/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include "amdgpu.h" #include "umc_v6_7.h" #define MAX_UMC_POISON_POLLING_TIME_SYNC 20 //ms #define MAX_UMC_HASH_STRING_SIZE 256 static int amdgpu_umc_convert_error_address(struct amdgpu_device *adev, struct ras_err_data *err_data, uint64_t err_addr, uint32_t ch_inst, uint32_t umc_inst) { switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) { case IP_VERSION(6, 7, 0): umc_v6_7_convert_error_address(adev, err_data, err_addr, ch_inst, umc_inst); break; default: dev_warn(adev->dev, "UMC address to Physical address translation is not supported\n"); return AMDGPU_RAS_FAIL; } return AMDGPU_RAS_SUCCESS; } int amdgpu_umc_page_retirement_mca(struct amdgpu_device *adev, uint64_t err_addr, uint32_t ch_inst, uint32_t umc_inst) { struct ras_err_data err_data; int ret; ret = amdgpu_ras_error_data_init(&err_data); if (ret) return ret; err_data.err_addr = kcalloc(adev->umc.max_ras_err_cnt_per_query, sizeof(struct eeprom_table_record), GFP_KERNEL); if (!err_data.err_addr) { dev_warn(adev->dev, "Failed to alloc memory for umc error record in MCA notifier!\n"); ret = AMDGPU_RAS_FAIL; goto out_fini_err_data; } err_data.err_addr_len = adev->umc.max_ras_err_cnt_per_query; /* * Translate UMC channel address to Physical address */ ret = amdgpu_umc_convert_error_address(adev, &err_data, err_addr, ch_inst, umc_inst); if (ret) goto out_free_err_addr; if (amdgpu_bad_page_threshold != 0) { amdgpu_ras_add_bad_pages(adev, err_data.err_addr, err_data.err_addr_cnt); amdgpu_ras_save_bad_pages(adev, NULL); } out_free_err_addr: kfree(err_data.err_addr); out_fini_err_data: amdgpu_ras_error_data_fini(&err_data); return ret; } void amdgpu_umc_handle_bad_pages(struct amdgpu_device *adev, void *ras_error_status) { struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; struct amdgpu_ras *con = amdgpu_ras_get_context(adev); unsigned int error_query_mode; int ret = 0; unsigned long err_count; amdgpu_ras_get_error_query_mode(adev, &error_query_mode); mutex_lock(&con->page_retirement_lock); ret = amdgpu_dpm_get_ecc_info(adev, (void *)&(con->umc_ecc)); if (ret == -EOPNOTSUPP && error_query_mode == AMDGPU_RAS_DIRECT_ERROR_QUERY) { if (adev->umc.ras && adev->umc.ras->ras_block.hw_ops && adev->umc.ras->ras_block.hw_ops->query_ras_error_count) adev->umc.ras->ras_block.hw_ops->query_ras_error_count(adev, ras_error_status); if (adev->umc.ras && adev->umc.ras->ras_block.hw_ops && adev->umc.ras->ras_block.hw_ops->query_ras_error_address && adev->umc.max_ras_err_cnt_per_query) { err_data->err_addr = kcalloc(adev->umc.max_ras_err_cnt_per_query, sizeof(struct eeprom_table_record), GFP_KERNEL); /* still call query_ras_error_address to clear error status * even NOMEM error is encountered */ if(!err_data->err_addr) dev_warn(adev->dev, "Failed to alloc memory for " "umc error address record!\n"); else err_data->err_addr_len = adev->umc.max_ras_err_cnt_per_query; /* umc query_ras_error_address is also responsible for clearing * error status */ adev->umc.ras->ras_block.hw_ops->query_ras_error_address(adev, ras_error_status); } } else if (error_query_mode == AMDGPU_RAS_FIRMWARE_ERROR_QUERY || (!ret && error_query_mode == AMDGPU_RAS_DIRECT_ERROR_QUERY)) { if (adev->umc.ras && adev->umc.ras->ecc_info_query_ras_error_count) adev->umc.ras->ecc_info_query_ras_error_count(adev, ras_error_status); if (adev->umc.ras && adev->umc.ras->ecc_info_query_ras_error_address && adev->umc.max_ras_err_cnt_per_query) { err_data->err_addr = kcalloc(adev->umc.max_ras_err_cnt_per_query, sizeof(struct eeprom_table_record), GFP_KERNEL); /* still call query_ras_error_address to clear error status * even NOMEM error is encountered */ if(!err_data->err_addr) dev_warn(adev->dev, "Failed to alloc memory for " "umc error address record!\n"); else err_data->err_addr_len = adev->umc.max_ras_err_cnt_per_query; /* umc query_ras_error_address is also responsible for clearing * error status */ adev->umc.ras->ecc_info_query_ras_error_address(adev, ras_error_status); } } /* only uncorrectable error needs gpu reset */ if (err_data->ue_count || err_data->de_count) { err_count = err_data->ue_count + err_data->de_count; if ((amdgpu_bad_page_threshold != 0) && err_data->err_addr_cnt) { amdgpu_ras_add_bad_pages(adev, err_data->err_addr, err_data->err_addr_cnt); amdgpu_ras_save_bad_pages(adev, &err_count); amdgpu_dpm_send_hbm_bad_pages_num(adev, con->eeprom_control.ras_num_recs); if (con->update_channel_flag == true) { amdgpu_dpm_send_hbm_bad_channel_flag(adev, con->eeprom_control.bad_channel_bitmap); con->update_channel_flag = false; } } } kfree(err_data->err_addr); err_data->err_addr = NULL; mutex_unlock(&con->page_retirement_lock); } static int amdgpu_umc_do_page_retirement(struct amdgpu_device *adev, void *ras_error_status, struct amdgpu_iv_entry *entry, uint32_t reset) { struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; struct amdgpu_ras *con = amdgpu_ras_get_context(adev); kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); amdgpu_umc_handle_bad_pages(adev, ras_error_status); if ((err_data->ue_count || err_data->de_count) && (reset || amdgpu_ras_is_rma(adev))) { con->gpu_reset_flags |= reset; amdgpu_ras_reset_gpu(adev); } return AMDGPU_RAS_SUCCESS; } int amdgpu_umc_pasid_poison_handler(struct amdgpu_device *adev, enum amdgpu_ras_block block, uint16_t pasid, pasid_notify pasid_fn, void *data, uint32_t reset) { int ret = AMDGPU_RAS_SUCCESS; if (adev->gmc.xgmi.connected_to_cpu || adev->gmc.is_app_apu) { if (reset) { /* MCA poison handler is only responsible for GPU reset, * let MCA notifier do page retirement. */ kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); amdgpu_ras_reset_gpu(adev); } return ret; } if (!amdgpu_sriov_vf(adev)) { if (amdgpu_ip_version(adev, UMC_HWIP, 0) < IP_VERSION(12, 0, 0)) { struct ras_err_data err_data; struct ras_common_if head = { .block = AMDGPU_RAS_BLOCK__UMC, }; struct ras_manager *obj = amdgpu_ras_find_obj(adev, &head); ret = amdgpu_ras_error_data_init(&err_data); if (ret) return ret; ret = amdgpu_umc_do_page_retirement(adev, &err_data, NULL, reset); if (ret == AMDGPU_RAS_SUCCESS && obj) { obj->err_data.ue_count += err_data.ue_count; obj->err_data.ce_count += err_data.ce_count; obj->err_data.de_count += err_data.de_count; } amdgpu_ras_error_data_fini(&err_data); } else { struct amdgpu_ras *con = amdgpu_ras_get_context(adev); int ret; ret = amdgpu_ras_put_poison_req(adev, block, pasid, pasid_fn, data, reset); if (!ret) { atomic_inc(&con->page_retirement_req_cnt); wake_up(&con->page_retirement_wq); } } } else { if (adev->virt.ops && adev->virt.ops->ras_poison_handler) adev->virt.ops->ras_poison_handler(adev, block); else dev_warn(adev->dev, "No ras_poison_handler interface in SRIOV!\n"); } return ret; } int amdgpu_umc_poison_handler(struct amdgpu_device *adev, enum amdgpu_ras_block block, uint32_t reset) { return amdgpu_umc_pasid_poison_handler(adev, block, 0, NULL, NULL, reset); } int amdgpu_umc_process_ras_data_cb(struct amdgpu_device *adev, void *ras_error_status, struct amdgpu_iv_entry *entry) { return amdgpu_umc_do_page_retirement(adev, ras_error_status, entry, AMDGPU_RAS_GPU_RESET_MODE1_RESET); } int amdgpu_umc_ras_sw_init(struct amdgpu_device *adev) { int err; struct amdgpu_umc_ras *ras; if (!adev->umc.ras) return 0; ras = adev->umc.ras; err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); if (err) { dev_err(adev->dev, "Failed to register umc ras block!\n"); return err; } strcpy(adev->umc.ras->ras_block.ras_comm.name, "umc"); ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__UMC; ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; adev->umc.ras_if = &ras->ras_block.ras_comm; if (!ras->ras_block.ras_late_init) ras->ras_block.ras_late_init = amdgpu_umc_ras_late_init; if (!ras->ras_block.ras_cb) ras->ras_block.ras_cb = amdgpu_umc_process_ras_data_cb; return 0; } int amdgpu_umc_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) { int r; r = amdgpu_ras_block_late_init(adev, ras_block); if (r) return r; if (amdgpu_ras_is_supported(adev, ras_block->block)) { r = amdgpu_irq_get(adev, &adev->gmc.ecc_irq, 0); if (r) goto late_fini; } /* ras init of specific umc version */ if (adev->umc.ras && adev->umc.ras->err_cnt_init) adev->umc.ras->err_cnt_init(adev); return 0; late_fini: amdgpu_ras_block_late_fini(adev, ras_block); return r; } int amdgpu_umc_process_ecc_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct ras_common_if *ras_if = adev->umc.ras_if; struct ras_dispatch_if ih_data = { .entry = entry, }; if (!ras_if) return 0; ih_data.head = *ras_if; amdgpu_ras_interrupt_dispatch(adev, &ih_data); return 0; } int amdgpu_umc_fill_error_record(struct ras_err_data *err_data, uint64_t err_addr, uint64_t retired_page, uint32_t channel_index, uint32_t umc_inst) { struct eeprom_table_record *err_rec; if (!err_data || !err_data->err_addr || (err_data->err_addr_cnt >= err_data->err_addr_len)) return -EINVAL; err_rec = &err_data->err_addr[err_data->err_addr_cnt]; err_rec->address = err_addr; /* page frame address is saved */ err_rec->retired_page = retired_page >> AMDGPU_GPU_PAGE_SHIFT; err_rec->ts = (uint64_t)ktime_get_real_seconds(); err_rec->err_type = AMDGPU_RAS_EEPROM_ERR_NON_RECOVERABLE; err_rec->cu = 0; err_rec->mem_channel = channel_index; err_rec->mcumc_id = umc_inst; err_data->err_addr_cnt++; return 0; } int amdgpu_umc_loop_channels(struct amdgpu_device *adev, umc_func func, void *data) { uint32_t node_inst = 0; uint32_t umc_inst = 0; uint32_t ch_inst = 0; int ret = 0; if (adev->umc.node_inst_num) { LOOP_UMC_EACH_NODE_INST_AND_CH(node_inst, umc_inst, ch_inst) { ret = func(adev, node_inst, umc_inst, ch_inst, data); if (ret) { dev_err(adev->dev, "Node %d umc %d ch %d func returns %d\n", node_inst, umc_inst, ch_inst, ret); return ret; } } } else { LOOP_UMC_INST_AND_CH(umc_inst, ch_inst) { ret = func(adev, 0, umc_inst, ch_inst, data); if (ret) { dev_err(adev->dev, "Umc %d ch %d func returns %d\n", umc_inst, ch_inst, ret); return ret; } } } return 0; } int amdgpu_umc_update_ecc_status(struct amdgpu_device *adev, uint64_t status, uint64_t ipid, uint64_t addr) { if (adev->umc.ras->update_ecc_status) return adev->umc.ras->update_ecc_status(adev, status, ipid, addr); return 0; } int amdgpu_umc_logs_ecc_err(struct amdgpu_device *adev, struct radix_tree_root *ecc_tree, struct ras_ecc_err *ecc_err) { struct amdgpu_ras *con = amdgpu_ras_get_context(adev); struct ras_ecc_log_info *ecc_log; int ret; ecc_log = &con->umc_ecc_log; mutex_lock(&ecc_log->lock); ret = radix_tree_insert(ecc_tree, ecc_err->pa_pfn, ecc_err); if (!ret) radix_tree_tag_set(ecc_tree, ecc_err->pa_pfn, UMC_ECC_NEW_DETECTED_TAG); mutex_unlock(&ecc_log->lock); return ret; }