/* SPDX-License-Identifier: MIT */ /* * Copyright 2023 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dm_helpers.h" #include "core_types.h" #include "resource.h" #include "dccg.h" #include "dce/dce_hwseq.h" #include "clk_mgr.h" #include "reg_helper.h" #include "abm.h" #include "hubp.h" #include "dchubbub.h" #include "timing_generator.h" #include "opp.h" #include "ipp.h" #include "mpc.h" #include "mcif_wb.h" #include "dc_dmub_srv.h" #include "dcn35_hwseq.h" #include "dcn35/dcn35_dccg.h" #include "link_hwss.h" #include "dpcd_defs.h" #include "dce/dmub_outbox.h" #include "link.h" #include "dcn10/dcn10_hwseq.h" #include "inc/link_enc_cfg.h" #include "dcn30/dcn30_vpg.h" #include "dce/dce_i2c_hw.h" #include "dsc.h" #include "dcn20/dcn20_optc.h" #include "dcn30/dcn30_cm_common.h" #include "dcn31/dcn31_hwseq.h" #include "dcn20/dcn20_hwseq.h" #include "dc_state_priv.h" #define DC_LOGGER_INIT(logger) \ struct dal_logger *dc_logger = logger #define CTX \ hws->ctx #define REG(reg)\ hws->regs->reg #define DC_LOGGER \ dc_logger #undef FN #define FN(reg_name, field_name) \ hws->shifts->field_name, hws->masks->field_name #if 0 static void enable_memory_low_power(struct dc *dc) { struct dce_hwseq *hws = dc->hwseq; int i; if (dc->debug.enable_mem_low_power.bits.dmcu) { // Force ERAM to shutdown if DMCU is not enabled if (dc->debug.disable_dmcu || dc->config.disable_dmcu) { REG_UPDATE(DMU_MEM_PWR_CNTL, DMCU_ERAM_MEM_PWR_FORCE, 3); } } /*dcn35 has default MEM_PWR enabled, make sure wake them up*/ // Set default OPTC memory power states if (dc->debug.enable_mem_low_power.bits.optc) { // Shutdown when unassigned and light sleep in VBLANK REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1); } if (dc->debug.enable_mem_low_power.bits.vga) { // Power down VGA memory REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1); } if (dc->debug.enable_mem_low_power.bits.mpc && dc->res_pool->mpc->funcs->set_mpc_mem_lp_mode) dc->res_pool->mpc->funcs->set_mpc_mem_lp_mode(dc->res_pool->mpc); if (dc->debug.enable_mem_low_power.bits.vpg && dc->res_pool->stream_enc[0]->vpg->funcs->vpg_powerdown) { // Power down VPGs for (i = 0; i < dc->res_pool->stream_enc_count; i++) dc->res_pool->stream_enc[i]->vpg->funcs->vpg_powerdown(dc->res_pool->stream_enc[i]->vpg); #if defined(CONFIG_DRM_AMD_DC_DP2_0) for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++) dc->res_pool->hpo_dp_stream_enc[i]->vpg->funcs->vpg_powerdown(dc->res_pool->hpo_dp_stream_enc[i]->vpg); #endif } } #endif void dcn35_set_dmu_fgcg(struct dce_hwseq *hws, bool enable) { REG_UPDATE_3(DMU_CLK_CNTL, RBBMIF_FGCG_REP_DIS, !enable, IHC_FGCG_REP_DIS, !enable, LONO_FGCG_REP_DIS, !enable ); } void dcn35_setup_hpo_hw_control(const struct dce_hwseq *hws, bool enable) { REG_UPDATE(HPO_TOP_HW_CONTROL, HPO_IO_EN, !!enable); } void dcn35_init_hw(struct dc *dc) { struct abm **abms = dc->res_pool->multiple_abms; struct dce_hwseq *hws = dc->hwseq; struct dc_bios *dcb = dc->ctx->dc_bios; struct resource_pool *res_pool = dc->res_pool; uint32_t backlight = MAX_BACKLIGHT_LEVEL; uint32_t user_level = MAX_BACKLIGHT_LEVEL; int i; if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks) dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); //dcn35_set_dmu_fgcg(hws, dc->debug.enable_fine_grain_clock_gating.bits.dmu); if (!dcb->funcs->is_accelerated_mode(dcb)) { /*this calls into dmubfw to do the init*/ hws->funcs.bios_golden_init(dc); } // Initialize the dccg if (res_pool->dccg->funcs->dccg_init) res_pool->dccg->funcs->dccg_init(res_pool->dccg); //enable_memory_low_power(dc); if (dc->ctx->dc_bios->fw_info_valid) { res_pool->ref_clocks.xtalin_clock_inKhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency; if (res_pool->hubbub) { (res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg, dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency, &res_pool->ref_clocks.dccg_ref_clock_inKhz); (res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub, res_pool->ref_clocks.dccg_ref_clock_inKhz, &res_pool->ref_clocks.dchub_ref_clock_inKhz); } else { // Not all ASICs have DCCG sw component res_pool->ref_clocks.dccg_ref_clock_inKhz = res_pool->ref_clocks.xtalin_clock_inKhz; res_pool->ref_clocks.dchub_ref_clock_inKhz = res_pool->ref_clocks.xtalin_clock_inKhz; } } else ASSERT_CRITICAL(false); for (i = 0; i < dc->link_count; i++) { /* Power up AND update implementation according to the * required signal (which may be different from the * default signal on connector). */ struct dc_link *link = dc->links[i]; if (link->ep_type != DISPLAY_ENDPOINT_PHY) continue; link->link_enc->funcs->hw_init(link->link_enc); /* Check for enabled DIG to identify enabled display */ if (link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc)) { link->link_status.link_active = true; if (link->link_enc->funcs->fec_is_active && link->link_enc->funcs->fec_is_active(link->link_enc)) link->fec_state = dc_link_fec_enabled; } } /* we want to turn off all dp displays before doing detection */ dc->link_srv->blank_all_dp_displays(dc); /* if (hws->funcs.enable_power_gating_plane) hws->funcs.enable_power_gating_plane(dc->hwseq, true); */ if (res_pool->hubbub && res_pool->hubbub->funcs->dchubbub_init) res_pool->hubbub->funcs->dchubbub_init(dc->res_pool->hubbub); /* If taking control over from VBIOS, we may want to optimize our first * mode set, so we need to skip powering down pipes until we know which * pipes we want to use. * Otherwise, if taking control is not possible, we need to power * everything down. */ if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) { // we want to turn off edp displays if odm is enabled and no seamless boot if (!dc->caps.seamless_odm) { for (i = 0; i < dc->res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; uint32_t num_opps, opp_id_src0, opp_id_src1; num_opps = 1; if (tg) { if (tg->funcs->is_tg_enabled(tg) && tg->funcs->get_optc_source) { tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1); } } if (num_opps > 1) { dc->link_srv->blank_all_edp_displays(dc); break; } } } hws->funcs.init_pipes(dc, dc->current_state); if (dc->res_pool->hubbub->funcs->allow_self_refresh_control) dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter); } if (res_pool->dccg->funcs->dccg_root_gate_disable_control) { for (i = 0; i < res_pool->pipe_count; i++) res_pool->dccg->funcs->dccg_root_gate_disable_control(res_pool->dccg, i, 0); } for (i = 0; i < res_pool->audio_count; i++) { struct audio *audio = res_pool->audios[i]; audio->funcs->hw_init(audio); } for (i = 0; i < dc->link_count; i++) { struct dc_link *link = dc->links[i]; if (link->panel_cntl) { backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl); user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL; } } if (dc->ctx->dmub_srv) { for (i = 0; i < dc->res_pool->pipe_count; i++) { if (abms[i] != NULL && abms[i]->funcs != NULL) abms[i]->funcs->abm_init(abms[i], backlight, user_level); } } /* power AFMT HDMI memory TODO: may move to dis/en output save power*/ REG_WRITE(DIO_MEM_PWR_CTRL, 0); // Set i2c to light sleep until engine is setup if (dc->debug.enable_mem_low_power.bits.i2c) REG_UPDATE(DIO_MEM_PWR_CTRL, I2C_LIGHT_SLEEP_FORCE, 0); if (hws->funcs.setup_hpo_hw_control) hws->funcs.setup_hpo_hw_control(hws, false); if (!dc->debug.disable_clock_gate) { /* enable all DCN clock gating */ REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0); } if (dc->debug.disable_mem_low_power) { REG_UPDATE(DC_MEM_GLOBAL_PWR_REQ_CNTL, DC_MEM_GLOBAL_PWR_REQ_DIS, 1); } if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks) dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub); if (dc->clk_mgr && dc->clk_mgr->funcs->notify_wm_ranges) dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr); if (dc->clk_mgr && dc->clk_mgr->funcs->set_hard_max_memclk && !dc->clk_mgr->dc_mode_softmax_enabled) dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr); if (dc->res_pool->hubbub->funcs->force_pstate_change_control) dc->res_pool->hubbub->funcs->force_pstate_change_control( dc->res_pool->hubbub, false, false); if (dc->res_pool->hubbub->funcs->init_crb) dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub); if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0) dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc); // Get DMCUB capabilities if (dc->ctx->dmub_srv) { dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv); dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr; dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver; } if (dc->res_pool->pg_cntl) { if (dc->res_pool->pg_cntl->funcs->init_pg_status) dc->res_pool->pg_cntl->funcs->init_pg_status(dc->res_pool->pg_cntl); } } static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable) { struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc; struct dc_stream_state *stream = pipe_ctx->stream; struct pipe_ctx *odm_pipe; int opp_cnt = 1; DC_LOGGER_INIT(stream->ctx->logger); ASSERT(dsc); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) opp_cnt++; if (enable) { struct dsc_config dsc_cfg; struct dsc_optc_config dsc_optc_cfg = {0}; enum optc_dsc_mode optc_dsc_mode; struct dcn_dsc_state dsc_state = {0}; if (!dsc) { DC_LOG_DSC("DSC is NULL for tg instance %d:", pipe_ctx->stream_res.tg->inst); return; } if (dsc->funcs->dsc_read_state) { dsc->funcs->dsc_read_state(dsc, &dsc_state); if (!dsc_state.dsc_fw_en) { DC_LOG_DSC("DSC has been disabled for tg instance %d:", pipe_ctx->stream_res.tg->inst); return; } } /* Enable DSC hw block */ dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt; dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom; dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; dsc_cfg.color_depth = stream->timing.display_color_depth; dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0); dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg); dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc; ASSERT(odm_dsc); odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg); odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst); } dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt; dsc_cfg.pic_width *= opp_cnt; optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED; /* Enable DSC in OPTC */ DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst); pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg, optc_dsc_mode, dsc_optc_cfg.bytes_per_pixel, dsc_optc_cfg.slice_width); } else { /* disable DSC in OPTC */ pipe_ctx->stream_res.tg->funcs->set_dsc_config( pipe_ctx->stream_res.tg, OPTC_DSC_DISABLED, 0, 0); /* disable DSC block */ dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { ASSERT(odm_pipe->stream_res.dsc); odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc); } } } // Given any pipe_ctx, return the total ODM combine factor, and optionally return // the OPPids which are used static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances) { unsigned int opp_count = 1; struct pipe_ctx *odm_pipe; // First get to the top pipe for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe) ; // First pipe is always used if (opp_instances) opp_instances[0] = odm_pipe->stream_res.opp->inst; // Find and count odm pipes, if any for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { if (opp_instances) opp_instances[opp_count] = odm_pipe->stream_res.opp->inst; opp_count++; } return opp_count; } void dcn35_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) { struct pipe_ctx *odm_pipe; int opp_cnt = 0; int opp_inst[MAX_PIPES] = {0}; int odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, false); int last_odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, true); opp_cnt = get_odm_config(pipe_ctx, opp_inst); if (opp_cnt > 1) pipe_ctx->stream_res.tg->funcs->set_odm_combine( pipe_ctx->stream_res.tg, opp_inst, opp_cnt, odm_slice_width, last_odm_slice_width); else pipe_ctx->stream_res.tg->funcs->set_odm_bypass( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control( odm_pipe->stream_res.opp, true); } if (pipe_ctx->stream_res.dsc) { struct pipe_ctx *current_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx]; update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC); /* Check if no longer using pipe for ODM, then need to disconnect DSC for that pipe */ if (!pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe->stream_res.dsc) { struct display_stream_compressor *dsc = current_pipe_ctx->next_odm_pipe->stream_res.dsc; /* disconnect DSC block from stream */ dsc->funcs->dsc_disconnect(dsc); } } } void dcn35_dpp_root_clock_control(struct dce_hwseq *hws, unsigned int dpp_inst, bool clock_on) { if (!hws->ctx->dc->debug.root_clock_optimization.bits.dpp) return; if (hws->ctx->dc->res_pool->dccg->funcs->dpp_root_clock_control) { hws->ctx->dc->res_pool->dccg->funcs->dpp_root_clock_control( hws->ctx->dc->res_pool->dccg, dpp_inst, clock_on); } } void dcn35_dpstream_root_clock_control(struct dce_hwseq *hws, unsigned int dp_hpo_inst, bool clock_on) { if (!hws->ctx->dc->debug.root_clock_optimization.bits.dpstream) return; if (hws->ctx->dc->res_pool->dccg->funcs->set_dpstreamclk_root_clock_gating) { hws->ctx->dc->res_pool->dccg->funcs->set_dpstreamclk_root_clock_gating( hws->ctx->dc->res_pool->dccg, dp_hpo_inst, clock_on); } } void dcn35_physymclk_root_clock_control(struct dce_hwseq *hws, unsigned int phy_inst, bool clock_on) { if (!hws->ctx->dc->debug.root_clock_optimization.bits.physymclk) return; if (hws->ctx->dc->res_pool->dccg->funcs->set_physymclk_root_clock_gating) { hws->ctx->dc->res_pool->dccg->funcs->set_physymclk_root_clock_gating( hws->ctx->dc->res_pool->dccg, phy_inst, clock_on); } } void dcn35_dsc_pg_control( struct dce_hwseq *hws, unsigned int dsc_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; uint32_t org_ip_request_cntl = 0; if (hws->ctx->dc->debug.disable_dsc_power_gate) return; if (hws->ctx->dc->debug.ignore_pg) return; REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); switch (dsc_inst) { case 0: /* DSC0 */ REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DSC1 */ REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DSC2 */ REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DSC3 */ REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; default: BREAK_TO_DEBUGGER(); break; } if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); } void dcn35_enable_power_gating_plane(struct dce_hwseq *hws, bool enable) { bool force_on = true; /* disable power gating */ uint32_t org_ip_request_cntl = 0; if (hws->ctx->dc->debug.disable_hubp_power_gate) return; if (hws->ctx->dc->debug.ignore_pg) return; REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); /* DCHUBP0/1/2/3/4/5 */ REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); /* DPP0/1/2/3/4/5 */ REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); force_on = true; /* disable power gating */ if (enable && !hws->ctx->dc->debug.disable_dsc_power_gate) force_on = false; /* DCS0/1/2/3/4 */ REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); } /* In headless boot cases, DIG may be turned * on which causes HW/SW discrepancies. * To avoid this, power down hardware on boot * if DIG is turned on */ void dcn35_power_down_on_boot(struct dc *dc) { struct dc_link *edp_links[MAX_NUM_EDP]; struct dc_link *edp_link = NULL; int edp_num; int i = 0; dc_get_edp_links(dc, edp_links, &edp_num); if (edp_num) edp_link = edp_links[0]; if (edp_link && edp_link->link_enc->funcs->is_dig_enabled && edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) && dc->hwseq->funcs.edp_backlight_control && dc->hwseq->funcs.power_down && dc->hwss.edp_power_control) { dc->hwseq->funcs.edp_backlight_control(edp_link, false); dc->hwseq->funcs.power_down(dc); dc->hwss.edp_power_control(edp_link, false); } else { for (i = 0; i < dc->link_count; i++) { struct dc_link *link = dc->links[i]; if (link->link_enc && link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc) && dc->hwseq->funcs.power_down) { dc->hwseq->funcs.power_down(dc); break; } } } /* * Call update_clocks with empty context * to send DISPLAY_OFF * Otherwise DISPLAY_OFF may not be asserted */ if (dc->clk_mgr->funcs->set_low_power_state) dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr); if (dc->clk_mgr->clks.pwr_state == DCN_PWR_STATE_LOW_POWER) dc_allow_idle_optimizations(dc, true); } bool dcn35_apply_idle_power_optimizations(struct dc *dc, bool enable) { if (dc->debug.dmcub_emulation) return true; if (enable) { uint32_t num_active_edp = 0; int i; for (i = 0; i < dc->current_state->stream_count; ++i) { struct dc_stream_state *stream = dc->current_state->streams[i]; struct dc_link *link = stream->link; bool is_psr = link && !link->panel_config.psr.disable_psr && (link->psr_settings.psr_version == DC_PSR_VERSION_1 || link->psr_settings.psr_version == DC_PSR_VERSION_SU_1); bool is_replay = link && link->replay_settings.replay_feature_enabled; /* Ignore streams that disabled. */ if (stream->dpms_off) continue; /* Active external displays block idle optimizations. */ if (!dc_is_embedded_signal(stream->signal)) return false; /* If not PWRSEQ0 can't enter idle optimizations */ if (link && link->link_index != 0) return false; /* Check for panel power features required for idle optimizations. */ if (!is_psr && !is_replay) return false; num_active_edp += 1; } /* If more than one active eDP then disallow. */ if (num_active_edp > 1) return false; } // TODO: review other cases when idle optimization is allowed dc_dmub_srv_apply_idle_power_optimizations(dc, enable); return true; } void dcn35_z10_restore(const struct dc *dc) { if (dc->debug.disable_z10) return; dc_dmub_srv_apply_idle_power_optimizations(dc, false); dcn31_z10_restore(dc); } void dcn35_init_pipes(struct dc *dc, struct dc_state *context) { int i; struct dce_hwseq *hws = dc->hwseq; struct hubbub *hubbub = dc->res_pool->hubbub; struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl; bool can_apply_seamless_boot = false; bool tg_enabled[MAX_PIPES] = {false}; for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->apply_seamless_boot_optimization) { can_apply_seamless_boot = true; break; } } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; /* There is assumption that pipe_ctx is not mapping irregularly * to non-preferred front end. If pipe_ctx->stream is not NULL, * we will use the pipe, so don't disable */ if (pipe_ctx->stream != NULL && can_apply_seamless_boot) continue; /* Blank controller using driver code instead of * command table. */ if (tg->funcs->is_tg_enabled(tg)) { if (hws->funcs.init_blank != NULL) { hws->funcs.init_blank(dc, tg); tg->funcs->lock(tg); } else { tg->funcs->lock(tg); tg->funcs->set_blank(tg, true); hwss_wait_for_blank_complete(tg); } } } /* Reset det size */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct hubp *hubp = dc->res_pool->hubps[i]; /* Do not need to reset for seamless boot */ if (pipe_ctx->stream != NULL && can_apply_seamless_boot) continue; if (hubbub && hubp) { if (hubbub->funcs->program_det_size) hubbub->funcs->program_det_size(hubbub, hubp->inst, 0); if (hubbub->funcs->program_det_segments) hubbub->funcs->program_det_segments(hubbub, hubp->inst, 0); } } /* num_opp will be equal to number of mpcc */ for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; /* Cannot reset the MPC mux if seamless boot */ if (pipe_ctx->stream != NULL && can_apply_seamless_boot) continue; dc->res_pool->mpc->funcs->mpc_init_single_inst( dc->res_pool->mpc, i); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; struct hubp *hubp = dc->res_pool->hubps[i]; struct dpp *dpp = dc->res_pool->dpps[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; /* There is assumption that pipe_ctx is not mapping irregularly * to non-preferred front end. If pipe_ctx->stream is not NULL, * we will use the pipe, so don't disable */ if (can_apply_seamless_boot && pipe_ctx->stream != NULL && pipe_ctx->stream_res.tg->funcs->is_tg_enabled( pipe_ctx->stream_res.tg)) { // Enable double buffering for OTG_BLANK no matter if // seamless boot is enabled or not to suppress global sync // signals when OTG blanked. This is to prevent pipe from // requesting data while in PSR. tg->funcs->tg_init(tg); hubp->power_gated = true; tg_enabled[i] = true; continue; } /* Disable on the current state so the new one isn't cleared. */ pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; dpp->funcs->dpp_reset(dpp); pipe_ctx->stream_res.tg = tg; pipe_ctx->pipe_idx = i; pipe_ctx->plane_res.hubp = hubp; pipe_ctx->plane_res.dpp = dpp; pipe_ctx->plane_res.mpcc_inst = dpp->inst; hubp->mpcc_id = dpp->inst; hubp->opp_id = OPP_ID_INVALID; hubp->power_gated = false; dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst; dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL; dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true; pipe_ctx->stream_res.opp = dc->res_pool->opps[i]; hws->funcs.plane_atomic_disconnect(dc, context, pipe_ctx); if (tg->funcs->is_tg_enabled(tg)) tg->funcs->unlock(tg); dc->hwss.disable_plane(dc, context, pipe_ctx); pipe_ctx->stream_res.tg = NULL; pipe_ctx->plane_res.hubp = NULL; if (tg->funcs->is_tg_enabled(tg)) { if (tg->funcs->init_odm) tg->funcs->init_odm(tg); } tg->funcs->tg_init(tg); } /* Clean up MPC tree */ for (i = 0; i < dc->res_pool->pipe_count; i++) { if (tg_enabled[i]) { if (dc->res_pool->opps[i]->mpc_tree_params.opp_list) { if (dc->res_pool->opps[i]->mpc_tree_params.opp_list->mpcc_bot) { int bot_id = dc->res_pool->opps[i]->mpc_tree_params.opp_list->mpcc_bot->mpcc_id; if ((bot_id < MAX_MPCC) && (bot_id < MAX_PIPES) && (!tg_enabled[bot_id])) dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL; } } } } if (pg_cntl != NULL) { if (pg_cntl->funcs->dsc_pg_control != NULL) { uint32_t num_opps = 0; uint32_t opp_id_src0 = OPP_ID_INVALID; uint32_t opp_id_src1 = OPP_ID_INVALID; // Step 1: To find out which OPTC is running & OPTC DSC is ON // We can't use res_pool->res_cap->num_timing_generator to check // Because it records display pipes default setting built in driver, // not display pipes of the current chip. // Some ASICs would be fused display pipes less than the default setting. // In dcnxx_resource_construct function, driver would obatin real information. for (i = 0; i < dc->res_pool->timing_generator_count; i++) { uint32_t optc_dsc_state = 0; struct timing_generator *tg = dc->res_pool->timing_generators[i]; if (tg->funcs->is_tg_enabled(tg)) { if (tg->funcs->get_dsc_status) tg->funcs->get_dsc_status(tg, &optc_dsc_state); // Only one OPTC with DSC is ON, so if we got one result, // we would exit this block. non-zero value is DSC enabled if (optc_dsc_state != 0) { tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1); break; } } } // Step 2: To power down DSC but skip DSC of running OPTC for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) { struct dcn_dsc_state s = {0}; dc->res_pool->dscs[i]->funcs->dsc_read_state(dc->res_pool->dscs[i], &s); if ((s.dsc_opp_source == opp_id_src0 || s.dsc_opp_source == opp_id_src1) && s.dsc_clock_en && s.dsc_fw_en) continue; pg_cntl->funcs->dsc_pg_control(pg_cntl, dc->res_pool->dscs[i]->inst, false); } } } } void dcn35_enable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { /* enable DCFCLK current DCHUB */ pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true); /* initialize HUBP on power up */ pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp); /* make sure OPP_PIPE_CLOCK_EN = 1 */ pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( pipe_ctx->stream_res.opp, true); /*to do: insert PG here*/ if (dc->vm_pa_config.valid) { struct vm_system_aperture_param apt; apt.sys_default.quad_part = 0; apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr; apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr; // Program system aperture settings pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt); } if (!pipe_ctx->top_pipe && pipe_ctx->plane_state && pipe_ctx->plane_state->flip_int_enabled && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int) pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp); } /* disable HW used by plane. * note: cannot disable until disconnect is complete */ void dcn35_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct hubp *hubp = pipe_ctx->plane_res.hubp; struct dpp *dpp = pipe_ctx->plane_res.dpp; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx); /* In flip immediate with pipe splitting case GSL is used for * synchronization so we must disable it when the plane is disabled. */ if (pipe_ctx->stream_res.gsl_group != 0) dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false); /* if (hubp->funcs->hubp_update_mall_sel) hubp->funcs->hubp_update_mall_sel(hubp, 0, false); */ dc->hwss.set_flip_control_gsl(pipe_ctx, false); hubp->funcs->hubp_clk_cntl(hubp, false); dpp->funcs->dpp_dppclk_control(dpp, false, false); /*to do, need to support both case*/ hubp->power_gated = true; dpp->funcs->dpp_reset(dpp); pipe_ctx->stream = NULL; memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res)); memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res)); pipe_ctx->top_pipe = NULL; pipe_ctx->bottom_pipe = NULL; pipe_ctx->plane_state = NULL; } void dcn35_disable_plane(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx) { struct dce_hwseq *hws = dc->hwseq; bool is_phantom = dc_state_get_pipe_subvp_type(state, pipe_ctx) == SUBVP_PHANTOM; struct timing_generator *tg = is_phantom ? pipe_ctx->stream_res.tg : NULL; DC_LOGGER_INIT(dc->ctx->logger); if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated) return; if (hws->funcs.plane_atomic_disable) hws->funcs.plane_atomic_disable(dc, pipe_ctx); /* Turn back off the phantom OTG after the phantom plane is fully disabled */ if (is_phantom) if (tg && tg->funcs->disable_phantom_crtc) tg->funcs->disable_phantom_crtc(tg); DC_LOG_DC("Power down front end %d\n", pipe_ctx->pipe_idx); } void dcn35_calc_blocks_to_gate(struct dc *dc, struct dc_state *context, struct pg_block_update *update_state) { bool hpo_frl_stream_enc_acquired = false; bool hpo_dp_stream_enc_acquired = false; int i = 0, j = 0; int edp_num = 0; struct dc_link *edp_links[MAX_NUM_EDP] = { NULL }; memset(update_state, 0, sizeof(struct pg_block_update)); for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++) { if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i] && dc->res_pool->hpo_dp_stream_enc[i]) { hpo_dp_stream_enc_acquired = true; break; } } if (!hpo_frl_stream_enc_acquired && !hpo_dp_stream_enc_acquired) update_state->pg_res_update[PG_HPO] = true; update_state->pg_res_update[PG_DWB] = true; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++) update_state->pg_pipe_res_update[j][i] = true; if (!pipe_ctx) continue; if (pipe_ctx->plane_res.hubp) update_state->pg_pipe_res_update[PG_HUBP][pipe_ctx->plane_res.hubp->inst] = false; if (pipe_ctx->plane_res.dpp && pipe_ctx->plane_res.hubp) update_state->pg_pipe_res_update[PG_DPP][pipe_ctx->plane_res.hubp->inst] = false; if (pipe_ctx->plane_res.dpp || pipe_ctx->stream_res.opp) update_state->pg_pipe_res_update[PG_MPCC][pipe_ctx->plane_res.mpcc_inst] = false; if (pipe_ctx->stream_res.dsc) update_state->pg_pipe_res_update[PG_DSC][pipe_ctx->stream_res.dsc->inst] = false; if (pipe_ctx->stream_res.opp) update_state->pg_pipe_res_update[PG_OPP][pipe_ctx->stream_res.opp->inst] = false; if (pipe_ctx->stream_res.hpo_dp_stream_enc) update_state->pg_pipe_res_update[PG_DPSTREAM][pipe_ctx->stream_res.hpo_dp_stream_enc->inst] = false; } for (i = 0; i < dc->link_count; i++) { update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = true; if (dc->links[i]->type != dc_connection_none) update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = false; } /*domain24 controls all the otg, mpc, opp, as long as one otg is still up, avoid enabling OTG PG*/ for (i = 0; i < dc->res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; if (tg && tg->funcs->is_tg_enabled(tg)) { update_state->pg_pipe_res_update[PG_OPTC][i] = false; break; } } dc_get_edp_links(dc, edp_links, &edp_num); if (edp_num == 0 || ((!edp_links[0] || !edp_links[0]->edp_sink_present) && (!edp_links[1] || !edp_links[1]->edp_sink_present))) { /*eDP not exist on this config, keep Domain24 power on, for S0i3, this will be handled in dmubfw*/ update_state->pg_pipe_res_update[PG_OPTC][0] = false; } if (dc->caps.sequential_ono) { for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (!update_state->pg_pipe_res_update[PG_HUBP][i] && !update_state->pg_pipe_res_update[PG_DPP][i]) { for (j = i - 1; j >= 0; j--) { update_state->pg_pipe_res_update[PG_HUBP][j] = false; update_state->pg_pipe_res_update[PG_DPP][j] = false; } break; } } } } void dcn35_calc_blocks_to_ungate(struct dc *dc, struct dc_state *context, struct pg_block_update *update_state) { bool hpo_frl_stream_enc_acquired = false; bool hpo_dp_stream_enc_acquired = false; int i = 0, j = 0; memset(update_state, 0, sizeof(struct pg_block_update)); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *cur_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i]; if (cur_pipe == NULL || new_pipe == NULL) continue; if ((!cur_pipe->plane_state && new_pipe->plane_state) || (!cur_pipe->stream && new_pipe->stream) || (cur_pipe->stream != new_pipe->stream && new_pipe->stream)) { // New pipe addition for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++) { if (j == PG_HUBP && new_pipe->plane_res.hubp) update_state->pg_pipe_res_update[j][new_pipe->plane_res.hubp->inst] = true; if (j == PG_DPP && new_pipe->plane_res.dpp) update_state->pg_pipe_res_update[j][new_pipe->plane_res.dpp->inst] = true; if (j == PG_MPCC && new_pipe->plane_res.dpp) update_state->pg_pipe_res_update[j][new_pipe->plane_res.mpcc_inst] = true; if (j == PG_DSC && new_pipe->stream_res.dsc) update_state->pg_pipe_res_update[j][new_pipe->stream_res.dsc->inst] = true; if (j == PG_OPP && new_pipe->stream_res.opp) update_state->pg_pipe_res_update[j][new_pipe->stream_res.opp->inst] = true; if (j == PG_OPTC && new_pipe->stream_res.tg) update_state->pg_pipe_res_update[j][new_pipe->stream_res.tg->inst] = true; if (j == PG_DPSTREAM && new_pipe->stream_res.hpo_dp_stream_enc) update_state->pg_pipe_res_update[j][new_pipe->stream_res.hpo_dp_stream_enc->inst] = true; } } else if (cur_pipe->plane_state == new_pipe->plane_state || cur_pipe == new_pipe) { //unchanged pipes for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++) { if (j == PG_HUBP && cur_pipe->plane_res.hubp != new_pipe->plane_res.hubp && new_pipe->plane_res.hubp) update_state->pg_pipe_res_update[j][new_pipe->plane_res.hubp->inst] = true; if (j == PG_DPP && cur_pipe->plane_res.dpp != new_pipe->plane_res.dpp && new_pipe->plane_res.dpp) update_state->pg_pipe_res_update[j][new_pipe->plane_res.dpp->inst] = true; if (j == PG_OPP && cur_pipe->stream_res.opp != new_pipe->stream_res.opp && new_pipe->stream_res.opp) update_state->pg_pipe_res_update[j][new_pipe->stream_res.opp->inst] = true; if (j == PG_DSC && cur_pipe->stream_res.dsc != new_pipe->stream_res.dsc && new_pipe->stream_res.dsc) update_state->pg_pipe_res_update[j][new_pipe->stream_res.dsc->inst] = true; if (j == PG_OPTC && cur_pipe->stream_res.tg != new_pipe->stream_res.tg && new_pipe->stream_res.tg) update_state->pg_pipe_res_update[j][new_pipe->stream_res.tg->inst] = true; if (j == PG_DPSTREAM && cur_pipe->stream_res.hpo_dp_stream_enc != new_pipe->stream_res.hpo_dp_stream_enc && new_pipe->stream_res.hpo_dp_stream_enc) update_state->pg_pipe_res_update[j][new_pipe->stream_res.hpo_dp_stream_enc->inst] = true; } } } for (i = 0; i < dc->link_count; i++) if (dc->links[i]->type != dc_connection_none) update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = true; for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++) { if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i] && dc->res_pool->hpo_dp_stream_enc[i]) { hpo_dp_stream_enc_acquired = true; break; } } if (hpo_frl_stream_enc_acquired || hpo_dp_stream_enc_acquired) update_state->pg_res_update[PG_HPO] = true; if (hpo_frl_stream_enc_acquired) update_state->pg_pipe_res_update[PG_HDMISTREAM][0] = true; if (dc->caps.sequential_ono) { for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (update_state->pg_pipe_res_update[PG_HUBP][i] && update_state->pg_pipe_res_update[PG_DPP][i]) { for (j = i - 1; j >= 0; j--) { update_state->pg_pipe_res_update[PG_HUBP][j] = true; update_state->pg_pipe_res_update[PG_DPP][j] = true; } break; } } } } /** * dcn35_hw_block_power_down() - power down sequence * * The following sequence describes the ON-OFF (ONO) for power down: * * ONO Region 3, DCPG 25: hpo - SKIPPED * ONO Region 4, DCPG 0: dchubp0, dpp0 * ONO Region 6, DCPG 1: dchubp1, dpp1 * ONO Region 8, DCPG 2: dchubp2, dpp2 * ONO Region 10, DCPG 3: dchubp3, dpp3 * ONO Region 1, DCPG 23: dchubbub dchvm dchubbubmem - SKIPPED. PMFW will pwr dwn at IPS2 entry * ONO Region 5, DCPG 16: dsc0 * ONO Region 7, DCPG 17: dsc1 * ONO Region 9, DCPG 18: dsc2 * ONO Region 11, DCPG 19: dsc3 * ONO Region 2, DCPG 24: mpc opp optc dwb * ONO Region 0, DCPG 22: dccg dio dcio - SKIPPED. will be pwr dwn after lono timer is armed * * If sequential ONO is specified the order is modified from ONO Region 11 -> ONO Region 0 descending. * * @dc: Current DC state * @update_state: update PG sequence states for HW block */ void dcn35_hw_block_power_down(struct dc *dc, struct pg_block_update *update_state) { int i = 0; struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl; if (!pg_cntl) return; if (dc->debug.ignore_pg) return; if (update_state->pg_res_update[PG_HPO]) { if (pg_cntl->funcs->hpo_pg_control) pg_cntl->funcs->hpo_pg_control(pg_cntl, false); } if (!dc->caps.sequential_ono) { for (i = 0; i < dc->res_pool->pipe_count; i++) { if (update_state->pg_pipe_res_update[PG_HUBP][i] && update_state->pg_pipe_res_update[PG_DPP][i]) { if (pg_cntl->funcs->hubp_dpp_pg_control) pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, false); } } for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) { if (update_state->pg_pipe_res_update[PG_DSC][i]) { if (pg_cntl->funcs->dsc_pg_control) pg_cntl->funcs->dsc_pg_control(pg_cntl, i, false); } } } else { for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (update_state->pg_pipe_res_update[PG_DSC][i]) { if (pg_cntl->funcs->dsc_pg_control) pg_cntl->funcs->dsc_pg_control(pg_cntl, i, false); } if (update_state->pg_pipe_res_update[PG_HUBP][i] && update_state->pg_pipe_res_update[PG_DPP][i]) { if (pg_cntl->funcs->hubp_dpp_pg_control) pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, false); } } } /*this will need all the clients to unregister optc interruts let dmubfw handle this*/ if (pg_cntl->funcs->plane_otg_pg_control) pg_cntl->funcs->plane_otg_pg_control(pg_cntl, false); //domain22, 23, 25 currently always on. } /** * dcn35_hw_block_power_up() - power up sequence * * The following sequence describes the ON-OFF (ONO) for power up: * * ONO Region 0, DCPG 22: dccg dio dcio - SKIPPED * ONO Region 2, DCPG 24: mpc opp optc dwb * ONO Region 5, DCPG 16: dsc0 * ONO Region 7, DCPG 17: dsc1 * ONO Region 9, DCPG 18: dsc2 * ONO Region 11, DCPG 19: dsc3 * ONO Region 1, DCPG 23: dchubbub dchvm dchubbubmem - SKIPPED. PMFW will power up at IPS2 exit * ONO Region 4, DCPG 0: dchubp0, dpp0 * ONO Region 6, DCPG 1: dchubp1, dpp1 * ONO Region 8, DCPG 2: dchubp2, dpp2 * ONO Region 10, DCPG 3: dchubp3, dpp3 * ONO Region 3, DCPG 25: hpo - SKIPPED * * If sequential ONO is specified the order is modified from ONO Region 0 -> ONO Region 11 ascending. * * @dc: Current DC state * @update_state: update PG sequence states for HW block */ void dcn35_hw_block_power_up(struct dc *dc, struct pg_block_update *update_state) { int i = 0; struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl; if (!pg_cntl) return; if (dc->debug.ignore_pg) return; //domain22, 23, 25 currently always on. /*this will need all the clients to unregister optc interruts let dmubfw handle this*/ if (pg_cntl->funcs->plane_otg_pg_control) pg_cntl->funcs->plane_otg_pg_control(pg_cntl, true); if (!dc->caps.sequential_ono) { for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) if (update_state->pg_pipe_res_update[PG_DSC][i]) { if (pg_cntl->funcs->dsc_pg_control) pg_cntl->funcs->dsc_pg_control(pg_cntl, i, true); } } for (i = 0; i < dc->res_pool->pipe_count; i++) { if (update_state->pg_pipe_res_update[PG_HUBP][i] && update_state->pg_pipe_res_update[PG_DPP][i]) { if (pg_cntl->funcs->hubp_dpp_pg_control) pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, true); } if (dc->caps.sequential_ono) { if (update_state->pg_pipe_res_update[PG_DSC][i]) { if (pg_cntl->funcs->dsc_pg_control) pg_cntl->funcs->dsc_pg_control(pg_cntl, i, true); } } } if (update_state->pg_res_update[PG_HPO]) { if (pg_cntl->funcs->hpo_pg_control) pg_cntl->funcs->hpo_pg_control(pg_cntl, true); } } void dcn35_root_clock_control(struct dc *dc, struct pg_block_update *update_state, bool power_on) { int i = 0; struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl; if (!pg_cntl) return; /*enable root clock first when power up*/ if (power_on) { for (i = 0; i < dc->res_pool->pipe_count; i++) { if (update_state->pg_pipe_res_update[PG_HUBP][i] && update_state->pg_pipe_res_update[PG_DPP][i]) { if (dc->hwseq->funcs.dpp_root_clock_control) dc->hwseq->funcs.dpp_root_clock_control(dc->hwseq, i, power_on); } if (update_state->pg_pipe_res_update[PG_DPSTREAM][i]) if (dc->hwseq->funcs.dpstream_root_clock_control) dc->hwseq->funcs.dpstream_root_clock_control(dc->hwseq, i, power_on); } for (i = 0; i < dc->res_pool->dig_link_enc_count; i++) if (update_state->pg_pipe_res_update[PG_PHYSYMCLK][i]) if (dc->hwseq->funcs.physymclk_root_clock_control) dc->hwseq->funcs.physymclk_root_clock_control(dc->hwseq, i, power_on); } for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) { if (update_state->pg_pipe_res_update[PG_DSC][i]) { if (power_on) { if (dc->res_pool->dccg->funcs->enable_dsc) dc->res_pool->dccg->funcs->enable_dsc(dc->res_pool->dccg, i); } else { if (dc->res_pool->dccg->funcs->disable_dsc) dc->res_pool->dccg->funcs->disable_dsc(dc->res_pool->dccg, i); } } } /*disable root clock first when power down*/ if (!power_on) { for (i = 0; i < dc->res_pool->pipe_count; i++) { if (update_state->pg_pipe_res_update[PG_HUBP][i] && update_state->pg_pipe_res_update[PG_DPP][i]) { if (dc->hwseq->funcs.dpp_root_clock_control) dc->hwseq->funcs.dpp_root_clock_control(dc->hwseq, i, power_on); } if (update_state->pg_pipe_res_update[PG_DPSTREAM][i]) if (dc->hwseq->funcs.dpstream_root_clock_control) dc->hwseq->funcs.dpstream_root_clock_control(dc->hwseq, i, power_on); } for (i = 0; i < dc->res_pool->dig_link_enc_count; i++) if (update_state->pg_pipe_res_update[PG_PHYSYMCLK][i]) if (dc->hwseq->funcs.physymclk_root_clock_control) dc->hwseq->funcs.physymclk_root_clock_control(dc->hwseq, i, power_on); } } void dcn35_prepare_bandwidth( struct dc *dc, struct dc_state *context) { struct pg_block_update pg_update_state; if (dc->hwss.calc_blocks_to_ungate) { dc->hwss.calc_blocks_to_ungate(dc, context, &pg_update_state); if (dc->hwss.root_clock_control) dc->hwss.root_clock_control(dc, &pg_update_state, true); /*power up required HW block*/ if (dc->hwss.hw_block_power_up) dc->hwss.hw_block_power_up(dc, &pg_update_state); } dcn20_prepare_bandwidth(dc, context); } void dcn35_optimize_bandwidth( struct dc *dc, struct dc_state *context) { struct pg_block_update pg_update_state; dcn20_optimize_bandwidth(dc, context); if (dc->hwss.calc_blocks_to_gate) { dc->hwss.calc_blocks_to_gate(dc, context, &pg_update_state); /*try to power down unused block*/ if (dc->hwss.hw_block_power_down) dc->hwss.hw_block_power_down(dc, &pg_update_state); if (dc->hwss.root_clock_control) dc->hwss.root_clock_control(dc, &pg_update_state, false); } } void dcn35_set_drr(struct pipe_ctx **pipe_ctx, int num_pipes, struct dc_crtc_timing_adjust adjust) { int i = 0; struct drr_params params = {0}; // DRR set trigger event mapped to OTG_TRIG_A unsigned int event_triggers = 0x2;//Bit[1]: OTG_TRIG_A // Note DRR trigger events are generated regardless of whether num frames met. unsigned int num_frames = 2; params.vertical_total_max = adjust.v_total_max; params.vertical_total_min = adjust.v_total_min; params.vertical_total_mid = adjust.v_total_mid; params.vertical_total_mid_frame_num = adjust.v_total_mid_frame_num; for (i = 0; i < num_pipes; i++) { /* dc_state_destruct() might null the stream resources, so fetch tg * here first to avoid a race condition. The lifetime of the pointee * itself (the timing_generator object) is not a problem here. */ struct timing_generator *tg = pipe_ctx[i]->stream_res.tg; if ((tg != NULL) && tg->funcs) { if (pipe_ctx[i]->stream && pipe_ctx[i]->stream->ctx->dc->debug.static_screen_wait_frames) { struct dc_crtc_timing *timing = &pipe_ctx[i]->stream->timing; struct dc *dc = pipe_ctx[i]->stream->ctx->dc; unsigned int frame_rate = timing->pix_clk_100hz / (timing->h_total * timing->v_total); if (frame_rate >= 120 && dc->caps.ips_support && dc->config.disable_ips != DMUB_IPS_DISABLE_ALL) { /*ips enable case*/ num_frames = 2 * (frame_rate % 60); } } if (tg->funcs->set_drr) tg->funcs->set_drr(tg, ¶ms); if (adjust.v_total_max != 0 && adjust.v_total_min != 0) if (tg->funcs->set_static_screen_control) tg->funcs->set_static_screen_control( tg, event_triggers, num_frames); } } } void dcn35_set_static_screen_control(struct pipe_ctx **pipe_ctx, int num_pipes, const struct dc_static_screen_params *params) { unsigned int i; unsigned int triggers = 0; if (params->triggers.surface_update) triggers |= 0x200;/*bit 9 : 10 0000 0000*/ if (params->triggers.cursor_update) triggers |= 0x8;/*bit3*/ if (params->triggers.force_trigger) triggers |= 0x1; for (i = 0; i < num_pipes; i++) pipe_ctx[i]->stream_res.tg->funcs-> set_static_screen_control(pipe_ctx[i]->stream_res.tg, triggers, params->num_frames); } void dcn35_set_long_vblank(struct pipe_ctx **pipe_ctx, int num_pipes, uint32_t v_total_min, uint32_t v_total_max) { int i = 0; struct long_vtotal_params params = {0}; params.vertical_total_max = v_total_max; params.vertical_total_min = v_total_min; for (i = 0; i < num_pipes; i++) { if (!pipe_ctx[i]) continue; if (pipe_ctx[i]->stream) { struct dc_crtc_timing *timing = &pipe_ctx[i]->stream->timing; if (timing) params.vertical_blank_start = timing->v_total - timing->v_front_porch; else params.vertical_blank_start = 0; if ((pipe_ctx[i]->stream_res.tg != NULL) && pipe_ctx[i]->stream_res.tg->funcs && pipe_ctx[i]->stream_res.tg->funcs->set_long_vtotal) pipe_ctx[i]->stream_res.tg->funcs->set_long_vtotal(pipe_ctx[i]->stream_res.tg, ¶ms); } } } static bool should_avoid_empty_tu(struct pipe_ctx *pipe_ctx) { /* Calculate average pixel count per TU, return false if under ~2.00 to * avoid empty TUs. This is only required for DPIA tunneling as empty TUs * are legal to generate for native DP links. Assume TU size 64 as there * is currently no scenario where it's reprogrammed from HW default. * MTPs have no such limitation, so this does not affect MST use cases. */ unsigned int pix_clk_mhz; unsigned int symclk_mhz; unsigned int avg_pix_per_tu_x1000; unsigned int tu_size_bytes = 64; struct dc_crtc_timing *timing = &pipe_ctx->stream->timing; struct dc_link_settings *link_settings = &pipe_ctx->link_config.dp_link_settings; const struct dc *dc = pipe_ctx->stream->link->dc; if (pipe_ctx->stream->link->ep_type != DISPLAY_ENDPOINT_USB4_DPIA) return false; // Not necessary for MST configurations if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) return false; pix_clk_mhz = timing->pix_clk_100hz / 10000; // If this is true, can't block due to dynamic ODM if (pix_clk_mhz > dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz) return false; switch (link_settings->link_rate) { case LINK_RATE_LOW: symclk_mhz = 162; break; case LINK_RATE_HIGH: symclk_mhz = 270; break; case LINK_RATE_HIGH2: symclk_mhz = 540; break; case LINK_RATE_HIGH3: symclk_mhz = 810; break; default: // We shouldn't be tunneling any other rates, something is wrong ASSERT(0); return false; } avg_pix_per_tu_x1000 = (1000 * pix_clk_mhz * tu_size_bytes) / (symclk_mhz * link_settings->lane_count); // Add small empirically-decided margin to account for potential jitter return (avg_pix_per_tu_x1000 < 2020); } bool dcn35_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx) { struct dc *dc = pipe_ctx->stream->ctx->dc; if (!is_h_timing_divisible_by_2(pipe_ctx->stream)) return false; if (should_avoid_empty_tu(pipe_ctx)) return false; if (dc_is_dp_signal(pipe_ctx->stream->signal) && !dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dc->debug.enable_dp_dig_pixel_rate_div_policy) return true; return false; }