CURR_VCLK; break; case PPCLK_VCLK_1: member_type = METRICS_CURR_VCLK1; break; case PPCLK_DCLK_0: member_type = METRICS_CURR_DCLK; break; case PPCLK_DCLK_1: member_type = METRICS_CURR_DCLK1; break; case PPCLK_DCEFCLK: member_type = METRICS_CURR_DCEFCLK; break; default: return -EINVAL; } return sienna_cichlid_get_smu_metrics_data(smu, member_type, value); } static bool sienna_cichlid_is_support_fine_grained_dpm(struct smu_context *smu, enum smu_clk_type clk_type) { DpmDescriptor_t *dpm_desc = NULL; DpmDescriptor_t *table_member; uint32_t clk_index = 0; GET_PPTABLE_MEMBER(DpmDescriptor, &table_member); clk_index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); dpm_desc = &table_member[clk_index]; /* 0 - Fine grained DPM, 1 - Discrete DPM */ return dpm_desc->SnapToDiscrete == 0; } static void sienna_cichlid_get_od_setting_range(struct smu_11_0_7_overdrive_table *od_table, enum SMU_11_0_7_ODSETTING_ID setting, uint32_t *min, uint32_t *max) { if (min) *min = od_table->min[setting]; if (max) *max = od_table->max[setting]; } static int sienna_cichlid_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *table_context = &smu->smu_table; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context; uint16_t *table_member; struct smu_11_0_7_overdrive_table *od_settings = smu->od_settings; OverDriveTable_t *od_table = (OverDriveTable_t *)table_context->overdrive_table; int i, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0; uint32_t freq_values[3] = {0}; uint32_t mark_index = 0; uint32_t gen_speed, lane_width; uint32_t min_value, max_value; smu_cmn_get_sysfs_buf(&buf, &size); switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: case SMU_VCLK: case SMU_VCLK1: case SMU_DCLK: case SMU_DCLK1: case SMU_DCEFCLK: ret = sienna_cichlid_get_current_clk_freq_by_table(smu, clk_type, &cur_value); if (ret) goto print_clk_out; ret = smu_v11_0_get_dpm_level_count(smu, clk_type, &count); if (ret) goto print_clk_out; if (!sienna_cichlid_is_support_fine_grained_dpm(smu, clk_type)) { for (i = 0; i < count; i++) { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, i, &value); if (ret) goto print_clk_out; size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); } } else { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, 0, &freq_values[0]); if (ret) goto print_clk_out; ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, count - 1, &freq_values[2]); if (ret) goto print_clk_out; freq_values[1] = cur_value; mark_index = cur_value == freq_values[0] ? 0 : cur_value == freq_values[2] ? 2 : 1; count = 3; if (mark_index != 1) { count = 2; freq_values[1] = freq_values[2]; } for (i = 0; i < count; i++) { size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, freq_values[i], cur_value == freq_values[i] ? "*" : ""); } } break; case SMU_PCIE: gen_speed = smu_v11_0_get_current_pcie_link_speed_level(smu); lane_width = smu_v11_0_get_current_pcie_link_width_level(smu); GET_PPTABLE_MEMBER(LclkFreq, &table_member); for (i = 0; i < NUM_LINK_LEVELS; i++) size += sysfs_emit_at(buf, size, "%d: %s %s %dMhz %s\n", i, (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 0) ? "2.5GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 1) ? "5.0GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 2) ? "8.0GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 3) ? "16.0GT/s," : "", (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 1) ? "x1" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 2) ? "x2" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 3) ? "x4" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 4) ? "x8" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 5) ? "x12" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 6) ? "x16" : "", table_member[i], (gen_speed == dpm_context->dpm_tables.pcie_table.pcie_gen[i]) && (lane_width == dpm_context->dpm_tables.pcie_table.pcie_lane[i]) ? "*" : ""); break; case SMU_OD_SCLK: if (!smu->od_enabled || !od_table || !od_settings) break; if (!sienna_cichlid_is_od_feature_supported(od_settings, SMU_11_0_7_ODCAP_GFXCLK_LIMITS)) break; size += sysfs_emit_at(buf, size, "OD_SCLK:\n"); size += sysfs_emit_at(buf, size, "0: %uMhz\n1: %uMhz\n", od_table->GfxclkFmin, od_table->GfxclkFmax); break; case SMU_OD_MCLK: if (!smu->od_enabled || !od_table || !od_settings) break; if (!sienna_cichlid_is_od_feature_supported(od_settings, SMU_11_0_7_ODCAP_UCLK_LIMITS)) break; size += sysfs_emit_at(buf, size, "OD_MCLK:\n"); size += sysfs_emit_at(buf, size, "0: %uMhz\n1: %uMHz\n", od_table->UclkFmin, od_table->UclkFmax); break; case SMU_OD_VDDGFX_OFFSET: if (!smu->od_enabled || !od_table || !od_settings) break; /* * OD GFX Voltage Offset functionality is supported only by 58.41.0 * and onwards SMU firmwares. */ if ((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 7)) && (smu->smc_fw_version < 0x003a2900)) break; size += sysfs_emit_at(buf, size, "OD_VDDGFX_OFFSET:\n"); size += sysfs_emit_at(buf, size, "%dmV\n", od_table->VddGfxOffset); break; case SMU_OD_RANGE: if (!smu->od_enabled || !od_table || !od_settings) break; size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); if (sienna_cichlid_is_od_feature_supported(od_settings, SMU_11_0_7_ODCAP_GFXCLK_LIMITS)) { sienna_cichlid_get_od_setting_range(od_settings, SMU_11_0_7_ODSETTING_GFXCLKFMIN, &min_value, NULL); sienna_cichlid_get_od_setting_range(od_settings, SMU_11_0_7_ODSETTING_GFXCLKFMAX, NULL, &max_value); size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n", min_value, max_value); } if (sienna_cichlid_is_od_feature_supported(od_settings, SMU_11_0_7_ODCAP_UCLK_LIMITS)) { sienna_cichlid_get_od_setting_range(od_settings, SMU_11_0_7_ODSETTING_UCLKFMIN, &min_value, NULL); sienna_cichlid_get_od_setting_range(od_settings, SMU_11_0_7_ODSETTING_UCLKFMAX, NULL, &max_value); size += sysfs_emit_at(buf, size, "MCLK: %7uMhz %10uMhz\n", min_value, max_value); } break; default: break; } print_clk_out: return size; } static int sienna_cichlid_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { int ret = 0; uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: /* There is only 2 levels for fine grained DPM */ if (sienna_cichlid_is_support_fine_grained_dpm(smu, clk_type)) { soft_max_level = (soft_max_level >= 1 ? 1 : 0); soft_min_level = (soft_min_level >= 1 ? 1 : 0); } ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq); if (ret) goto forec_level_out; ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq); if (ret) goto forec_level_out; ret = smu_v11_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq); if (ret) goto forec_level_out; break; case SMU_DCEFCLK: dev_info(smu->adev->dev,"Setting DCEFCLK min/max dpm level is not supported!\n"); break; default: break; } forec_level_out: return 0; } static int sienna_cichlid_populate_umd_state_clk(struct smu_context *smu) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_11_0_dpm_table *gfx_table = &dpm_context->dpm_tables.gfx_table; struct smu_11_0_dpm_table *mem_table = &dpm_context->dpm_tables.uclk_table; struct smu_11_0_dpm_table *soc_table = &dpm_context->dpm_tables.soc_table; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; struct amdgpu_device *adev = smu->adev; pstate_table->gfxclk_pstate.min = gfx_table->min; pstate_table->gfxclk_pstate.peak = gfx_table->max; pstate_table->uclk_pstate.min = mem_table->min; pstate_table->uclk_pstate.peak = mem_table->max; pstate_table->socclk_pstate.min = soc_table->min; pstate_table->socclk_pstate.peak = soc_table->max; switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 7): case IP_VERSION(11, 0, 11): pstate_table->gfxclk_pstate.standard = SIENNA_CICHLID_UMD_PSTATE_PROFILING_GFXCLK; pstate_table->uclk_pstate.standard = SIENNA_CICHLID_UMD_PSTATE_PROFILING_MEMCLK; pstate_table->socclk_pstate.standard = SIENNA_CICHLID_UMD_PSTATE_PROFILING_SOCCLK; break; case IP_VERSION(11, 0, 12): pstate_table->gfxclk_pstate.standard = DIMGREY_CAVEFISH_UMD_PSTATE_PROFILING_GFXCLK; pstate_table->uclk_pstate.standard = DIMGREY_CAVEFISH_UMD_PSTATE_PROFILING_MEMCLK; pstate_table->socclk_pstate.standard = DIMGREY_CAVEFISH_UMD_PSTATE_PROFILING_SOCCLK; break; case IP_VERSION(11, 0, 13): pstate_table->gfxclk_pstate.standard = BEIGE_GOBY_UMD_PSTATE_PROFILING_GFXCLK; pstate_table->uclk_pstate.standard = BEIGE_GOBY_UMD_PSTATE_PROFILING_MEMCLK; pstate_table->socclk_pstate.standard = BEIGE_GOBY_UMD_PSTATE_PROFILING_SOCCLK; break; default: break; } return 0; } static int sienna_cichlid_pre_display_config_changed(struct smu_context *smu) { int ret = 0; uint32_t max_freq = 0; /* Sienna_Cichlid do not support to change display num currently */ return 0; #if 0 ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0, NULL); if (ret) return ret; #endif if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_get_dpm_ultimate_freq(smu, SMU_UCLK, NULL, &max_freq); if (ret) return ret; ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, max_freq); if (ret) return ret; } return ret; } static int sienna_cichlid_display_config_changed(struct smu_context *smu) { int ret = 0; if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { #if 0 ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, smu->display_config->num_display, NULL); #endif if (ret) return ret; } return ret; } static bool sienna_cichlid_is_dpm_running(struct smu_context *smu) { int ret = 0; uint64_t feature_enabled; ret = smu_cmn_get_enabled_mask(smu, &feature_enabled); if (ret) return false; return !!(feature_enabled & SMC_DPM_FEATURE); } static int sienna_cichlid_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed) { if (!speed) return -EINVAL; /* * For Sienna_Cichlid and later, the fan speed(rpm) reported * by pmfw is always trustable(even when the fan control feature * disabled or 0 RPM kicked in). */ return sienna_cichlid_get_smu_metrics_data(smu, METRICS_CURR_FANSPEED, speed); } static int sienna_cichlid_get_fan_parameters(struct smu_context *smu) { uint16_t *table_member; GET_PPTABLE_MEMBER(FanMaximumRpm, &table_member); smu->fan_max_rpm = *table_member; return 0; } static int sienna_cichlid_get_power_profile_mode(struct smu_context *smu, char *buf) { DpmActivityMonitorCoeffIntExternal_t activity_monitor_external; DpmActivityMonitorCoeffInt_t *activity_monitor = &(activity_monitor_external.DpmActivityMonitorCoeffInt); uint32_t i, size = 0; int16_t workload_type = 0; static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "MinFreqType", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; int result = 0; if (!buf) return -EINVAL; size += sysfs_emit_at(buf, size, "%16s %s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9], title[10]); for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, i); if (workload_type < 0) return -EINVAL; result = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type, (void *)(&activity_monitor_external), false); if (result) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return result; } size += sysfs_emit_at(buf, size, "%2d %14s%s:\n", i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor->Gfx_FPS, activity_monitor->Gfx_MinFreqStep, activity_monitor->Gfx_MinActiveFreqType, activity_monitor->Gfx_MinActiveFreq, activity_monitor->Gfx_BoosterFreqType, activity_monitor->Gfx_BoosterFreq, activity_monitor->Gfx_PD_Data_limit_c, activity_monitor->Gfx_PD_Data_error_coeff, activity_monitor->Gfx_PD_Data_error_rate_coeff); size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "SOCCLK", activity_monitor->Fclk_FPS, activity_monitor->Fclk_MinFreqStep, activity_monitor->Fclk_MinActiveFreqType, activity_monitor->Fclk_MinActiveFreq, activity_monitor->Fclk_BoosterFreqType, activity_monitor->Fclk_BoosterFreq, activity_monitor->Fclk_PD_Data_limit_c, activity_monitor->Fclk_PD_Data_error_coeff, activity_monitor->Fclk_PD_Data_error_rate_coeff); size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 2, "MEMCLK", activity_monitor->Mem_FPS, activity_monitor->Mem_MinFreqStep, activity_monitor->Mem_MinActiveFreqType, activity_monitor->Mem_MinActiveFreq, activity_monitor->Mem_BoosterFreqType, activity_monitor->Mem_BoosterFreq, activity_monitor->Mem_PD_Data_limit_c, activity_monitor->Mem_PD_Data_error_coeff, activity_monitor->Mem_PD_Data_error_rate_coeff); } return size; } static int sienna_cichlid_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { DpmActivityMonitorCoeffIntExternal_t activity_monitor_external; DpmActivityMonitorCoeffInt_t *activity_monitor = &(activity_monitor_external.DpmActivityMonitorCoeffInt); int workload_type, ret = 0; smu->power_profile_mode = input[size]; if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { dev_err(smu->adev->dev, "Invalid power profile mode %d\n", smu->power_profile_mode); return -EINVAL; } if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { if (size != 10) return -EINVAL; ret = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor_external), false); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return ret; } switch (input[0]) { case 0: /* Gfxclk */ activity_monitor->Gfx_FPS = input[1]; activity_monitor->Gfx_MinFreqStep = input[2]; activity_monitor->Gfx_MinActiveFreqType = input[3]; activity_monitor->Gfx_MinActiveFreq = input[4]; activity_monitor->Gfx_BoosterFreqType = input[5]; activity_monitor->Gfx_BoosterFreq = input[6]; activity_monitor->Gfx_PD_Data_limit_c = input[7]; activity_monitor->Gfx_PD_Data_error_coeff = input[8]; activity_monitor->Gfx_PD_Data_error_rate_coeff = input[9]; break; case 1: /* Socclk */ activity_monitor->Fclk_FPS = input[1]; activity_monitor->Fclk_MinFreqStep = input[2]; activity_monitor->Fclk_MinActiveFreqType = input[3]; activity_monitor->Fclk_MinActiveFreq = input[4]; activity_monitor->Fclk_BoosterFreqType = input[5]; activity_monitor->Fclk_BoosterFreq = input[6]; activity_monitor->Fclk_PD_Data_limit_c = input[7]; activity_monitor->Fclk_PD_Data_error_coeff = input[8]; activity_monitor->Fclk_PD_Data_error_rate_coeff = input[9]; break; case 2: /* Memclk */ activity_monitor->Mem_FPS = input[1]; activity_monitor->Mem_MinFreqStep = input[2]; activity_monitor->Mem_MinActiveFreqType = input[3]; activity_monitor->Mem_MinActiveFreq = input[4]; activity_monitor->Mem_BoosterFreqType = input[5]; activity_monitor->Mem_BoosterFreq = input[6]; activity_monitor->Mem_PD_Data_limit_c = input[7]; activity_monitor->Mem_PD_Data_error_coeff = input[8]; activity_monitor->Mem_PD_Data_error_rate_coeff = input[9]; break; default: return -EINVAL; } ret = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor_external), true); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__); return ret; } } /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, smu->power_profile_mode); if (workload_type < 0) return -EINVAL; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, 1 << workload_type, NULL); if (ret) dev_err(smu->adev->dev, "[%s] Failed to set work load mask!", __func__); return ret; } static int sienna_cichlid_notify_smc_display_config(struct smu_context *smu) { struct smu_clocks min_clocks = {0}; struct pp_display_clock_request clock_req; int ret = 0; min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk; min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memory_clock = smu->display_config->min_mem_set_clock; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10; ret = smu_v11_0_display_clock_voltage_request(smu, &clock_req); if (!ret) { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, min_clocks.dcef_clock_in_sr/100, NULL); if (ret) { dev_err(smu->adev->dev, "Attempt to set divider for DCEFCLK Failed!"); return ret; } } } else { dev_info(smu->adev->dev, "Attempt to set Hard Min for DCEFCLK Failed!"); } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_clocks.memory_clock/100, 0); if (ret) { dev_err(smu->adev->dev, "[%s] Set hard min uclk failed!", __func__); return ret; } } return 0; } static int sienna_cichlid_set_watermarks_table(struct smu_context *smu, struct pp_smu_wm_range_sets *clock_ranges) { Watermarks_t *table = smu->smu_table.watermarks_table; int ret = 0; int i; if (clock_ranges) { if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES || clock_ranges->num_writer_wm_sets > NUM_WM_RANGES) return -EINVAL; for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) { table->WatermarkRow[WM_DCEFCLK][i].MinClock = clock_ranges->reader_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_DCEFCLK][i].MaxClock = clock_ranges->reader_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_DCEFCLK][i].MinUclk = clock_ranges->reader_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_DCEFCLK][i].MaxUclk = clock_ranges->reader_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_DCEFCLK][i].WmSetting = clock_ranges->reader_wm_sets[i].wm_inst; } for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) { table->WatermarkRow[WM_SOCCLK][i].MinClock = clock_ranges->writer_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxClock = clock_ranges->writer_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MinUclk = clock_ranges->writer_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxUclk = clock_ranges->writer_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].WmSetting = clock_ranges->writer_wm_sets[i].wm_inst; } smu->watermarks_bitmap |= WATERMARKS_EXIST; } if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_cmn_write_watermarks_table(smu); if (ret) { dev_err(smu->adev->dev, "Failed to update WMTABLE!"); return ret; } smu->watermarks_bitmap |= WATERMARKS_LOADED; } return 0; } static int sienna_cichlid_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; uint16_t *temp; struct amdgpu_device *adev = smu->adev; if(!data || !size) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_MAX_FAN_RPM: GET_PPTABLE_MEMBER(FanMaximumRpm, &temp); *(uint16_t *)data = *temp; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_LOAD: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_AVERAGE_MEMACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_LOAD: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_AVG_POWER: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_TEMPERATURE_MEM, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_CURR_UCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_SS_APU_SHARE: if (amdgpu_ip_version(adev, MP1_HWIP, 0) != IP_VERSION(11, 0, 7)) { ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_SS_APU_SHARE, (uint32_t *)data); *size = 4; } else { ret = -EOPNOTSUPP; } break; case AMDGPU_PP_SENSOR_SS_DGPU_SHARE: if (amdgpu_ip_version(adev, MP1_HWIP, 0) != IP_VERSION(11, 0, 7)) { ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_SS_DGPU_SHARE, (uint32_t *)data); *size = 4; } else { ret = -EOPNOTSUPP; } break; case AMDGPU_PP_SENSOR_GPU_INPUT_POWER: default: ret = -EOPNOTSUPP; break; } return ret; } static void sienna_cichlid_get_unique_id(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t upper32 = 0, lower32 = 0; /* Only supported as of version 0.58.83.0 and only on Sienna Cichlid */ if (smu->smc_fw_version < 0x3A5300 || amdgpu_ip_version(smu->adev, MP1_HWIP, 0) != IP_VERSION(11, 0, 7)) return; if (sienna_cichlid_get_smu_metrics_data(smu, METRICS_UNIQUE_ID_UPPER32, &upper32)) goto out; if (sienna_cichlid_get_smu_metrics_data(smu, METRICS_UNIQUE_ID_LOWER32, &lower32)) goto out; out: adev->unique_id = ((uint64_t)upper32 << 32) | lower32; } static int sienna_cichlid_get_uclk_dpm_states(struct smu_context *smu, uint32_t *clocks_in_khz, uint32_t *num_states) { uint32_t num_discrete_levels = 0; uint16_t *dpm_levels = NULL; uint16_t i = 0; struct smu_table_context *table_context = &smu->smu_table; DpmDescriptor_t *table_member1; uint16_t *table_member2; if (!clocks_in_khz || !num_states || !table_context->driver_pptable) return -EINVAL; GET_PPTABLE_MEMBER(DpmDescriptor, &table_member1); num_discrete_levels = table_member1[PPCLK_UCLK].NumDiscreteLevels; GET_PPTABLE_MEMBER(FreqTableUclk, &table_member2); dpm_levels = table_member2; if (num_discrete_levels == 0 || dpm_levels == NULL) return -EINVAL; *num_states = num_discrete_levels; for (i = 0; i < num_discrete_levels; i++) { /* convert to khz */ *clocks_in_khz = (*dpm_levels) * 1000; clocks_in_khz++; dpm_levels++; } return 0; } static int sienna_cichlid_get_thermal_temperature_range(struct smu_context *smu, struct smu_temperature_range *range) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_7_powerplay_table *powerplay_table = table_context->power_play_table; uint16_t *table_member; uint16_t temp_edge, temp_hotspot, temp_mem; if (!range) return -EINVAL; memcpy(range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range)); GET_PPTABLE_MEMBER(TemperatureLimit, &table_member); temp_edge = table_member[TEMP_EDGE]; temp_hotspot = table_member[TEMP_HOTSPOT]; temp_mem = table_member[TEMP_MEM]; range->max = temp_edge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->edge_emergency_max = (temp_edge + CTF_OFFSET_EDGE) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_crit_max = temp_hotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_emergency_max = (temp_hotspot + CTF_OFFSET_HOTSPOT) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_crit_max = temp_mem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_emergency_max = (temp_mem + CTF_OFFSET_MEM)* SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->software_shutdown_temp = powerplay_table->software_shutdown_temp; return 0; } static int sienna_cichlid_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch) { int ret = 0; struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks = (struct smu_11_0_max_sustainable_clocks *) smu->smu_table.max_sustainable_clocks; uint32_t min_memory_clock = smu->hard_min_uclk_req_from_dal; uint32_t max_memory_clock = max_sustainable_clocks->uclock; if(smu->disable_uclk_switch == disable_memory_clock_switch) return 0; if(disable_memory_clock_switch) ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, max_memory_clock, 0); else ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_memory_clock, 0); if(!ret) smu->disable_uclk_switch = disable_memory_clock_switch; return ret; } static int sienna_cichlid_update_pcie_parameters(struct smu_context *smu, uint8_t pcie_gen_cap, uint8_t pcie_width_cap) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_11_0_pcie_table *pcie_table = &dpm_context->dpm_tables.pcie_table; uint8_t *table_member1, *table_member2; uint8_t min_gen_speed, max_gen_speed; uint8_t min_lane_width, max_lane_width; uint32_t smu_pcie_arg; int ret, i; GET_PPTABLE_MEMBER(PcieGenSpeed, &table_member1); GET_PPTABLE_MEMBER(PcieLaneCount, &table_member2); min_gen_speed = max_t(uint8_t, 0, table_member1[0]); max_gen_speed = min(pcie_gen_cap, table_member1[1]); min_gen_speed = min_gen_speed > max_gen_speed ? max_gen_speed : min_gen_speed; min_lane_width = max_t(uint8_t, 1, table_member2[0]); max_lane_width = min(pcie_width_cap, table_member2[1]); min_lane_width = min_lane_width > max_lane_width ? max_lane_width : min_lane_width; if (!(smu->adev->pm.pp_feature & PP_PCIE_DPM_MASK)) { pcie_table->pcie_gen[0] = max_gen_speed; pcie_table->pcie_lane[0] = max_lane_width; } else { pcie_table->pcie_gen[0] = min_gen_speed; pcie_table->pcie_lane[0] = min_lane_width; } pcie_table->pcie_gen[1] = max_gen_speed; pcie_table->pcie_lane[1] = max_lane_width; for (i = 0; i < NUM_LINK_LEVELS; i++) { smu_pcie_arg = (i << 16 | pcie_table->pcie_gen[i] << 8 | pcie_table->pcie_lane[i]); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_OverridePcieParameters, smu_pcie_arg, NULL); if (ret) return ret; } return 0; } static int sienna_cichlid_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { return smu_v11_0_get_dpm_ultimate_freq(smu, clk_type, min, max); } static void sienna_cichlid_dump_od_table(struct smu_context *smu, OverDriveTable_t *od_table) { struct amdgpu_device *adev = smu->adev; dev_dbg(smu->adev->dev, "OD: Gfxclk: (%d, %d)\n", od_table->GfxclkFmin, od_table->GfxclkFmax); dev_dbg(smu->adev->dev, "OD: Uclk: (%d, %d)\n", od_table->UclkFmin, od_table->UclkFmax); if (!((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 7)) && (smu->smc_fw_version < 0x003a2900))) dev_dbg(smu->adev->dev, "OD: VddGfxOffset: %d\n", od_table->VddGfxOffset); } static int sienna_cichlid_set_default_od_settings(struct smu_context *smu) { OverDriveTable_t *od_table = (OverDriveTable_t *)smu->smu_table.overdrive_table; OverDriveTable_t *boot_od_table = (OverDriveTable_t *)smu->smu_table.boot_overdrive_table; OverDriveTable_t *user_od_table = (OverDriveTable_t *)smu->smu_table.user_overdrive_table; OverDriveTable_t user_od_table_bak; int ret = 0; ret = smu_cmn_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)boot_od_table, false); if (ret) { dev_err(smu->adev->dev, "Failed to get overdrive table!\n"); return ret; } sienna_cichlid_dump_od_table(smu, boot_od_table); memcpy(od_table, boot_od_table, sizeof(OverDriveTable_t)); /* * For S3/S4/Runpm resume, we need to setup those overdrive tables again, * but we have to preserve user defined values in "user_od_table". */ if (!smu->adev->in_suspend) { memcpy(user_od_table, boot_od_table, sizeof(OverDriveTable_t)); smu->user_dpm_profile.user_od = false; } else if (smu->user_dpm_profile.user_od) { memcpy(&user_od_table_bak, user_od_table, sizeof(OverDriveTable_t)); memcpy(user_od_table, boot_od_table, sizeof(OverDriveTable_t)); user_od_table->GfxclkFmin = user_od_table_bak.GfxclkFmin; user_od_table->GfxclkFmax = user_od_table_bak.GfxclkFmax; user_od_table->UclkFmin = user_od_table_bak.UclkFmin; user_od_table->UclkFmax = user_od_table_bak.UclkFmax; user_od_table->VddGfxOffset = user_od_table_bak.VddGfxOffset; } return 0; } static int sienna_cichlid_od_setting_check_range(struct smu_context *smu, struct smu_11_0_7_overdrive_table *od_table, enum SMU_11_0_7_ODSETTING_ID setting, uint32_t value) { if (value < od_table->min[setting]) { dev_warn(smu->adev->dev, "OD setting (%d, %d) is less than the minimum allowed (%d)\n", setting, value, od_table->min[setting]); return -EINVAL; } if (value > od_table->max[setting]) { dev_warn(smu->adev->dev, "OD setting (%d, %d) is greater than the maximum allowed (%d)\n", setting, value, od_table->max[setting]); return -EINVAL; } return 0; } static int sienna_cichlid_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) { struct smu_table_context *table_context = &smu->smu_table; OverDriveTable_t *od_table = (OverDriveTable_t *)table_context->overdrive_table; struct smu_11_0_7_overdrive_table *od_settings = (struct smu_11_0_7_overdrive_table *)smu->od_settings; struct amdgpu_device *adev = smu->adev; enum SMU_11_0_7_ODSETTING_ID freq_setting; uint16_t *freq_ptr; int i, ret = 0; if (!smu->od_enabled) { dev_warn(smu->adev->dev, "OverDrive is not enabled!\n"); return -EINVAL; } if (!smu->od_settings) { dev_err(smu->adev->dev, "OD board limits are not set!\n"); return -ENOENT; } if (!(table_context->overdrive_table && table_context->boot_overdrive_table)) { dev_err(smu->adev->dev, "Overdrive table was not initialized!\n"); return -EINVAL; } switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (!sienna_cichlid_is_od_feature_supported(od_settings, SMU_11_0_7_ODCAP_GFXCLK_LIMITS)) { dev_warn(smu->adev->dev, "GFXCLK_LIMITS not supported!\n"); return -ENOTSUPP; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { dev_info(smu->adev->dev, "invalid number of input parameters %d\n", size); return -EINVAL; } switch (input[i]) { case 0: if (input[i + 1] > od_table->GfxclkFmax) { dev_info(smu->adev->dev, "GfxclkFmin (%ld) must be <= GfxclkFmax (%u)!\n", input[i + 1], od_table->GfxclkFmax); return -EINVAL; } freq_setting = SMU_11_0_7_ODSETTING_GFXCLKFMIN; freq_ptr = &od_table->GfxclkFmin; break; case 1: if (input[i + 1] < od_table->GfxclkFmin) { dev_info(smu->adev->dev, "GfxclkFmax (%ld) must be >= GfxclkFmin (%u)!\n", input[i + 1], od_table->GfxclkFmin); return -EINVAL; } freq_setting = SMU_11_0_7_ODSETTING_GFXCLKFMAX; freq_ptr = &od_table->GfxclkFmax; break; default: dev_info(smu->adev->dev, "Invalid SCLK_VDDC_TABLE index: %ld\n", input[i]); dev_info(smu->adev->dev, "Supported indices: [0:min,1:max]\n"); return -EINVAL; } ret = sienna_cichlid_od_setting_check_range(smu, od_settings, freq_setting, input[i + 1]); if (ret) return ret; *freq_ptr = (uint16_t)input[i + 1]; } break; case PP_OD_EDIT_MCLK_VDDC_TABLE: if (!sienna_cichlid_is_od_feature_supported(od_settings, SMU_11_0_7_ODCAP_UCLK_LIMITS)) { dev_warn(smu->adev->dev, "UCLK_LIMITS not supported!\n"); return -ENOTSUPP; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { dev_info(smu->adev->dev, "invalid number of input parameters %d\n", size); return -EINVAL; } switch (input[i]) { case 0: if (input[i + 1] > od_table->UclkFmax) { dev_info(smu->adev->dev, "UclkFmin (%ld) must be <= UclkFmax (%u)!\n", input[i + 1], od_table->UclkFmax); return -EINVAL; } freq_setting = SMU_11_0_7_ODSETTING_UCLKFMIN; freq_ptr = &od_table->UclkFmin; break; case 1: if (input[i + 1] < od_table->UclkFmin) { dev_info(smu->adev->dev, "UclkFmax (%ld) must be >= UclkFmin (%u)!\n", input[i + 1], od_table->UclkFmin); return -EINVAL; } freq_setting = SMU_11_0_7_ODSETTING_UCLKFMAX; freq_ptr = &od_table->UclkFmax; break; default: dev_info(smu->adev->dev, "Invalid MCLK_VDDC_TABLE index: %ld\n", input[i]); dev_info(smu->adev->dev, "Supported indices: [0:min,1:max]\n"); return -EINVAL; } ret = sienna_cichlid_od_setting_check_range(smu, od_settings, freq_setting, input[i + 1]); if (ret) return ret; *freq_ptr = (uint16_t)input[i + 1]; } break; case PP_OD_RESTORE_DEFAULT_TABLE: memcpy(table_context->overdrive_table, table_context->boot_overdrive_table, sizeof(OverDriveTable_t)); fallthrough; case PP_OD_COMMIT_DPM_TABLE: if (memcmp(od_table, table_context->user_overdrive_table, sizeof(OverDriveTable_t))) { sienna_cichlid_dump_od_table(smu, od_table); ret = smu_cmn_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)od_table, true); if (ret) { dev_err(smu->adev->dev, "Failed to import overdrive table!\n"); return ret; } memcpy(table_context->user_overdrive_table, od_table, sizeof(OverDriveTable_t)); smu->user_dpm_profile.user_od = true; if (!memcmp(table_context->user_overdrive_table, table_context->boot_overdrive_table, sizeof(OverDriveTable_t))) smu->user_dpm_profile.user_od = false; } break; case PP_OD_EDIT_VDDGFX_OFFSET: if (size != 1) { dev_info(smu->adev->dev, "invalid number of parameters: %d\n", size); return -EINVAL; } /* * OD GFX Voltage Offset functionality is supported only by 58.41.0 * and onwards SMU firmwares. */ if ((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 7)) && (smu->smc_fw_version < 0x003a2900)) { dev_err(smu->adev->dev, "OD GFX Voltage offset functionality is supported " "only by 58.41.0 and onwards SMU firmwares!\n"); return -EOPNOTSUPP; } od_table->VddGfxOffset = (int16_t)input[0]; sienna_cichlid_dump_od_table(smu, od_table); break; default: return -ENOSYS; } return ret; } static int sienna_cichlid_restore_user_od_settings(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; OverDriveTable_t *od_table = table_context->overdrive_table; OverDriveTable_t *user_od_table = table_context->user_overdrive_table; int res; res = smu_v11_0_restore_user_od_settings(smu); if (res == 0) memcpy(od_table, user_od_table, sizeof(OverDriveTable_t)); return res; } static int sienna_cichlid_run_btc(struct smu_context *smu) { int res; res = smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL); if (res) dev_err(smu->adev->dev, "RunDcBtc failed!\n"); return res; } static int sienna_cichlid_baco_enter(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; if (adev->in_runpm && smu_cmn_is_audio_func_enabled(adev)) return smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO); else return smu_v11_0_baco_enter(smu); } static int sienna_cichlid_baco_exit(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; if (adev->in_runpm && smu_cmn_is_audio_func_enabled(adev)) { /* Wait for PMFW handling for the Dstate change */ msleep(10); return smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_ULPS); } else { return smu_v11_0_baco_exit(smu); } } static bool sienna_cichlid_is_mode1_reset_supported(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t val; uint32_t smu_version; int ret; /** * SRIOV env will not support SMU mode1 reset * PM FW support mode1 reset from 58.26 */ ret = smu_cmn_get_smc_version(smu, NULL, &smu_version); if (ret) return false; if (amdgpu_sriov_vf(adev) || (smu_version < 0x003a1a00)) return false; /** * mode1 reset relies on PSP, so we should check if * PSP is alive. */ val = RREG32_SOC15(MP0, 0, mmMP0_SMN_C2PMSG_81); return val != 0x0; } static void beige_goby_dump_pptable(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_beige_goby_t *pptable = table_context->driver_pptable; int i; dev_info(smu->adev->dev, "Dumped PPTable:\n"); dev_info(smu->adev->dev, "Version = 0x%08x\n", pptable->Version); dev_info(smu->adev->dev, "FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]); dev_info(smu->adev->dev, "FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]); for (i = 0; i < PPT_THROTTLER_COUNT; i++) { dev_info(smu->adev->dev, "SocketPowerLimitAc[%d] = 0x%x\n", i, pptable->SocketPowerLimitAc[i]); dev_info(smu->adev->dev, "SocketPowerLimitAcTau[%d] = 0x%x\n", i, pptable->SocketPowerLimitAcTau[i]); dev_info(smu->adev->dev, "SocketPowerLimitDc[%d] = 0x%x\n", i, pptable->SocketPowerLimitDc[i]); dev_info(smu->adev->dev, "SocketPowerLimitDcTau[%d] = 0x%x\n", i, pptable->SocketPowerLimitDcTau[i]); } for (i = 0; i < TDC_THROTTLER_COUNT; i++) { dev_info(smu->adev->dev, "TdcLimit[%d] = 0x%x\n", i, pptable->TdcLimit[i]); dev_info(smu->adev->dev, "TdcLimitTau[%d] = 0x%x\n", i, pptable->TdcLimitTau[i]); } for (i = 0; i < TEMP_COUNT; i++) { dev_info(smu->adev->dev, "TemperatureLimit[%d] = 0x%x\n", i, pptable->TemperatureLimit[i]); } dev_info(smu->adev->dev, "FitLimit = 0x%x\n", pptable->FitLimit); dev_info(smu->adev->dev, "TotalPowerConfig = 0x%x\n", pptable->TotalPowerConfig); dev_info(smu->adev->dev, "TotalPowerPadding[0] = 0x%x\n", pptable->TotalPowerPadding[0]); dev_info(smu->adev->dev, "TotalPowerPadding[1] = 0x%x\n", pptable->TotalPowerPadding[1]); dev_info(smu->adev->dev, "TotalPowerPadding[2] = 0x%x\n", pptable->TotalPowerPadding[2]); dev_info(smu->adev->dev, "ApccPlusResidencyLimit = 0x%x\n", pptable->ApccPlusResidencyLimit); for (i = 0; i < NUM_SMNCLK_DPM_LEVELS; i++) { dev_info(smu->adev->dev, "SmnclkDpmFreq[%d] = 0x%x\n", i, pptable->SmnclkDpmFreq[i]); dev_info(smu->adev->dev, "SmnclkDpmVoltage[%d] = 0x%x\n", i, pptable->SmnclkDpmVoltage[i]); } dev_info(smu->adev->dev, "ThrottlerControlMask = 0x%x\n", pptable->ThrottlerControlMask); dev_info(smu->adev->dev, "FwDStateMask = 0x%x\n", pptable->FwDStateMask); dev_info(smu->adev->dev, "UlvVoltageOffsetSoc = 0x%x\n", pptable->UlvVoltageOffsetSoc); dev_info(smu->adev->dev, "UlvVoltageOffsetGfx = 0x%x\n", pptable->UlvVoltageOffsetGfx); dev_info(smu->adev->dev, "MinVoltageUlvGfx = 0x%x\n", pptable->MinVoltageUlvGfx); dev_info(smu->adev->dev, "MinVoltageUlvSoc = 0x%x\n", pptable->MinVoltageUlvSoc); dev_info(smu->adev->dev, "SocLIVmin = 0x%x\n", pptable->SocLIVmin); dev_info(smu->adev->dev, "GceaLinkMgrIdleThreshold = 0x%x\n", pptable->GceaLinkMgrIdleThreshold); dev_info(smu->adev->dev, "MinVoltageGfx = 0x%x\n", pptable->MinVoltageGfx); dev_info(smu->adev->dev, "MinVoltageSoc = 0x%x\n", pptable->MinVoltageSoc); dev_info(smu->adev->dev, "MaxVoltageGfx = 0x%x\n", pptable->MaxVoltageGfx); dev_info(smu->adev->dev, "MaxVoltageSoc = 0x%x\n", pptable->MaxVoltageSoc); dev_info(smu->adev->dev, "LoadLineResistanceGfx = 0x%x\n", pptable->LoadLineResistanceGfx); dev_info(smu->adev->dev, "LoadLineResistanceSoc = 0x%x\n", pptable->LoadLineResistanceSoc); dev_info(smu->adev->dev, "VDDGFX_TVmin = 0x%x\n", pptable->VDDGFX_TVmin); dev_info(smu->adev->dev, "VDDSOC_TVmin = 0x%x\n", pptable->VDDSOC_TVmin); dev_info(smu->adev->dev, "VDDGFX_Vmin_HiTemp = 0x%x\n", pptable->VDDGFX_Vmin_HiTemp); dev_info(smu->adev->dev, "VDDGFX_Vmin_LoTemp = 0x%x\n", pptable->VDDGFX_Vmin_LoTemp); dev_info(smu->adev->dev, "VDDSOC_Vmin_HiTemp = 0x%x\n", pptable->VDDSOC_Vmin_HiTemp); dev_info(smu->adev->dev, "VDDSOC_Vmin_LoTemp = 0x%x\n", pptable->VDDSOC_Vmin_LoTemp); dev_info(smu->adev->dev, "VDDGFX_TVminHystersis = 0x%x\n", pptable->VDDGFX_TVminHystersis); dev_info(smu->adev->dev, "VDDSOC_TVminHystersis = 0x%x\n", pptable->VDDSOC_TVminHystersis); dev_info(smu->adev->dev, "[PPCLK_GFXCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_GFXCLK].Padding, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_GFXCLK].SsFmin, pptable->DpmDescriptor[PPCLK_GFXCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_SOCCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_SOCCLK].Padding, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_SOCCLK].SsFmin, pptable->DpmDescriptor[PPCLK_SOCCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_UCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_UCLK].Padding, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_UCLK].SsFmin, pptable->DpmDescriptor[PPCLK_UCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_FCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_FCLK].Padding, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_FCLK].SsFmin, pptable->DpmDescriptor[PPCLK_FCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_DCLK_0]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_DCLK_0].VoltageMode, pptable->DpmDescriptor[PPCLK_DCLK_0].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCLK_0].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCLK_0].Padding, pptable->DpmDescriptor[PPCLK_DCLK_0].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCLK_0].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.c, pptable->DpmDescriptor[PPCLK_DCLK_0].SsFmin, pptable->DpmDescriptor[PPCLK_DCLK_0].Padding16); dev_info(smu->adev->dev, "[PPCLK_VCLK_0]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_VCLK_0].VoltageMode, pptable->DpmDescriptor[PPCLK_VCLK_0].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_VCLK_0].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_VCLK_0].Padding, pptable->DpmDescriptor[PPCLK_VCLK_0].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_VCLK_0].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.a, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.b, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.c, pptable->DpmDescriptor[PPCLK_VCLK_0].SsFmin, pptable->DpmDescriptor[PPCLK_VCLK_0].Padding16); dev_info(smu->adev->dev, "[PPCLK_DCLK_1]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_DCLK_1].VoltageMode, pptable->DpmDescriptor[PPCLK_DCLK_1].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCLK_1].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCLK_1].Padding, pptable->DpmDescriptor[PPCLK_DCLK_1].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCLK_1].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.c, pptable->DpmDescriptor[PPCLK_DCLK_1].SsFmin, pptable->DpmDescriptor[PPCLK_DCLK_1].Padding16); dev_info(smu->adev->dev, "[PPCLK_VCLK_1]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_VCLK_1].VoltageMode, pptable->DpmDescriptor[PPCLK_VCLK_1].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_VCLK_1].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_VCLK_1].Padding, pptable->DpmDescriptor[PPCLK_VCLK_1].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_VCLK_1].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.a, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.b, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.c, pptable->DpmDescriptor[PPCLK_VCLK_1].SsFmin, pptable->DpmDescriptor[PPCLK_VCLK_1].Padding16); dev_info(smu->adev->dev, "FreqTableGfx\n"); for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableGfx[i]); dev_info(smu->adev->dev, "FreqTableVclk\n"); for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableVclk[i]); dev_info(smu->adev->dev, "FreqTableDclk\n"); for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableDclk[i]); dev_info(smu->adev->dev, "FreqTableSocclk\n"); for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableSocclk[i]); dev_info(smu->adev->dev, "FreqTableUclk\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableUclk[i]); dev_info(smu->adev->dev, "FreqTableFclk\n"); for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableFclk[i]); dev_info(smu->adev->dev, "DcModeMaxFreq\n"); dev_info(smu->adev->dev, " .PPCLK_GFXCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_GFXCLK]); dev_info(smu->adev->dev, " .PPCLK_SOCCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_SOCCLK]); dev_info(smu->adev->dev, " .PPCLK_UCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_UCLK]); dev_info(smu->adev->dev, " .PPCLK_FCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_FCLK]); dev_info(smu->adev->dev, " .PPCLK_DCLK_0 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_DCLK_0]); dev_info(smu->adev->dev, " .PPCLK_VCLK_0 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_VCLK_0]); dev_info(smu->adev->dev, " .PPCLK_DCLK_1 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_DCLK_1]); dev_info(smu->adev->dev, " .PPCLK_VCLK_1 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_VCLK_1]); dev_info(smu->adev->dev, "FreqTableUclkDiv\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FreqTableUclkDiv[i]); dev_info(smu->adev->dev, "FclkBoostFreq = 0x%x\n", pptable->FclkBoostFreq); dev_info(smu->adev->dev, "FclkParamPadding = 0x%x\n", pptable->FclkParamPadding); dev_info(smu->adev->dev, "Mp0clkFreq\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->Mp0clkFreq[i]); dev_info(smu->adev->dev, "Mp0DpmVoltage\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->Mp0DpmVoltage[i]); dev_info(smu->adev->dev, "MemVddciVoltage\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->MemVddciVoltage[i]); dev_info(smu->adev->dev, "MemMvddVoltage\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->MemMvddVoltage[i]); dev_info(smu->adev->dev, "GfxclkFgfxoffEntry = 0x%x\n", pptable->GfxclkFgfxoffEntry); dev_info(smu->adev->dev, "GfxclkFinit = 0x%x\n", pptable->GfxclkFinit); dev_info(smu->adev->dev, "GfxclkFidle = 0x%x\n", pptable->GfxclkFidle); dev_info(smu->adev->dev, "GfxclkSource = 0x%x\n", pptable->GfxclkSource); dev_info(smu->adev->dev, "GfxclkPadding = 0x%x\n", pptable->GfxclkPadding); dev_info(smu->adev->dev, "GfxGpoSubFeatureMask = 0x%x\n", pptable->GfxGpoSubFeatureMask); dev_info(smu->adev->dev, "GfxGpoEnabledWorkPolicyMask = 0x%x\n", pptable->GfxGpoEnabledWorkPolicyMask); dev_info(smu->adev->dev, "GfxGpoDisabledWorkPolicyMask = 0x%x\n", pptable->GfxGpoDisabledWorkPolicyMask); dev_info(smu->adev->dev, "GfxGpoPadding[0] = 0x%x\n", pptable->GfxGpoPadding[0]); dev_info(smu->adev->dev, "GfxGpoVotingAllow = 0x%x\n", pptable->GfxGpoVotingAllow); dev_info(smu->adev->dev, "GfxGpoPadding32[0] = 0x%x\n", pptable->GfxGpoPadding32[0]); dev_info(smu->adev->dev, "GfxGpoPadding32[1] = 0x%x\n", pptable->GfxGpoPadding32[1]); dev_info(smu->adev->dev, "GfxGpoPadding32[2] = 0x%x\n", pptable->GfxGpoPadding32[2]); dev_info(smu->adev->dev, "GfxGpoPadding32[3] = 0x%x\n", pptable->GfxGpoPadding32[3]); dev_info(smu->adev->dev, "GfxDcsFopt = 0x%x\n", pptable->GfxDcsFopt); dev_info(smu->adev->dev, "GfxDcsFclkFopt = 0x%x\n", pptable->GfxDcsFclkFopt); dev_info(smu->adev->dev, "GfxDcsUclkFopt = 0x%x\n", pptable->GfxDcsUclkFopt); dev_info(smu->adev->dev, "DcsGfxOffVoltage = 0x%x\n", pptable->DcsGfxOffVoltage); dev_info(smu->adev->dev, "DcsMinGfxOffTime = 0x%x\n", pptable->DcsMinGfxOffTime); dev_info(smu->adev->dev, "DcsMaxGfxOffTime = 0x%x\n", pptable->DcsMaxGfxOffTime); dev_info(smu->adev->dev, "DcsMinCreditAccum = 0x%x\n", pptable->DcsMinCreditAccum); dev_info(smu->adev->dev, "DcsExitHysteresis = 0x%x\n", pptable->DcsExitHysteresis); dev_info(smu->adev->dev, "DcsTimeout = 0x%x\n", pptable->DcsTimeout); dev_info(smu->adev->dev, "DcsParamPadding[0] = 0x%x\n", pptable->DcsParamPadding[0]); dev_info(smu->adev->dev, "DcsParamPadding[1] = 0x%x\n", pptable->DcsParamPadding[1]); dev_info(smu->adev->dev, "DcsParamPadding[2] = 0x%x\n", pptable->DcsParamPadding[2]); dev_info(smu->adev->dev, "DcsParamPadding[3] = 0x%x\n", pptable->DcsParamPadding[3]); dev_info(smu->adev->dev, "DcsParamPadding[4] = 0x%x\n", pptable->DcsParamPadding[4]); dev_info(smu->adev->dev, "FlopsPerByteTable\n"); for (i = 0; i < RLC_PACE_TABLE_NUM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FlopsPerByteTable[i]); dev_info(smu->adev->dev, "LowestUclkReservedForUlv = 0x%x\n", pptable->LowestUclkReservedForUlv); dev_info(smu->adev->dev, "vddingMem[0] = 0x%x\n", pptable->PaddingMem[0]); dev_info(smu->adev->dev, "vddingMem[1] = 0x%x\n", pptable->PaddingMem[1]); dev_info(smu->adev->dev, "vddingMem[2] = 0x%x\n", pptable->PaddingMem[2]); dev_info(smu->adev->dev, "UclkDpmPstates\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->UclkDpmPstates[i]); dev_info(smu->adev->dev, "UclkDpmSrcFreqRange\n"); dev_info(smu->adev->dev, " .Fmin = 0x%x\n", pptable->UclkDpmSrcFreqRange.Fmin); dev_info(smu->adev->dev, " .Fmax = 0x%x\n", pptable->UclkDpmSrcFreqRange.Fmax); dev_info(smu->adev->dev, "UclkDpmTargFreqRange\n"); dev_info(smu->adev->dev, " .Fmin = 0x%x\n", pptable->UclkDpmTargFreqRange.Fmin); dev_info(smu->adev->dev, " .Fmax = 0x%x\n", pptable->UclkDpmTargFreqRange.Fmax); dev_info(smu->adev->dev, "UclkDpmMidstepFreq = 0x%x\n", pptable->UclkDpmMidstepFreq); dev_info(smu->adev->dev, "UclkMidstepPadding = 0x%x\n", pptable->UclkMidstepPadding); dev_info(smu->adev->dev, "PcieGenSpeed\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->PcieGenSpeed[i]); dev_info(smu->adev->dev, "PcieLaneCount\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->PcieLaneCount[i]); dev_info(smu->adev->dev, "LclkFreq\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->LclkFreq[i]); dev_info(smu->adev->dev, "FanStopTemp = 0x%x\n", pptable->FanStopTemp); dev_info(smu->adev->dev, "FanStartTemp = 0x%x\n", pptable->FanStartTemp); dev_info(smu->adev->dev, "FanGain\n"); for (i = 0; i < TEMP_COUNT; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FanGain[i]); dev_info(smu->adev->dev, "FanPwmMin = 0x%x\n", pptable->FanPwmMin); dev_info(smu->adev->dev, "FanAcousticLimitRpm = 0x%x\n", pptable->FanAcousticLimitRpm); dev_info(smu->adev->dev, "FanThrottlingRpm = 0x%x\n", pptable->FanThrottlingRpm); dev_info(smu->adev->dev, "FanMaximumRpm = 0x%x\n", pptable->FanMaximumRpm); dev_info(smu->adev->dev, "MGpuFanBoostLimitRpm = 0x%x\n", pptable->MGpuFanBoostLimitRpm); dev_info(smu->adev->dev, "FanTargetTemperature = 0x%x\n", pptable->FanTargetTemperature); dev_info(smu->adev->dev, "FanTargetGfxclk = 0x%x\n", pptable->FanTargetGfxclk); dev_info(smu->adev->dev, "FanPadding16 = 0x%x\n", pptable->FanPadding16); dev_info(smu->adev->dev, "FanTempInputSelect = 0x%x\n", pptable->FanTempInputSelect); dev_info(smu->adev->dev, "FanPadding = 0x%x\n", pptable->FanPadding); dev_info(smu->adev->dev, "FanZeroRpmEnable = 0x%x\n", pptable->FanZeroRpmEnable); dev_info(smu->adev->dev, "FanTachEdgePerRev = 0x%x\n", pptable->FanTachEdgePerRev); dev_info(smu->adev->dev, "FuzzyFan_ErrorSetDelta = 0x%x\n", pptable->FuzzyFan_ErrorSetDelta); dev_info(smu->adev->dev, "FuzzyFan_ErrorRateSetDelta = 0x%x\n", pptable->FuzzyFan_ErrorRateSetDelta); dev_info(smu->adev->dev, "FuzzyFan_PwmSetDelta = 0x%x\n", pptable->FuzzyFan_PwmSetDelta); dev_info(smu->adev->dev, "FuzzyFan_Reserved = 0x%x\n", pptable->FuzzyFan_Reserved); dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "dBtcGbGfxDfllModelSelect = 0x%x\n", pptable->dBtcGbGfxDfllModelSelect); dev_info(smu->adev->dev, "Padding8_Avfs = 0x%x\n", pptable->Padding8_Avfs); dev_info(smu->adev->dev, "qAvfsGb[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qAvfsGb[AVFS_VOLTAGE_GFX].a, pptable->qAvfsGb[AVFS_VOLTAGE_GFX].b, pptable->qAvfsGb[AVFS_VOLTAGE_GFX].c); dev_info(smu->adev->dev, "qAvfsGb[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qAvfsGb[AVFS_VOLTAGE_SOC].a, pptable->qAvfsGb[AVFS_VOLTAGE_SOC].b, pptable->qAvfsGb[AVFS_VOLTAGE_SOC].c); dev_info(smu->adev->dev, "dBtcGbGfxPll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxPll.a, pptable->dBtcGbGfxPll.b, pptable->dBtcGbGfxPll.c); dev_info(smu->adev->dev, "dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxDfll.a, pptable->dBtcGbGfxDfll.b, pptable->dBtcGbGfxDfll.c); dev_info(smu->adev->dev, "dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbSoc.a, pptable->dBtcGbSoc.b, pptable->dBtcGbSoc.c); dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_GFX].m, pptable->qAgingGb[AVFS_VOLTAGE_GFX].b); dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_SOC].m, pptable->qAgingGb[AVFS_VOLTAGE_SOC].b); dev_info(smu->adev->dev, "PiecewiseLinearDroopIntGfxDfll\n"); for (i = 0; i < NUM_PIECE_WISE_LINEAR_DROOP_MODEL_VF_POINTS; i++) { dev_info(smu->adev->dev, " Fset[%d] = 0x%x\n", i, pptable->PiecewiseLinearDroopIntGfxDfll.Fset[i]); dev_info(smu->adev->dev, " Vdroop[%d] = 0x%x\n", i, pptable->PiecewiseLinearDroopIntGfxDfll.Vdroop[i]); } dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c); dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c); dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]); dev_info(smu->adev->dev, "Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]); dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "XgmiDpmPstates\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiDpmPstates[i]); dev_info(smu->adev->dev, "XgmiDpmSpare[0] = 0x%02x\n", pptable->XgmiDpmSpare[0]); dev_info(smu->adev->dev, "XgmiDpmSpare[1] = 0x%02x\n", pptable->XgmiDpmSpare[1]); dev_info(smu->adev->dev, "DebugOverrides = 0x%x\n", pptable->DebugOverrides); dev_info(smu->adev->dev, "ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation0.a, pptable->ReservedEquation0.b, pptable->ReservedEquation0.c); dev_info(smu->adev->dev, "ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation1.a, pptable->ReservedEquation1.b, pptable->ReservedEquation1.c); dev_info(smu->adev->dev, "ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation2.a, pptable->ReservedEquation2.b, pptable->ReservedEquation2.c); dev_info(smu->adev->dev, "ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation3.a, pptable->ReservedEquation3.b, pptable->ReservedEquation3.c); dev_info(smu->adev->dev, "SkuReserved[0] = 0x%x\n", pptable->SkuReserved[0]); dev_info(smu->adev->dev, "SkuReserved[1] = 0x%x\n", pptable->SkuReserved[1]); dev_info(smu->adev->dev, "SkuReserved[2] = 0x%x\n", pptable->SkuReserved[2]); dev_info(smu->adev->dev, "SkuReserved[3] = 0x%x\n", pptable->SkuReserved[3]); dev_info(smu->adev->dev, "SkuReserved[4] = 0x%x\n", pptable->SkuReserved[4]); dev_info(smu->adev->dev, "SkuReserved[5] = 0x%x\n", pptable->SkuReserved[5]); dev_info(smu->adev->dev, "SkuReserved[6] = 0x%x\n", pptable->SkuReserved[6]); dev_info(smu->adev->dev, "SkuReserved[7] = 0x%x\n", pptable->SkuReserved[7]); dev_info(smu->adev->dev, "GamingClk[0] = 0x%x\n", pptable->GamingClk[0]); dev_info(smu->adev->dev, "GamingClk[1] = 0x%x\n", pptable->GamingClk[1]); dev_info(smu->adev->dev, "GamingClk[2] = 0x%x\n", pptable->GamingClk[2]); dev_info(smu->adev->dev, "GamingClk[3] = 0x%x\n", pptable->GamingClk[3]); dev_info(smu->adev->dev, "GamingClk[4] = 0x%x\n", pptable->GamingClk[4]); dev_info(smu->adev->dev, "GamingClk[5] = 0x%x\n", pptable->GamingClk[5]); for (i = 0; i < NUM_I2C_CONTROLLERS; i++) { dev_info(smu->adev->dev, "I2cControllers[%d]:\n", i); dev_info(smu->adev->dev, " .Enabled = 0x%x\n", pptable->I2cControllers[i].Enabled); dev_info(smu->adev->dev, " .Speed = 0x%x\n", pptable->I2cControllers[i].Speed); dev_info(smu->adev->dev, " .SlaveAddress = 0x%x\n", pptable->I2cControllers[i].SlaveAddress); dev_info(smu->adev->dev, " .ControllerPort = 0x%x\n", pptable->I2cControllers[i].ControllerPort); dev_info(smu->adev->dev, " .ControllerName = 0x%x\n", pptable->I2cControllers[i].ControllerName); dev_info(smu->adev->dev, " .ThermalThrottler = 0x%x\n", pptable->I2cControllers[i].ThermalThrotter); dev_info(smu->adev->dev, " .I2cProtocol = 0x%x\n", pptable->I2cControllers[i].I2cProtocol); dev_info(smu->adev->dev, " .PaddingConfig = 0x%x\n", pptable->I2cControllers[i].PaddingConfig); } dev_info(smu->adev->dev, "GpioScl = 0x%x\n", pptable->GpioScl); dev_info(smu->adev->dev, "GpioSda = 0x%x\n", pptable->GpioSda); dev_info(smu->adev->dev, "FchUsbPdSlaveAddr = 0x%x\n", pptable->FchUsbPdSlaveAddr); dev_info(smu->adev->dev, "I2cSpare[0] = 0x%x\n", pptable->I2cSpare[0]); dev_info(smu->adev->dev, "Board Parameters:\n"); dev_info(smu->adev->dev, "VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping); dev_info(smu->adev->dev, "VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping); dev_info(smu->adev->dev, "VddMem0VrMapping = 0x%x\n", pptable->VddMem0VrMapping); dev_info(smu->adev->dev, "VddMem1VrMapping = 0x%x\n", pptable->VddMem1VrMapping); dev_info(smu->adev->dev, "GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask); dev_info(smu->adev->dev, "SocUlvPhaseSheddingMask = 0x%x\n", pptable->SocUlvPhaseSheddingMask); dev_info(smu->adev->dev, "VddciUlvPhaseSheddingMask = 0x%x\n", pptable->VddciUlvPhaseSheddingMask); dev_info(smu->adev->dev, "MvddUlvPhaseSheddingMask = 0x%x\n", pptable->MvddUlvPhaseSheddingMask); dev_info(smu->adev->dev, "GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent); dev_info(smu->adev->dev, "GfxOffset = 0x%x\n", pptable->GfxOffset); dev_info(smu->adev->dev, "Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx); dev_info(smu->adev->dev, "SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent); dev_info(smu->adev->dev, "SocOffset = 0x%x\n", pptable->SocOffset); dev_info(smu->adev->dev, "Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc); dev_info(smu->adev->dev, "Mem0MaxCurrent = 0x%x\n", pptable->Mem0MaxCurrent); dev_info(smu->adev->dev, "Mem0Offset = 0x%x\n", pptable->Mem0Offset); dev_info(smu->adev->dev, "Padding_TelemetryMem0 = 0x%x\n", pptable->Padding_TelemetryMem0); dev_info(smu->adev->dev, "Mem1MaxCurrent = 0x%x\n", pptable->Mem1MaxCurrent); dev_info(smu->adev->dev, "Mem1Offset = 0x%x\n", pptable->Mem1Offset); dev_info(smu->adev->dev, "Padding_TelemetryMem1 = 0x%x\n", pptable->Padding_TelemetryMem1); dev_info(smu->adev->dev, "MvddRatio = 0x%x\n", pptable->MvddRatio); dev_info(smu->adev->dev, "AcDcGpio = 0x%x\n", pptable->AcDcGpio); dev_info(smu->adev->dev, "AcDcPolarity = 0x%x\n", pptable->AcDcPolarity); dev_info(smu->adev->dev, "VR0HotGpio = 0x%x\n", pptable->VR0HotGpio); dev_info(smu->adev->dev, "VR0HotPolarity = 0x%x\n", pptable->VR0HotPolarity); dev_info(smu->adev->dev, "VR1HotGpio = 0x%x\n", pptable->VR1HotGpio); dev_info(smu->adev->dev, "VR1HotPolarity = 0x%x\n", pptable->VR1HotPolarity); dev_info(smu->adev->dev, "GthrGpio = 0x%x\n", pptable->GthrGpio); dev_info(smu->adev->dev, "GthrPolarity = 0x%x\n", pptable->GthrPolarity); dev_info(smu->adev->dev, "LedPin0 = 0x%x\n", pptable->LedPin0); dev_info(smu->adev->dev, "LedPin1 = 0x%x\n", pptable->LedPin1); dev_info(smu->adev->dev, "LedPin2 = 0x%x\n", pptable->LedPin2); dev_info(smu->adev->dev, "LedEnableMask = 0x%x\n", pptable->LedEnableMask); dev_info(smu->adev->dev, "LedPcie = 0x%x\n", pptable->LedPcie); dev_info(smu->adev->dev, "LedError = 0x%x\n", pptable->LedError); dev_info(smu->adev->dev, "LedSpare1[0] = 0x%x\n", pptable->LedSpare1[0]); dev_info(smu->adev->dev, "LedSpare1[1] = 0x%x\n", pptable->LedSpare1[1]); dev_info(smu->adev->dev, "PllGfxclkSpreadEnabled = 0x%x\n", pptable->PllGfxclkSpreadEnabled); dev_info(smu->adev->dev, "PllGfxclkSpreadPercent = 0x%x\n", pptable->PllGfxclkSpreadPercent); dev_info(smu->adev->dev, "PllGfxclkSpreadFreq = 0x%x\n", pptable->PllGfxclkSpreadFreq); dev_info(smu->adev->dev, "DfllGfxclkSpreadEnabled = 0x%x\n", pptable->DfllGfxclkSpreadEnabled); dev_info(smu->adev->dev, "DfllGfxclkSpreadPercent = 0x%x\n", pptable->DfllGfxclkSpreadPercent); dev_info(smu->adev->dev, "DfllGfxclkSpreadFreq = 0x%x\n", pptable->DfllGfxclkSpreadFreq); dev_info(smu->adev->dev, "UclkSpreadPadding = 0x%x\n", pptable->UclkSpreadPadding); dev_info(smu->adev->dev, "UclkSpreadFreq = 0x%x\n", pptable->UclkSpreadFreq); dev_info(smu->adev->dev, "FclkSpreadEnabled = 0x%x\n", pptable->FclkSpreadEnabled); dev_info(smu->adev->dev, "FclkSpreadPercent = 0x%x\n", pptable->FclkSpreadPercent); dev_info(smu->adev->dev, "FclkSpreadFreq = 0x%x\n", pptable->FclkSpreadFreq); dev_info(smu->adev->dev, "MemoryChannelEnabled = 0x%x\n", pptable->MemoryChannelEnabled); dev_info(smu->adev->dev, "DramBitWidth = 0x%x\n", pptable->DramBitWidth); dev_info(smu->adev->dev, "PaddingMem1[0] = 0x%x\n", pptable->PaddingMem1[0]); dev_info(smu->adev->dev, "PaddingMem1[1] = 0x%x\n", pptable->PaddingMem1[1]); dev_info(smu->adev->dev, "PaddingMem1[2] = 0x%x\n", pptable->PaddingMem1[2]); dev_info(smu->adev->dev, "TotalBoardPower = 0x%x\n", pptable->TotalBoardPower); dev_info(smu->adev->dev, "BoardPowerPadding = 0x%x\n", pptable->BoardPowerPadding); dev_info(smu->adev->dev, "XgmiLinkSpeed\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiLinkSpeed[i]); dev_info(smu->adev->dev, "XgmiLinkWidth\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiLinkWidth[i]); dev_info(smu->adev->dev, "XgmiFclkFreq\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiFclkFreq[i]); dev_info(smu->adev->dev, "XgmiSocVoltage\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiSocVoltage[i]); dev_info(smu->adev->dev, "HsrEnabled = 0x%x\n", pptable->HsrEnabled); dev_info(smu->adev->dev, "VddqOffEnabled = 0x%x\n", pptable->VddqOffEnabled); dev_info(smu->adev->dev, "PaddingUmcFlags[0] = 0x%x\n", pptable->PaddingUmcFlags[0]); dev_info(smu->adev->dev, "PaddingUmcFlags[1] = 0x%x\n", pptable->PaddingUmcFlags[1]); dev_info(smu->adev->dev, "BoardReserved[0] = 0x%x\n", pptable->BoardReserved[0]); dev_info(smu->adev->dev, "BoardReserved[1] = 0x%x\n", pptable->BoardReserved[1]); dev_info(smu->adev->dev, "BoardReserved[2] = 0x%x\n", pptable->BoardReserved[2]); dev_info(smu->adev->dev, "BoardReserved[3] = 0x%x\n", pptable->BoardReserved[3]); dev_info(smu->adev->dev, "BoardReserved[4] = 0x%x\n", pptable->BoardReserved[4]); dev_info(smu->adev->dev, "BoardReserved[5] = 0x%x\n", pptable->BoardReserved[5]); dev_info(smu->adev->dev, "BoardReserved[6] = 0x%x\n", pptable->BoardReserved[6]); dev_info(smu->adev->dev, "BoardReserved[7] = 0x%x\n", pptable->BoardReserved[7]); dev_info(smu->adev->dev, "BoardReserved[8] = 0x%x\n", pptable->BoardReserved[8]); dev_info(smu->adev->dev, "BoardReserved[9] = 0x%x\n", pptable->BoardReserved[9]); dev_info(smu->adev->dev, "BoardReserved[10] = 0x%x\n", pptable->BoardReserved[10]); dev_info(smu->adev->dev, "MmHubPadding[0] = 0x%x\n", pptable->MmHubPadding[0]); dev_info(smu->adev->dev, "MmHubPadding[1] = 0x%x\n", pptable->MmHubPadding[1]); dev_info(smu->adev->dev, "MmHubPadding[2] = 0x%x\n", pptable->MmHubPadding[2]); dev_info(smu->adev->dev, "MmHubPadding[3] = 0x%x\n", pptable->MmHubPadding[3]); dev_info(smu->adev->dev, "MmHubPadding[4] = 0x%x\n", pptable->MmHubPadding[4]); dev_info(smu->adev->dev, "MmHubPadding[5] = 0x%x\n", pptable->MmHubPadding[5]); dev_info(smu->adev->dev, "MmHubPadding[6] = 0x%x\n", pptable->MmHubPadding[6]); dev_info(smu->adev->dev, "MmHubPadding[7] = 0x%x\n", pptable->MmHubPadding[7]); } static void sienna_cichlid_dump_pptable(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; int i; if (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 13)) { beige_goby_dump_pptable(smu); return; } dev_info(smu->adev->dev, "Dumped PPTable:\n"); dev_info(smu->adev->dev, "Version = 0x%08x\n", pptable->Version); dev_info(smu->adev->dev, "FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]); dev_info(smu->adev->dev, "FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]); for (i = 0; i < PPT_THROTTLER_COUNT; i++) { dev_info(smu->adev->dev, "SocketPowerLimitAc[%d] = 0x%x\n", i, pptable->SocketPowerLimitAc[i]); dev_info(smu->adev->dev, "SocketPowerLimitAcTau[%d] = 0x%x\n", i, pptable->SocketPowerLimitAcTau[i]); dev_info(smu->adev->dev, "SocketPowerLimitDc[%d] = 0x%x\n", i, pptable->SocketPowerLimitDc[i]); dev_info(smu->adev->dev, "SocketPowerLimitDcTau[%d] = 0x%x\n", i, pptable->SocketPowerLimitDcTau[i]); } for (i = 0; i < TDC_THROTTLER_COUNT; i++) { dev_info(smu->adev->dev, "TdcLimit[%d] = 0x%x\n", i, pptable->TdcLimit[i]); dev_info(smu->adev->dev, "TdcLimitTau[%d] = 0x%x\n", i, pptable->TdcLimitTau[i]); } for (i = 0; i < TEMP_COUNT; i++) { dev_info(smu->adev->dev, "TemperatureLimit[%d] = 0x%x\n", i, pptable->TemperatureLimit[i]); } dev_info(smu->adev->dev, "FitLimit = 0x%x\n", pptable->FitLimit); dev_info(smu->adev->dev, "TotalPowerConfig = 0x%x\n", pptable->TotalPowerConfig); dev_info(smu->adev->dev, "TotalPowerPadding[0] = 0x%x\n", pptable->TotalPowerPadding[0]); dev_info(smu->adev->dev, "TotalPowerPadding[1] = 0x%x\n", pptable->TotalPowerPadding[1]); dev_info(smu->adev->dev, "TotalPowerPadding[2] = 0x%x\n", pptable->TotalPowerPadding[2]); dev_info(smu->adev->dev, "ApccPlusResidencyLimit = 0x%x\n", pptable->ApccPlusResidencyLimit); for (i = 0; i < NUM_SMNCLK_DPM_LEVELS; i++) { dev_info(smu->adev->dev, "SmnclkDpmFreq[%d] = 0x%x\n", i, pptable->SmnclkDpmFreq[i]); dev_info(smu->adev->dev, "SmnclkDpmVoltage[%d] = 0x%x\n", i, pptable->SmnclkDpmVoltage[i]); } dev_info(smu->adev->dev, "ThrottlerControlMask = 0x%x\n", pptable->ThrottlerControlMask); dev_info(smu->adev->dev, "FwDStateMask = 0x%x\n", pptable->FwDStateMask); dev_info(smu->adev->dev, "UlvVoltageOffsetSoc = 0x%x\n", pptable->UlvVoltageOffsetSoc); dev_info(smu->adev->dev, "UlvVoltageOffsetGfx = 0x%x\n", pptable->UlvVoltageOffsetGfx); dev_info(smu->adev->dev, "MinVoltageUlvGfx = 0x%x\n", pptable->MinVoltageUlvGfx); dev_info(smu->adev->dev, "MinVoltageUlvSoc = 0x%x\n", pptable->MinVoltageUlvSoc); dev_info(smu->adev->dev, "SocLIVmin = 0x%x\n", pptable->SocLIVmin); dev_info(smu->adev->dev, "PaddingLIVmin = 0x%x\n", pptable->PaddingLIVmin); dev_info(smu->adev->dev, "GceaLinkMgrIdleThreshold = 0x%x\n", pptable->GceaLinkMgrIdleThreshold); dev_info(smu->adev->dev, "paddingRlcUlvParams[0] = 0x%x\n", pptable->paddingRlcUlvParams[0]); dev_info(smu->adev->dev, "paddingRlcUlvParams[1] = 0x%x\n", pptable->paddingRlcUlvParams[1]); dev_info(smu->adev->dev, "paddingRlcUlvParams[2] = 0x%x\n", pptable->paddingRlcUlvParams[2]); dev_info(smu->adev->dev, "MinVoltageGfx = 0x%x\n", pptable->MinVoltageGfx); dev_info(smu->adev->dev, "MinVoltageSoc = 0x%x\n", pptable->MinVoltageSoc); dev_info(smu->adev->dev, "MaxVoltageGfx = 0x%x\n", pptable->MaxVoltageGfx); dev_info(smu->adev->dev, "MaxVoltageSoc = 0x%x\n", pptable->MaxVoltageSoc); dev_info(smu->adev->dev, "LoadLineResistanceGfx = 0x%x\n", pptable->LoadLineResistanceGfx); dev_info(smu->adev->dev, "LoadLineResistanceSoc = 0x%x\n", pptable->LoadLineResistanceSoc); dev_info(smu->adev->dev, "VDDGFX_TVmin = 0x%x\n", pptable->VDDGFX_TVmin); dev_info(smu->adev->dev, "VDDSOC_TVmin = 0x%x\n", pptable->VDDSOC_TVmin); dev_info(smu->adev->dev, "VDDGFX_Vmin_HiTemp = 0x%x\n", pptable->VDDGFX_Vmin_HiTemp); dev_info(smu->adev->dev, "VDDGFX_Vmin_LoTemp = 0x%x\n", pptable->VDDGFX_Vmin_LoTemp); dev_info(smu->adev->dev, "VDDSOC_Vmin_HiTemp = 0x%x\n", pptable->VDDSOC_Vmin_HiTemp); dev_info(smu->adev->dev, "VDDSOC_Vmin_LoTemp = 0x%x\n", pptable->VDDSOC_Vmin_LoTemp); dev_info(smu->adev->dev, "VDDGFX_TVminHystersis = 0x%x\n", pptable->VDDGFX_TVminHystersis); dev_info(smu->adev->dev, "VDDSOC_TVminHystersis = 0x%x\n", pptable->VDDSOC_TVminHystersis); dev_info(smu->adev->dev, "[PPCLK_GFXCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_GFXCLK].Padding, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_GFXCLK].SsFmin, pptable->DpmDescriptor[PPCLK_GFXCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_SOCCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_SOCCLK].Padding, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_SOCCLK].SsFmin, pptable->DpmDescriptor[PPCLK_SOCCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_UCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_UCLK].Padding, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_UCLK].SsFmin, pptable->DpmDescriptor[PPCLK_UCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_FCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_FCLK].Padding, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_FCLK].SsFmin, pptable->DpmDescriptor[PPCLK_FCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_DCLK_0]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_DCLK_0].VoltageMode, pptable->DpmDescriptor[PPCLK_DCLK_0].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCLK_0].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCLK_0].Padding, pptable->DpmDescriptor[PPCLK_DCLK_0].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCLK_0].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.c, pptable->DpmDescriptor[PPCLK_DCLK_0].SsFmin, pptable->DpmDescriptor[PPCLK_DCLK_0].Padding16); dev_info(smu->adev->dev, "[PPCLK_VCLK_0]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_VCLK_0].VoltageMode, pptable->DpmDescriptor[PPCLK_VCLK_0].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_VCLK_0].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_VCLK_0].Padding, pptable->DpmDescriptor[PPCLK_VCLK_0].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_VCLK_0].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.a, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.b, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.c, pptable->DpmDescriptor[PPCLK_VCLK_0].SsFmin, pptable->DpmDescriptor[PPCLK_VCLK_0].Padding16); dev_info(smu->adev->dev, "[PPCLK_DCLK_1]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_DCLK_1].VoltageMode, pptable->DpmDescriptor[PPCLK_DCLK_1].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCLK_1].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCLK_1].Padding, pptable->DpmDescriptor[PPCLK_DCLK_1].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCLK_1].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.c, pptable->DpmDescriptor[PPCLK_DCLK_1].SsFmin, pptable->DpmDescriptor[PPCLK_DCLK_1].Padding16); dev_info(smu->adev->dev, "[PPCLK_VCLK_1]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_VCLK_1].VoltageMode, pptable->DpmDescriptor[PPCLK_VCLK_1].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_VCLK_1].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_VCLK_1].Padding, pptable->DpmDescriptor[PPCLK_VCLK_1].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_VCLK_1].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.a, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.b, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.c, pptable->DpmDescriptor[PPCLK_VCLK_1].SsFmin, pptable->DpmDescriptor[PPCLK_VCLK_1].Padding16); dev_info(smu->adev->dev, "FreqTableGfx\n"); for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableGfx[i]); dev_info(smu->adev->dev, "FreqTableVclk\n"); for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableVclk[i]); dev_info(smu->adev->dev, "FreqTableDclk\n"); for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableDclk[i]); dev_info(smu->adev->dev, "FreqTableSocclk\n"); for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableSocclk[i]); dev_info(smu->adev->dev, "FreqTableUclk\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableUclk[i]); dev_info(smu->adev->dev, "FreqTableFclk\n"); for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableFclk[i]); dev_info(smu->adev->dev, "DcModeMaxFreq\n"); dev_info(smu->adev->dev, " .PPCLK_GFXCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_GFXCLK]); dev_info(smu->adev->dev, " .PPCLK_SOCCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_SOCCLK]); dev_info(smu->adev->dev, " .PPCLK_UCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_UCLK]); dev_info(smu->adev->dev, " .PPCLK_FCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_FCLK]); dev_info(smu->adev->dev, " .PPCLK_DCLK_0 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_DCLK_0]); dev_info(smu->adev->dev, " .PPCLK_VCLK_0 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_VCLK_0]); dev_info(smu->adev->dev, " .PPCLK_DCLK_1 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_DCLK_1]); dev_info(smu->adev->dev, " .PPCLK_VCLK_1 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_VCLK_1]); dev_info(smu->adev->dev, "FreqTableUclkDiv\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FreqTableUclkDiv[i]); dev_info(smu->adev->dev, "FclkBoostFreq = 0x%x\n", pptable->FclkBoostFreq); dev_info(smu->adev->dev, "FclkParamPadding = 0x%x\n", pptable->FclkParamPadding); dev_info(smu->adev->dev, "Mp0clkFreq\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->Mp0clkFreq[i]); dev_info(smu->adev->dev, "Mp0DpmVoltage\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->Mp0DpmVoltage[i]); dev_info(smu->adev->dev, "MemVddciVoltage\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->MemVddciVoltage[i]); dev_info(smu->adev->dev, "MemMvddVoltage\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->MemMvddVoltage[i]); dev_info(smu->adev->dev, "GfxclkFgfxoffEntry = 0x%x\n", pptable->GfxclkFgfxoffEntry); dev_info(smu->adev->dev, "GfxclkFinit = 0x%x\n", pptable->GfxclkFinit); dev_info(smu->adev->dev, "GfxclkFidle = 0x%x\n", pptable->GfxclkFidle); dev_info(smu->adev->dev, "GfxclkSource = 0x%x\n", pptable->GfxclkSource); dev_info(smu->adev->dev, "GfxclkPadding = 0x%x\n", pptable->GfxclkPadding); dev_info(smu->adev->dev, "GfxGpoSubFeatureMask = 0x%x\n", pptable->GfxGpoSubFeatureMask); dev_info(smu->adev->dev, "GfxGpoEnabledWorkPolicyMask = 0x%x\n", pptable->GfxGpoEnabledWorkPolicyMask); dev_info(smu->adev->dev, "GfxGpoDisabledWorkPolicyMask = 0x%x\n", pptable->GfxGpoDisabledWorkPolicyMask); dev_info(smu->adev->dev, "GfxGpoPadding[0] = 0x%x\n", pptable->GfxGpoPadding[0]); dev_info(smu->adev->dev, "GfxGpoVotingAllow = 0x%x\n", pptable->GfxGpoVotingAllow); dev_info(smu->adev->dev, "GfxGpoPadding32[0] = 0x%x\n", pptable->GfxGpoPadding32[0]); dev_info(smu->adev->dev, "GfxGpoPadding32[1] = 0x%x\n", pptable->GfxGpoPadding32[1]); dev_info(smu->adev->dev, "GfxGpoPadding32[2] = 0x%x\n", pptable->GfxGpoPadding32[2]); dev_info(smu->adev->dev, "GfxGpoPadding32[3] = 0x%x\n", pptable->GfxGpoPadding32[3]); dev_info(smu->adev->dev, "GfxDcsFopt = 0x%x\n", pptable->GfxDcsFopt); dev_info(smu->adev->dev, "GfxDcsFclkFopt = 0x%x\n", pptable->GfxDcsFclkFopt); dev_info(smu->adev->dev, "GfxDcsUclkFopt = 0x%x\n", pptable->GfxDcsUclkFopt); dev_info(smu->adev->dev, "DcsGfxOffVoltage = 0x%x\n", pptable->DcsGfxOffVoltage); dev_info(smu->adev->dev, "DcsMinGfxOffTime = 0x%x\n", pptable->DcsMinGfxOffTime); dev_info(smu->adev->dev, "DcsMaxGfxOffTime = 0x%x\n", pptable->DcsMaxGfxOffTime); dev_info(smu->adev->dev, "DcsMinCreditAccum = 0x%x\n", pptable->DcsMinCreditAccum); dev_info(smu->adev->dev, "DcsExitHysteresis = 0x%x\n", pptable->DcsExitHysteresis); dev_info(smu->adev->dev, "DcsTimeout = 0x%x\n", pptable->DcsTimeout); dev_info(smu->adev->dev, "DcsParamPadding[0] = 0x%x\n", pptable->DcsParamPadding[0]); dev_info(smu->adev->dev, "DcsParamPadding[1] = 0x%x\n", pptable->DcsParamPadding[1]); dev_info(smu->adev->dev, "DcsParamPadding[2] = 0x%x\n", pptable->DcsParamPadding[2]); dev_info(smu->adev->dev, "DcsParamPadding[3] = 0x%x\n", pptable->DcsParamPadding[3]); dev_info(smu->adev->dev, "DcsParamPadding[4] = 0x%x\n", pptable->DcsParamPadding[4]); dev_info(smu->adev->dev, "FlopsPerByteTable\n"); for (i = 0; i < RLC_PACE_TABLE_NUM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FlopsPerByteTable[i]); dev_info(smu->adev->dev, "LowestUclkReservedForUlv = 0x%x\n", pptable->LowestUclkReservedForUlv); dev_info(smu->adev->dev, "vddingMem[0] = 0x%x\n", pptable->PaddingMem[0]); dev_info(smu->adev->dev, "vddingMem[1] = 0x%x\n", pptable->PaddingMem[1]); dev_info(smu->adev->dev, "vddingMem[2] = 0x%x\n", pptable->PaddingMem[2]); dev_info(smu->adev->dev, "UclkDpmPstates\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->UclkDpmPstates[i]); dev_info(smu->adev->dev, "UclkDpmSrcFreqRange\n"); dev_info(smu->adev->dev, " .Fmin = 0x%x\n", pptable->UclkDpmSrcFreqRange.Fmin); dev_info(smu->adev->dev, " .Fmax = 0x%x\n", pptable->UclkDpmSrcFreqRange.Fmax); dev_info(smu->adev->dev, "UclkDpmTargFreqRange\n"); dev_info(smu->adev->dev, " .Fmin = 0x%x\n", pptable->UclkDpmTargFreqRange.Fmin); dev_info(smu->adev->dev, " .Fmax = 0x%x\n", pptable->UclkDpmTargFreqRange.Fmax); dev_info(smu->adev->dev, "UclkDpmMidstepFreq = 0x%x\n", pptable->UclkDpmMidstepFreq); dev_info(smu->adev->dev, "UclkMidstepPadding = 0x%x\n", pptable->UclkMidstepPadding); dev_info(smu->adev->dev, "PcieGenSpeed\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->PcieGenSpeed[i]); dev_info(smu->adev->dev, "PcieLaneCount\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->PcieLaneCount[i]); dev_info(smu->adev->dev, "LclkFreq\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->LclkFreq[i]); dev_info(smu->adev->dev, "FanStopTemp = 0x%x\n", pptable->FanStopTemp); dev_info(smu->adev->dev, "FanStartTemp = 0x%x\n", pptable->FanStartTemp); dev_info(smu->adev->dev, "FanGain\n"); for (i = 0; i < TEMP_COUNT; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FanGain[i]); dev_info(smu->adev->dev, "FanPwmMin = 0x%x\n", pptable->FanPwmMin); dev_info(smu->adev->dev, "FanAcousticLimitRpm = 0x%x\n", pptable->FanAcousticLimitRpm); dev_info(smu->adev->dev, "FanThrottlingRpm = 0x%x\n", pptable->FanThrottlingRpm); dev_info(smu->adev->dev, "FanMaximumRpm = 0x%x\n", pptable->FanMaximumRpm); dev_info(smu->adev->dev, "MGpuFanBoostLimitRpm = 0x%x\n", pptable->MGpuFanBoostLimitRpm); dev_info(smu->adev->dev, "FanTargetTemperature = 0x%x\n", pptable->FanTargetTemperature); dev_info(smu->adev->dev, "FanTargetGfxclk = 0x%x\n", pptable->FanTargetGfxclk); dev_info(smu->adev->dev, "FanPadding16 = 0x%x\n", pptable->FanPadding16); dev_info(smu->adev->dev, "FanTempInputSelect = 0x%x\n", pptable->FanTempInputSelect); dev_info(smu->adev->dev, "FanPadding = 0x%x\n", pptable->FanPadding); dev_info(smu->adev->dev, "FanZeroRpmEnable = 0x%x\n", pptable->FanZeroRpmEnable); dev_info(smu->adev->dev, "FanTachEdgePerRev = 0x%x\n", pptable->FanTachEdgePerRev); dev_info(smu->adev->dev, "FuzzyFan_ErrorSetDelta = 0x%x\n", pptable->FuzzyFan_ErrorSetDelta); dev_info(smu->adev->dev, "FuzzyFan_ErrorRateSetDelta = 0x%x\n", pptable->FuzzyFan_ErrorRateSetDelta); dev_info(smu->adev->dev, "FuzzyFan_PwmSetDelta = 0x%x\n", pptable->FuzzyFan_PwmSetDelta); dev_info(smu->adev->dev, "FuzzyFan_Reserved = 0x%x\n", pptable->FuzzyFan_Reserved); dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "dBtcGbGfxDfllModelSelect = 0x%x\n", pptable->dBtcGbGfxDfllModelSelect); dev_info(smu->adev->dev, "Padding8_Avfs = 0x%x\n", pptable->Padding8_Avfs); dev_info(smu->adev->dev, "qAvfsGb[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qAvfsGb[AVFS_VOLTAGE_GFX].a, pptable->qAvfsGb[AVFS_VOLTAGE_GFX].b, pptable->qAvfsGb[AVFS_VOLTAGE_GFX].c); dev_info(smu->adev->dev, "qAvfsGb[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qAvfsGb[AVFS_VOLTAGE_SOC].a, pptable->qAvfsGb[AVFS_VOLTAGE_SOC].b, pptable->qAvfsGb[AVFS_VOLTAGE_SOC].c); dev_info(smu->adev->dev, "dBtcGbGfxPll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxPll.a, pptable->dBtcGbGfxPll.b, pptable->dBtcGbGfxPll.c); dev_info(smu->adev->dev, "dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxDfll.a, pptable->dBtcGbGfxDfll.b, pptable->dBtcGbGfxDfll.c); dev_info(smu->adev->dev, "dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbSoc.a, pptable->dBtcGbSoc.b, pptable->dBtcGbSoc.c); dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_GFX].m, pptable->qAgingGb[AVFS_VOLTAGE_GFX].b); dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_SOC].m, pptable->qAgingGb[AVFS_VOLTAGE_SOC].b); dev_info(smu->adev->dev, "PiecewiseLinearDroopIntGfxDfll\n"); for (i = 0; i < NUM_PIECE_WISE_LINEAR_DROOP_MODEL_VF_POINTS; i++) { dev_info(smu->adev->dev, " Fset[%d] = 0x%x\n", i, pptable->PiecewiseLinearDroopIntGfxDfll.Fset[i]); dev_info(smu->adev->dev, " Vdroop[%d] = 0x%x\n", i, pptable->PiecewiseLinearDroopIntGfxDfll.Vdroop[i]); } dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c); dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c); dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]); dev_info(smu->adev->dev, "Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]); dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "XgmiDpmPstates\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiDpmPstates[i]); dev_info(smu->adev->dev, "XgmiDpmSpare[0] = 0x%02x\n", pptable->XgmiDpmSpare[0]); dev_info(smu->adev->dev, "XgmiDpmSpare[1] = 0x%02x\n", pptable->XgmiDpmSpare[1]); dev_info(smu->adev->dev, "DebugOverrides = 0x%x\n", pptable->DebugOverrides); dev_info(smu->adev->dev, "ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation0.a, pptable->ReservedEquation0.b, pptable->ReservedEquation0.c); dev_info(smu->adev->dev, "ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation1.a, pptable->ReservedEquation1.b, pptable->ReservedEquation1.c); dev_info(smu->adev->dev, "ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation2.a, pptable->ReservedEquation2.b, pptable->ReservedEquation2.c); dev_info(smu->adev->dev, "ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation3.a, pptable->ReservedEquation3.b, pptable->ReservedEquation3.c); dev_info(smu->adev->dev, "SkuReserved[0] = 0x%x\n", pptable->SkuReserved[0]); dev_info(smu->adev->dev, "SkuReserved[1] = 0x%x\n", pptable->SkuReserved[1]); dev_info(smu->adev->dev, "SkuReserved[2] = 0x%x\n", pptable->SkuReserved[2]); dev_info(smu->adev->dev, "SkuReserved[3] = 0x%x\n", pptable->SkuReserved[3]); dev_info(smu->adev->dev, "SkuReserved[4] = 0x%x\n", pptable->SkuReserved[4]); dev_info(smu->adev->dev, "SkuReserved[5] = 0x%x\n", pptable->SkuReserved[5]); dev_info(smu->adev->dev, "SkuReserved[6] = 0x%x\n", pptable->SkuReserved[6]); dev_info(smu->adev->dev, "SkuReserved[7] = 0x%x\n", pptable->SkuReserved[7]); dev_info(smu->adev->dev, "GamingClk[0] = 0x%x\n", pptable->GamingClk[0]); dev_info(smu->adev->dev, "GamingClk[1] = 0x%x\n", pptable->GamingClk[1]); dev_info(smu->adev->dev, "GamingClk[2] = 0x%x\n", pptable->GamingClk[2]); dev_info(smu->adev->dev, "GamingClk[3] = 0x%x\n", pptable->GamingClk[3]); dev_info(smu->adev->dev, "GamingClk[4] = 0x%x\n", pptable->GamingClk[4]); dev_info(smu->adev->dev, "GamingClk[5] = 0x%x\n", pptable->GamingClk[5]); for (i = 0; i < NUM_I2C_CONTROLLERS; i++) { dev_info(smu->adev->dev, "I2cControllers[%d]:\n", i); dev_info(smu->adev->dev, " .Enabled = 0x%x\n", pptable->I2cControllers[i].Enabled); dev_info(smu->adev->dev, " .Speed = 0x%x\n", pptable->I2cControllers[i].Speed); dev_info(smu->adev->dev, " .SlaveAddress = 0x%x\n", pptable->I2cControllers[i].SlaveAddress); dev_info(smu->adev->dev, " .ControllerPort = 0x%x\n", pptable->I2cControllers[i].ControllerPort); dev_info(smu->adev->dev, " .ControllerName = 0x%x\n", pptable->I2cControllers[i].ControllerName); dev_info(smu->adev->dev, " .ThermalThrottler = 0x%x\n", pptable->I2cControllers[i].ThermalThrotter); dev_info(smu->adev->dev, " .I2cProtocol = 0x%x\n", pptable->I2cControllers[i].I2cProtocol); dev_info(smu->adev->dev, " .PaddingConfig = 0x%x\n", pptable->I2cControllers[i].PaddingConfig); } dev_info(smu->adev->dev, "GpioScl = 0x%x\n", pptable->GpioScl); dev_info(smu->adev->dev, "GpioSda = 0x%x\n", pptable->GpioSda); dev_info(smu->adev->dev, "FchUsbPdSlaveAddr = 0x%x\n", pptable->FchUsbPdSlaveAddr); dev_info(smu->adev->dev, "I2cSpare[0] = 0x%x\n", pptable->I2cSpare[0]); dev_info(smu->adev->dev, "Board Parameters:\n"); dev_info(smu->adev->dev, "VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping); dev_info(smu->adev->dev, "VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping); dev_info(smu->adev->dev, "VddMem0VrMapping = 0x%x\n", pptable->VddMem0VrMapping); dev_info(smu->adev->dev, "VddMem1VrMapping = 0x%x\n", pptable->VddMem1VrMapping); dev_info(smu->adev->dev, "GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask); dev_info(smu->adev->dev, "SocUlvPhaseSheddingMask = 0x%x\n", pptable->SocUlvPhaseSheddingMask); dev_info(smu->adev->dev, "VddciUlvPhaseSheddingMask = 0x%x\n", pptable->VddciUlvPhaseSheddingMask); dev_info(smu->adev->dev, "MvddUlvPhaseSheddingMask = 0x%x\n", pptable->MvddUlvPhaseSheddingMask); dev_info(smu->adev->dev, "GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent); dev_info(smu->adev->dev, "GfxOffset = 0x%x\n", pptable->GfxOffset); dev_info(smu->adev->dev, "Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx); dev_info(smu->adev->dev, "SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent); dev_info(smu->adev->dev, "SocOffset = 0x%x\n", pptable->SocOffset); dev_info(smu->adev->dev, "Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc); dev_info(smu->adev->dev, "Mem0MaxCurrent = 0x%x\n", pptable->Mem0MaxCurrent); dev_info(smu->adev->dev, "Mem0Offset = 0x%x\n", pptable->Mem0Offset); dev_info(smu->adev->dev, "Padding_TelemetryMem0 = 0x%x\n", pptable->Padding_TelemetryMem0); dev_info(smu->adev->dev, "Mem1MaxCurrent = 0x%x\n", pptable->Mem1MaxCurrent); dev_info(smu->adev->dev, "Mem1Offset = 0x%x\n", pptable->Mem1Offset); dev_info(smu->adev->dev, "Padding_TelemetryMem1 = 0x%x\n", pptable->Padding_TelemetryMem1); dev_info(smu->adev->dev, "MvddRatio = 0x%x\n", pptable->MvddRatio); dev_info(smu->adev->dev, "AcDcGpio = 0x%x\n", pptable->AcDcGpio); dev_info(smu->adev->dev, "AcDcPolarity = 0x%x\n", pptable->AcDcPolarity); dev_info(smu->adev->dev, "VR0HotGpio = 0x%x\n", pptable->VR0HotGpio); dev_info(smu->adev->dev, "VR0HotPolarity = 0x%x\n", pptable->VR0HotPolarity); dev_info(smu->adev->dev, "VR1HotGpio = 0x%x\n", pptable->VR1HotGpio); dev_info(smu->adev->dev, "VR1HotPolarity = 0x%x\n", pptable->VR1HotPolarity); dev_info(smu->adev->dev, "GthrGpio = 0x%x\n", pptable->GthrGpio); dev_info(smu->adev->dev, "GthrPolarity = 0x%x\n", pptable->GthrPolarity); dev_info(smu->adev->dev, "LedPin0 = 0x%x\n", pptable->LedPin0); dev_info(smu->adev->dev, "LedPin1 = 0x%x\n", pptable->LedPin1); dev_info(smu->adev->dev, "LedPin2 = 0x%x\n", pptable->LedPin2); dev_info(smu->adev->dev, "LedEnableMask = 0x%x\n", pptable->LedEnableMask); dev_info(smu->adev->dev, "LedPcie = 0x%x\n", pptable->LedPcie); dev_info(smu->adev->dev, "LedError = 0x%x\n", pptable->LedError); dev_info(smu->adev->dev, "LedSpare1[0] = 0x%x\n", pptable->LedSpare1[0]); dev_info(smu->adev->dev, "LedSpare1[1] = 0x%x\n", pptable->LedSpare1[1]); dev_info(smu->adev->dev, "PllGfxclkSpreadEnabled = 0x%x\n", pptable->PllGfxclkSpreadEnabled); dev_info(smu->adev->dev, "PllGfxclkSpreadPercent = 0x%x\n", pptable->PllGfxclkSpreadPercent); dev_info(smu->adev->dev, "PllGfxclkSpreadFreq = 0x%x\n", pptable->PllGfxclkSpreadFreq); dev_info(smu->adev->dev, "DfllGfxclkSpreadEnabled = 0x%x\n", pptable->DfllGfxclkSpreadEnabled); dev_info(smu->adev->dev, "DfllGfxclkSpreadPercent = 0x%x\n", pptable->DfllGfxclkSpreadPercent); dev_info(smu->adev->dev, "DfllGfxclkSpreadFreq = 0x%x\n", pptable->DfllGfxclkSpreadFreq); dev_info(smu->adev->dev, "UclkSpreadPadding = 0x%x\n", pptable->UclkSpreadPadding); dev_info(smu->adev->dev, "UclkSpreadFreq = 0x%x\n", pptable->UclkSpreadFreq); dev_info(smu->adev->dev, "FclkSpreadEnabled = 0x%x\n", pptable->FclkSpreadEnabled); dev_info(smu->adev->dev, "FclkSpreadPercent = 0x%x\n", pptable->FclkSpreadPercent); dev_info(smu->adev->dev, "FclkSpreadFreq = 0x%x\n", pptable->FclkSpreadFreq); dev_info(smu->adev->dev, "MemoryChannelEnabled = 0x%x\n", pptable->MemoryChannelEnabled); dev_info(smu->adev->dev, "DramBitWidth = 0x%x\n", pptable->DramBitWidth); dev_info(smu->adev->dev, "PaddingMem1[0] = 0x%x\n", pptable->PaddingMem1[0]); dev_info(smu->adev->dev, "PaddingMem1[1] = 0x%x\n", pptable->PaddingMem1[1]); dev_info(smu->adev->dev, "PaddingMem1[2] = 0x%x\n", pptable->PaddingMem1[2]); dev_info(smu->adev->dev, "TotalBoardPower = 0x%x\n", pptable->TotalBoardPower); dev_info(smu->adev->dev, "BoardPowerPadding = 0x%x\n", pptable->BoardPowerPadding); dev_info(smu->adev->dev, "XgmiLinkSpeed\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiLinkSpeed[i]); dev_info(smu->adev->dev, "XgmiLinkWidth\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiLinkWidth[i]); dev_info(smu->adev->dev, "XgmiFclkFreq\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiFclkFreq[i]); dev_info(smu->adev->dev, "XgmiSocVoltage\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiSocVoltage[i]); dev_info(smu->adev->dev, "HsrEnabled = 0x%x\n", pptable->HsrEnabled); dev_info(smu->adev->dev, "VddqOffEnabled = 0x%x\n", pptable->VddqOffEnabled); dev_info(smu->adev->dev, "PaddingUmcFlags[0] = 0x%x\n", pptable->PaddingUmcFlags[0]); dev_info(smu->adev->dev, "PaddingUmcFlags[1] = 0x%x\n", pptable->PaddingUmcFlags[1]); dev_info(smu->adev->dev, "BoardReserved[0] = 0x%x\n", pptable->BoardReserved[0]); dev_info(smu->adev->dev, "BoardReserved[1] = 0x%x\n", pptable->BoardReserved[1]); dev_info(smu->adev->dev, "BoardReserved[2] = 0x%x\n", pptable->BoardReserved[2]); dev_info(smu->adev->dev, "BoardReserved[3] = 0x%x\n", pptable->BoardReserved[3]); dev_info(smu->adev->dev, "BoardReserved[4] = 0x%x\n", pptable->BoardReserved[4]); dev_info(smu->adev->dev, "BoardReserved[5] = 0x%x\n", pptable->BoardReserved[5]); dev_info(smu->adev->dev, "BoardReserved[6] = 0x%x\n", pptable->BoardReserved[6]); dev_info(smu->adev->dev, "BoardReserved[7] = 0x%x\n", pptable->BoardReserved[7]); dev_info(smu->adev->dev, "BoardReserved[8] = 0x%x\n", pptable->BoardReserved[8]); dev_info(smu->adev->dev, "BoardReserved[9] = 0x%x\n", pptable->BoardReserved[9]); dev_info(smu->adev->dev, "BoardReserved[10] = 0x%x\n", pptable->BoardReserved[10]); dev_info(smu->adev->dev, "MmHubPadding[0] = 0x%x\n", pptable->MmHubPadding[0]); dev_info(smu->adev->dev, "MmHubPadding[1] = 0x%x\n", pptable->MmHubPadding[1]); dev_info(smu->adev->dev, "MmHubPadding[2] = 0x%x\n", pptable->MmHubPadding[2]); dev_info(smu->adev->dev, "MmHubPadding[3] = 0x%x\n", pptable->MmHubPadding[3]); dev_info(smu->adev->dev, "MmHubPadding[4] = 0x%x\n", pptable->MmHubPadding[4]); dev_info(smu->adev->dev, "MmHubPadding[5] = 0x%x\n", pptable->MmHubPadding[5]); dev_info(smu->adev->dev, "MmHubPadding[6] = 0x%x\n", pptable->MmHubPadding[6]); dev_info(smu->adev->dev, "MmHubPadding[7] = 0x%x\n", pptable->MmHubPadding[7]); } static int sienna_cichlid_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msg, int num_msgs) { struct amdgpu_smu_i2c_bus *smu_i2c = i2c_get_adapdata(i2c_adap); struct amdgpu_device *adev = smu_i2c->adev; struct smu_context *smu = adev->powerplay.pp_handle; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *table = &smu_table->driver_table; SwI2cRequest_t *req, *res = (SwI2cRequest_t *)table->cpu_addr; int i, j, r, c; u16 dir; if (!adev->pm.dpm_enabled) return -EBUSY; req = kzalloc(sizeof(*req), GFP_KERNEL); if (!req) return -ENOMEM; req->I2CcontrollerPort = smu_i2c->port; req->I2CSpeed = I2C_SPEED_FAST_400K; req->SlaveAddress = msg[0].addr << 1; /* wants an 8-bit address */ dir = msg[0].flags & I2C_M_RD; for (c = i = 0; i < num_msgs; i++) { for (j = 0; j < msg[i].len; j++, c++) { SwI2cCmd_t *cmd = &req->SwI2cCmds[c]; if (!(msg[i].flags & I2C_M_RD)) { /* write */ cmd->CmdConfig |= CMDCONFIG_READWRITE_MASK; cmd->ReadWriteData = msg[i].buf[j]; } if ((dir ^ msg[i].flags) & I2C_M_RD) { /* The direction changes. */ dir = msg[i].flags & I2C_M_RD; cmd->CmdConfig |= CMDCONFIG_RESTART_MASK; } req->NumCmds++; /* * Insert STOP if we are at the last byte of either last * message for the transaction or the client explicitly * requires a STOP at this particular message. */ if ((j == msg[i].len - 1) && ((i == num_msgs - 1) || (msg[i].flags & I2C_M_STOP))) { cmd->CmdConfig &= ~CMDCONFIG_RESTART_MASK; cmd->CmdConfig |= CMDCONFIG_STOP_MASK; } } } mutex_lock(&adev->pm.mutex); r = smu_cmn_update_table(smu, SMU_TABLE_I2C_COMMANDS, 0, req, true); if (r) goto fail; for (c = i = 0; i < num_msgs; i++) { if (!(msg[i].flags & I2C_M_RD)) { c += msg[i].len; continue; } for (j = 0; j < msg[i].len; j++, c++) { SwI2cCmd_t *cmd = &res->SwI2cCmds[c]; msg[i].buf[j] = cmd->ReadWriteData; } } r = num_msgs; fail: mutex_unlock(&adev->pm.mutex); kfree(req); return r; } static u32 sienna_cichlid_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm sienna_cichlid_i2c_algo = { .master_xfer = sienna_cichlid_i2c_xfer, .functionality = sienna_cichlid_i2c_func, }; static const struct i2c_adapter_quirks sienna_cichlid_i2c_control_quirks = { .flags = I2C_AQ_COMB | I2C_AQ_COMB_SAME_ADDR | I2C_AQ_NO_ZERO_LEN, .max_read_len = MAX_SW_I2C_COMMANDS, .max_write_len = MAX_SW_I2C_COMMANDS, .max_comb_1st_msg_len = 2, .max_comb_2nd_msg_len = MAX_SW_I2C_COMMANDS - 2, }; static int sienna_cichlid_i2c_control_init(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int res, i; for (i = 0; i < MAX_SMU_I2C_BUSES; i++) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; smu_i2c->adev = adev; smu_i2c->port = i; mutex_init(&smu_i2c->mutex); control->owner = THIS_MODULE; control->class = I2C_CLASS_HWMON; control->dev.parent = &adev->pdev->dev; control->algo = &sienna_cichlid_i2c_algo; snprintf(control->name, sizeof(control->name), "AMDGPU SMU %d", i); control->quirks = &sienna_cichlid_i2c_control_quirks; i2c_set_adapdata(control, smu_i2c); res = i2c_add_adapter(control); if (res) { DRM_ERROR("Failed to register hw i2c, err: %d\n", res); goto Out_err; } } /* assign the buses used for the FRU EEPROM and RAS EEPROM */ /* XXX ideally this would be something in a vbios data table */ adev->pm.ras_eeprom_i2c_bus = &adev->pm.smu_i2c[1].adapter; adev->pm.fru_eeprom_i2c_bus = &adev->pm.smu_i2c[0].adapter; return 0; Out_err: for ( ; i >= 0; i--) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; i2c_del_adapter(control); } return res; } static void sienna_cichlid_i2c_control_fini(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int i; for (i = 0; i < MAX_SMU_I2C_BUSES; i++) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; i2c_del_adapter(control); } adev->pm.ras_eeprom_i2c_bus = NULL; adev->pm.fru_eeprom_i2c_bus = NULL; } static ssize_t sienna_cichlid_get_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v1_3 *gpu_metrics = (struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table; SmuMetricsExternal_t metrics_external; SmuMetrics_t *metrics = &(metrics_external.SmuMetrics); SmuMetrics_V2_t *metrics_v2 = &(metrics_external.SmuMetrics_V2); SmuMetrics_V3_t *metrics_v3 = &(metrics_external.SmuMetrics_V3); struct amdgpu_device *adev = smu->adev; bool use_metrics_v2 = false; bool use_metrics_v3 = false; uint16_t average_gfx_activity; int ret = 0; switch (amdgpu_ip_version(smu->adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 7): if (smu->smc_fw_version >= 0x3A4900) use_metrics_v3 = true; else if (smu->smc_fw_version >= 0x3A4300) use_metrics_v2 = true; break; case IP_VERSION(11, 0, 11): if (smu->smc_fw_version >= 0x412D00) use_metrics_v2 = true; break; case IP_VERSION(11, 0, 12): if (smu->smc_fw_version >= 0x3B2300) use_metrics_v2 = true; break; case IP_VERSION(11, 0, 13): if (smu->smc_fw_version >= 0x491100) use_metrics_v2 = true; break; default: break; } ret = smu_cmn_get_metrics_table(smu, &metrics_external, true); if (ret) return ret; smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3); gpu_metrics->temperature_edge = use_metrics_v3 ? metrics_v3->TemperatureEdge : use_metrics_v2 ? metrics_v2->TemperatureEdge : metrics->TemperatureEdge; gpu_metrics->temperature_hotspot = use_metrics_v3 ? metrics_v3->TemperatureHotspot : use_metrics_v2 ? metrics_v2->TemperatureHotspot : metrics->TemperatureHotspot; gpu_metrics->temperature_mem = use_metrics_v3 ? metrics_v3->TemperatureMem : use_metrics_v2 ? metrics_v2->TemperatureMem : metrics->TemperatureMem; gpu_metrics->temperature_vrgfx = use_metrics_v3 ? metrics_v3->TemperatureVrGfx : use_metrics_v2 ? metrics_v2->TemperatureVrGfx : metrics->TemperatureVrGfx; gpu_metrics->temperature_vrsoc = use_metrics_v3 ? metrics_v3->TemperatureVrSoc : use_metrics_v2 ? metrics_v2->TemperatureVrSoc : metrics->TemperatureVrSoc; gpu_metrics->temperature_vrmem = use_metrics_v3 ? metrics_v3->TemperatureVrMem0 : use_metrics_v2 ? metrics_v2->TemperatureVrMem0 : metrics->TemperatureVrMem0; gpu_metrics->average_gfx_activity = use_metrics_v3 ? metrics_v3->AverageGfxActivity : use_metrics_v2 ? metrics_v2->AverageGfxActivity : metrics->AverageGfxActivity; gpu_metrics->average_umc_activity = use_metrics_v3 ? metrics_v3->AverageUclkActivity : use_metrics_v2 ? metrics_v2->AverageUclkActivity : metrics->AverageUclkActivity; gpu_metrics->average_mm_activity = use_metrics_v3 ? (metrics_v3->VcnUsagePercentage0 + metrics_v3->VcnUsagePercentage1) / 2 : use_metrics_v2 ? metrics_v2->VcnActivityPercentage : metrics->VcnActivityPercentage; gpu_metrics->average_socket_power = use_metrics_v3 ? metrics_v3->AverageSocketPower : use_metrics_v2 ? metrics_v2->AverageSocketPower : metrics->AverageSocketPower; gpu_metrics->energy_accumulator = use_metrics_v3 ? metrics_v3->EnergyAccumulator : use_metrics_v2 ? metrics_v2->EnergyAccumulator : metrics->EnergyAccumulator; if (metrics->CurrGfxVoltageOffset) gpu_metrics->voltage_gfx = (155000 - 625 * metrics->CurrGfxVoltageOffset) / 100; if (metrics->CurrMemVidOffset) gpu_metrics->voltage_mem = (155000 - 625 * metrics->CurrMemVidOffset) / 100; if (metrics->CurrSocVoltageOffset) gpu_metrics->voltage_soc = (155000 - 625 * metrics->CurrSocVoltageOffset) / 100; average_gfx_activity = use_metrics_v3 ? metrics_v3->AverageGfxActivity : use_metrics_v2 ? metrics_v2->AverageGfxActivity : metrics->AverageGfxActivity; if (average_gfx_activity <= SMU_11_0_7_GFX_BUSY_THRESHOLD) gpu_metrics->average_gfxclk_frequency = use_metrics_v3 ? metrics_v3->AverageGfxclkFrequencyPostDs : use_metrics_v2 ? metrics_v2->AverageGfxclkFrequencyPostDs : metrics->AverageGfxclkFrequencyPostDs; else gpu_metrics->average_gfxclk_frequency = use_metrics_v3 ? metrics_v3->AverageGfxclkFrequencyPreDs : use_metrics_v2 ? metrics_v2->AverageGfxclkFrequencyPreDs : metrics->AverageGfxclkFrequencyPreDs; gpu_metrics->average_uclk_frequency = use_metrics_v3 ? metrics_v3->AverageUclkFrequencyPostDs : use_metrics_v2 ? metrics_v2->AverageUclkFrequencyPostDs : metrics->AverageUclkFrequencyPostDs; gpu_metrics->average_vclk0_frequency = use_metrics_v3 ? metrics_v3->AverageVclk0Frequency : use_metrics_v2 ? metrics_v2->AverageVclk0Frequency : metrics->AverageVclk0Frequency; gpu_metrics->average_dclk0_frequency = use_metrics_v3 ? metrics_v3->AverageDclk0Frequency : use_metrics_v2 ? metrics_v2->AverageDclk0Frequency : metrics->AverageDclk0Frequency; gpu_metrics->average_vclk1_frequency = use_metrics_v3 ? metrics_v3->AverageVclk1Frequency : use_metrics_v2 ? metrics_v2->AverageVclk1Frequency : metrics->AverageVclk1Frequency; gpu_metrics->average_dclk1_frequency = use_metrics_v3 ? metrics_v3->AverageDclk1Frequency : use_metrics_v2 ? metrics_v2->AverageDclk1Frequency : metrics->AverageDclk1Frequency; gpu_metrics->current_gfxclk = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_GFXCLK] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_GFXCLK] : metrics->CurrClock[PPCLK_GFXCLK]; gpu_metrics->current_socclk = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_SOCCLK] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_SOCCLK] : metrics->CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_UCLK] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_UCLK] : metrics->CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_VCLK_0] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_VCLK_0] : metrics->CurrClock[PPCLK_VCLK_0]; gpu_metrics->current_dclk0 = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_DCLK_0] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_DCLK_0] : metrics->CurrClock[PPCLK_DCLK_0]; gpu_metrics->current_vclk1 = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_VCLK_1] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_VCLK_1] : metrics->CurrClock[PPCLK_VCLK_1]; gpu_metrics->current_dclk1 = use_metrics_v3 ? metrics_v3->CurrClock[PPCLK_DCLK_1] : use_metrics_v2 ? metrics_v2->CurrClock[PPCLK_DCLK_1] : metrics->CurrClock[PPCLK_DCLK_1]; gpu_metrics->throttle_status = sienna_cichlid_get_throttler_status_locked(smu, use_metrics_v3, use_metrics_v2); gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(gpu_metrics->throttle_status, sienna_cichlid_throttler_map); gpu_metrics->current_fan_speed = use_metrics_v3 ? metrics_v3->CurrFanSpeed : use_metrics_v2 ? metrics_v2->CurrFanSpeed : metrics->CurrFanSpeed; if (((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 7)) && smu->smc_fw_version > 0x003A1E00) || ((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 11)) && smu->smc_fw_version > 0x00410400)) { gpu_metrics->pcie_link_width = use_metrics_v3 ? metrics_v3->PcieWidth : use_metrics_v2 ? metrics_v2->PcieWidth : metrics->PcieWidth; gpu_metrics->pcie_link_speed = link_speed[use_metrics_v3 ? metrics_v3->PcieRate : use_metrics_v2 ? metrics_v2->PcieRate : metrics->PcieRate]; } else { gpu_metrics->pcie_link_width = smu_v11_0_get_current_pcie_link_width(smu); gpu_metrics->pcie_link_speed = smu_v11_0_get_current_pcie_link_speed(smu); } gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_3); } static int sienna_cichlid_check_ecc_table_support(struct smu_context *smu) { int ret = 0; if (smu->smc_fw_version < SUPPORT_ECCTABLE_SMU_VERSION) ret = -EOPNOTSUPP; return ret; } static ssize_t sienna_cichlid_get_ecc_info(struct smu_context *smu, void *table) { struct smu_table_context *smu_table = &smu->smu_table; EccInfoTable_t *ecc_table = NULL; struct ecc_info_per_ch *ecc_info_per_channel = NULL; int i, ret = 0; struct umc_ecc_info *eccinfo = (struct umc_ecc_info *)table; ret = sienna_cichlid_check_ecc_table_support(smu); if (ret) return ret; ret = smu_cmn_update_table(smu, SMU_TABLE_ECCINFO, 0, smu_table->ecc_table, false); if (ret) { dev_info(smu->adev->dev, "Failed to export SMU ecc table!\n"); return ret; } ecc_table = (EccInfoTable_t *)smu_table->ecc_table; for (i = 0; i < SIENNA_CICHLID_UMC_CHANNEL_NUM; i++) { ecc_info_per_channel = &(eccinfo->ecc[i]); ecc_info_per_channel->ce_count_lo_chip = ecc_table->EccInfo[i].ce_count_lo_chip; ecc_info_per_channel->ce_count_hi_chip = ecc_table->EccInfo[i].ce_count_hi_chip; ecc_info_per_channel->mca_umc_status = ecc_table->EccInfo[i].mca_umc_status; ecc_info_per_channel->mca_umc_addr = ecc_table->EccInfo[i].mca_umc_addr; } return ret; } static int sienna_cichlid_enable_mgpu_fan_boost(struct smu_context *smu) { uint16_t *mgpu_fan_boost_limit_rpm; GET_PPTABLE_MEMBER(MGpuFanBoostLimitRpm, &mgpu_fan_boost_limit_rpm); /* * Skip the MGpuFanBoost setting for those ASICs * which do not support it */ if (*mgpu_fan_boost_limit_rpm == 0) return 0; return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetMGpuFanBoostLimitRpm, 0, NULL); } static int sienna_cichlid_gpo_control(struct smu_context *smu, bool enablement) { int ret = 0; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFX_GPO_BIT)) { if (enablement) { if (smu->smc_fw_version < 0x003a2500) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetGpoFeaturePMask, GFX_GPO_PACE_MASK | GFX_GPO_DEM_MASK, NULL); } else { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DisallowGpo, 0, NULL); } } else { if (smu->smc_fw_version < 0x003a2500) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetGpoFeaturePMask, 0, NULL); } else { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DisallowGpo, 1, NULL); } } } return ret; } static int sienna_cichlid_notify_2nd_usb20_port(struct smu_context *smu) { /* * Message SMU_MSG_Enable2ndUSB20Port is supported by 58.45 * onwards PMFWs. */ if (smu->smc_fw_version < 0x003A2D00) return 0; return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_Enable2ndUSB20Port, smu->smu_table.boot_values.firmware_caps & ATOM_FIRMWARE_CAP_ENABLE_2ND_USB20PORT ? 1 : 0, NULL); } static int sienna_cichlid_system_features_control(struct smu_context *smu, bool en) { int ret = 0; if (en) { ret = sienna_cichlid_notify_2nd_usb20_port(smu); if (ret) return ret; } return smu_v11_0_system_features_control(smu, en); } static int sienna_cichlid_set_mp1_state(struct smu_context *smu, enum pp_mp1_state mp1_state) { int ret; switch (mp1_state) { case PP_MP1_STATE_UNLOAD: ret = smu_cmn_set_mp1_state(smu, mp1_state); break; default: /* Ignore others */ ret = 0; } return ret; } static void sienna_cichlid_stb_init(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t reg; reg = RREG32_PCIE(MP1_Public | smnMP1_PMI_3_START); smu->stb_context.enabled = REG_GET_FIELD(reg, MP1_PMI_3_START, ENABLE); /* STB is disabled */ if (!smu->stb_context.enabled) return; spin_lock_init(&smu->stb_context.lock); /* STB buffer size in bytes as function of FIFO depth */ reg = RREG32_PCIE(MP1_Public | smnMP1_PMI_3_FIFO); smu->stb_context.stb_buf_size = 1 << REG_GET_FIELD(reg, MP1_PMI_3_FIFO, DEPTH); smu->stb_context.stb_buf_size *= SIENNA_CICHLID_STB_DEPTH_UNIT_BYTES; dev_info(smu->adev->dev, "STB initialized to %d entries", smu->stb_context.stb_buf_size / SIENNA_CICHLID_STB_DEPTH_UNIT_BYTES); } static int sienna_cichlid_get_default_config_table_settings(struct smu_context *smu, struct config_table_setting *table) { struct amdgpu_device *adev = smu->adev; if (!table) return -EINVAL; table->gfxclk_average_tau = 10; table->socclk_average_tau = 10; table->fclk_average_tau = 10; table->uclk_average_tau = 10; table->gfx_activity_average_tau = 10; table->mem_activity_average_tau = 10; table->socket_power_average_tau = 100; if (amdgpu_ip_version(adev, MP1_HWIP, 0) != IP_VERSION(11, 0, 7)) table->apu_socket_power_average_tau = 100; return 0; } static int sienna_cichlid_set_config_table(struct smu_context *smu, struct config_table_setting *table) { DriverSmuConfigExternal_t driver_smu_config_table; if (!table) return -EINVAL; memset(&driver_smu_config_table, 0, sizeof(driver_smu_config_table)); driver_smu_config_table.DriverSmuConfig.GfxclkAverageLpfTau = table->gfxclk_average_tau; driver_smu_config_table.DriverSmuConfig.FclkAverageLpfTau = table->fclk_average_tau; driver_smu_config_table.DriverSmuConfig.UclkAverageLpfTau = table->uclk_average_tau; driver_smu_config_table.DriverSmuConfig.GfxActivityLpfTau = table->gfx_activity_average_tau; driver_smu_config_table.DriverSmuConfig.UclkActivityLpfTau = table->mem_activity_average_tau; driver_smu_config_table.DriverSmuConfig.SocketPowerLpfTau = table->socket_power_average_tau; return smu_cmn_update_table(smu, SMU_TABLE_DRIVER_SMU_CONFIG, 0, (void *)&driver_smu_config_table, true); } static int sienna_cichlid_stb_get_data_direct(struct smu_context *smu, void *buf, uint32_t size) { uint32_t *p = buf; struct amdgpu_device *adev = smu->adev; /* No need to disable interrupts for now as we don't lock it yet from ISR */ spin_lock(&smu->stb_context.lock); /* * Read the STB FIFO in units of 32bit since this is the accessor window * (register width) we have. */ buf = ((char *) buf) + size; while ((void *)p < buf) *p++ = cpu_to_le32(RREG32_PCIE(MP1_Public | smnMP1_PMI_3)); spin_unlock(&smu->stb_context.lock); return 0; } static bool sienna_cichlid_is_mode2_reset_supported(struct smu_context *smu) { return true; } static int sienna_cichlid_mode2_reset(struct smu_context *smu) { int ret = 0, index; struct amdgpu_device *adev = smu->adev; int timeout = 100; index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_DriverMode2Reset); mutex_lock(&smu->message_lock); ret = smu_cmn_send_msg_without_waiting(smu, (uint16_t)index, SMU_RESET_MODE_2); ret = smu_cmn_wait_for_response(smu); while (ret != 0 && timeout) { ret = smu_cmn_wait_for_response(smu); /* Wait a bit more time for getting ACK */ if (ret != 0) { --timeout; usleep_range(500, 1000); continue; } else { break; } } if (!timeout) { dev_err(adev->dev, "failed to send mode2 message \tparam: 0x%08x response %#x\n", SMU_RESET_MODE_2, ret); goto out; } dev_info(smu->adev->dev, "restore config space...\n"); /* Restore the config space saved during init */ amdgpu_device_load_pci_state(adev->pdev); out: mutex_unlock(&smu->message_lock); return ret; } static const struct pptable_funcs sienna_cichlid_ppt_funcs = { .get_allowed_feature_mask = sienna_cichlid_get_allowed_feature_mask, .set_default_dpm_table = sienna_cichlid_set_default_dpm_table, .dpm_set_vcn_enable = sienna_cichlid_dpm_set_vcn_enable, .dpm_set_jpeg_enable = sienna_cichlid_dpm_set_jpeg_enable, .i2c_init = sienna_cichlid_i2c_control_init, .i2c_fini = sienna_cichlid_i2c_control_fini, .print_clk_levels = sienna_cichlid_print_clk_levels, .force_clk_levels = sienna_cichlid_force_clk_levels, .populate_umd_state_clk = sienna_cichlid_populate_umd_state_clk, .pre_display_config_changed = sienna_cichlid_pre_display_config_changed, .display_config_changed = sienna_cichlid_display_config_changed, .notify_smc_display_config = sienna_cichlid_notify_smc_display_config, .is_dpm_running = sienna_cichlid_is_dpm_running, .get_fan_speed_pwm = smu_v11_0_get_fan_speed_pwm, .get_fan_speed_rpm = sienna_cichlid_get_fan_speed_rpm, .get_power_profile_mode = sienna_cichlid_get_power_profile_mode, .set_power_profile_mode = sienna_cichlid_set_power_profile_mode, .set_watermarks_table = sienna_cichlid_set_watermarks_table, .read_sensor = sienna_cichlid_read_sensor, .get_uclk_dpm_states = sienna_cichlid_get_uclk_dpm_states, .set_performance_level = smu_v11_0_set_performance_level, .get_thermal_temperature_range = sienna_cichlid_get_thermal_temperature_range, .display_disable_memory_clock_switch = sienna_cichlid_display_disable_memory_clock_switch, .get_power_limit = sienna_cichlid_get_power_limit, .update_pcie_parameters = sienna_cichlid_update_pcie_parameters, .dump_pptable = sienna_cichlid_dump_pptable, .init_microcode = smu_v11_0_init_microcode, .load_microcode = smu_v11_0_load_microcode, .fini_microcode = smu_v11_0_fini_microcode, .init_smc_tables = sienna_cichlid_init_smc_tables, .fini_smc_tables = smu_v11_0_fini_smc_tables, .init_power = smu_v11_0_init_power, .fini_power = smu_v11_0_fini_power, .check_fw_status = smu_v11_0_check_fw_status, .setup_pptable = sienna_cichlid_setup_pptable, .get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values, .check_fw_version = smu_v11_0_check_fw_version, .write_pptable = smu_cmn_write_pptable, .set_driver_table_location = smu_v11_0_set_driver_table_location, .set_tool_table_location = smu_v11_0_set_tool_table_location, .notify_memory_pool_location = smu_v11_0_notify_memory_pool_location, .system_features_control = sienna_cichlid_system_features_control, .send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param, .send_smc_msg = smu_cmn_send_smc_msg, .init_display_count = NULL, .set_allowed_mask = smu_v11_0_set_allowed_mask, .get_enabled_mask = smu_cmn_get_enabled_mask, .feature_is_enabled = smu_cmn_feature_is_enabled, .disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception, .notify_display_change = NULL, .set_power_limit = smu_v11_0_set_power_limit, .init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks, .enable_thermal_alert = smu_v11_0_enable_thermal_alert, .disable_thermal_alert = smu_v11_0_disable_thermal_alert, .set_min_dcef_deep_sleep = NULL, .display_clock_voltage_request = smu_v11_0_display_clock_voltage_request, .get_fan_control_mode = smu_v11_0_get_fan_control_mode, .set_fan_control_mode = smu_v11_0_set_fan_control_mode, .set_fan_speed_pwm = smu_v11_0_set_fan_speed_pwm, .set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm, .set_xgmi_pstate = smu_v11_0_set_xgmi_pstate, .gfx_off_control = smu_v11_0_gfx_off_control, .register_irq_handler = smu_v11_0_register_irq_handler, .set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme, .get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc, .get_bamaco_support = smu_v11_0_get_bamaco_support, .baco_enter = sienna_cichlid_baco_enter, .baco_exit = sienna_cichlid_baco_exit, .mode1_reset_is_support = sienna_cichlid_is_mode1_reset_supported, .mode1_reset = smu_v11_0_mode1_reset, .get_dpm_ultimate_freq = sienna_cichlid_get_dpm_ultimate_freq, .set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range, .set_default_od_settings = sienna_cichlid_set_default_od_settings, .od_edit_dpm_table = sienna_cichlid_od_edit_dpm_table, .restore_user_od_settings = sienna_cichlid_restore_user_od_settings, .run_btc = sienna_cichlid_run_btc, .set_power_source = smu_v11_0_set_power_source, .get_pp_feature_mask = smu_cmn_get_pp_feature_mask, .set_pp_feature_mask = smu_cmn_set_pp_feature_mask, .get_gpu_metrics = sienna_cichlid_get_gpu_metrics, .enable_mgpu_fan_boost = sienna_cichlid_enable_mgpu_fan_boost, .gfx_ulv_control = smu_v11_0_gfx_ulv_control, .deep_sleep_control = smu_v11_0_deep_sleep_control, .get_fan_parameters = sienna_cichlid_get_fan_parameters, .interrupt_work = smu_v11_0_interrupt_work, .gpo_control = sienna_cichlid_gpo_control, .set_mp1_state = sienna_cichlid_set_mp1_state, .stb_collect_info = sienna_cichlid_stb_get_data_direct, .get_ecc_info = sienna_cichlid_get_ecc_info, .get_default_config_table_settings = sienna_cichlid_get_default_config_table_settings, .set_config_table = sienna_cichlid_set_config_table, .get_unique_id = sienna_cichlid_get_unique_id, .mode2_reset_is_support = sienna_cichlid_is_mode2_reset_supported, .mode2_reset = sienna_cichlid_mode2_reset, }; void sienna_cichlid_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &sienna_cichlid_ppt_funcs; smu->message_map = sienna_cichlid_message_map; smu->clock_map = sienna_cichlid_clk_map; smu->feature_map = sienna_cichlid_feature_mask_map; smu->table_map = sienna_cichlid_table_map; smu->pwr_src_map = sienna_cichlid_pwr_src_map; smu->workload_map = sienna_cichlid_workload_map; smu_v11_0_set_smu_mailbox_registers(smu); }