// SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include #include #include #include #include #include #define MAX_NODES 4 struct qnode { struct qnode *next; struct qspinlock *lock; int cpu; u8 sleepy; /* 1 if the previous vCPU was preempted or * if the previous node was sleepy */ u8 locked; /* 1 if lock acquired */ }; struct qnodes { int count; struct qnode nodes[MAX_NODES]; }; /* Tuning parameters */ static int steal_spins __read_mostly = (1 << 5); static int remote_steal_spins __read_mostly = (1 << 2); #if _Q_SPIN_TRY_LOCK_STEAL == 1 static const bool maybe_stealers = true; #else static bool maybe_stealers __read_mostly = true; #endif static int head_spins __read_mostly = (1 << 8); static bool pv_yield_owner __read_mostly = true; static bool pv_yield_allow_steal __read_mostly = false; static bool pv_spin_on_preempted_owner __read_mostly = false; static bool pv_sleepy_lock __read_mostly = true; static bool pv_sleepy_lock_sticky __read_mostly = false; static u64 pv_sleepy_lock_interval_ns __read_mostly = 0; static int pv_sleepy_lock_factor __read_mostly = 256; static bool pv_yield_prev __read_mostly = true; static bool pv_yield_sleepy_owner __read_mostly = true; static bool pv_prod_head __read_mostly = false; static DEFINE_PER_CPU_ALIGNED(struct qnodes, qnodes); static DEFINE_PER_CPU_ALIGNED(u64, sleepy_lock_seen_clock); #if _Q_SPIN_SPEC_BARRIER == 1 #define spec_barrier() do { asm volatile("ori 31,31,0" ::: "memory"); } while (0) #else #define spec_barrier() do { } while (0) #endif static __always_inline bool recently_sleepy(void) { /* pv_sleepy_lock is true when this is called */ if (pv_sleepy_lock_interval_ns) { u64 seen = this_cpu_read(sleepy_lock_seen_clock); if (seen) { u64 delta = sched_clock() - seen; if (delta < pv_sleepy_lock_interval_ns) return true; this_cpu_write(sleepy_lock_seen_clock, 0); } } return false; } static __always_inline int get_steal_spins(bool paravirt, bool sleepy) { if (paravirt && sleepy) return steal_spins * pv_sleepy_lock_factor; else return steal_spins; } static __always_inline int get_remote_steal_spins(bool paravirt, bool sleepy) { if (paravirt && sleepy) return remote_steal_spins * pv_sleepy_lock_factor; else return remote_steal_spins; } static __always_inline int get_head_spins(bool paravirt, bool sleepy) { if (paravirt && sleepy) return head_spins * pv_sleepy_lock_factor; else return head_spins; } static inline u32 encode_tail_cpu(int cpu) { return (cpu + 1) << _Q_TAIL_CPU_OFFSET; } static inline int decode_tail_cpu(u32 val) { return (val >> _Q_TAIL_CPU_OFFSET) - 1; } static inline int get_owner_cpu(u32 val) { return (val & _Q_OWNER_CPU_MASK) >> _Q_OWNER_CPU_OFFSET; } /* * Try to acquire the lock if it was not already locked. If the tail matches * mytail then clear it, otherwise leave it unchnaged. Return previous value. * * This is used by the head of the queue to acquire the lock and clean up * its tail if it was the last one queued. */ static __always_inline u32 trylock_clean_tail(struct qspinlock *lock, u32 tail) { u32 newval = queued_spin_encode_locked_val(); u32 prev, tmp; asm volatile( "1: lwarx %0,0,%2,%7 # trylock_clean_tail \n" /* This test is necessary if there could be stealers */ " andi. %1,%0,%5 \n" " bne 3f \n" /* Test whether the lock tail == mytail */ " and %1,%0,%6 \n" " cmpw 0,%1,%3 \n" /* Merge the new locked value */ " or %1,%1,%4 \n" " bne 2f \n" /* If the lock tail matched, then clear it, otherwise leave it. */ " andc %1,%1,%6 \n" "2: stwcx. %1,0,%2 \n" " bne- 1b \n" "\t" PPC_ACQUIRE_BARRIER " \n" "3: \n" : "=&r" (prev), "=&r" (tmp) : "r" (&lock->val), "r"(tail), "r" (newval), "i" (_Q_LOCKED_VAL), "r" (_Q_TAIL_CPU_MASK), "i" (_Q_SPIN_EH_HINT) : "cr0", "memory"); return prev; } /* * Publish our tail, replacing previous tail. Return previous value. * * This provides a release barrier for publishing node, this pairs with the * acquire barrier in get_tail_qnode() when the next CPU finds this tail * value. */ static __always_inline u32 publish_tail_cpu(struct qspinlock *lock, u32 tail) { u32 prev, tmp; kcsan_release(); asm volatile( "\t" PPC_RELEASE_BARRIER " \n" "1: lwarx %0,0,%2 # publish_tail_cpu \n" " andc %1,%0,%4 \n" " or %1,%1,%3 \n" " stwcx. %1,0,%2 \n" " bne- 1b \n" : "=&r" (prev), "=&r"(tmp) : "r" (&lock->val), "r" (tail), "r"(_Q_TAIL_CPU_MASK) : "cr0", "memory"); return prev; } static __always_inline u32 set_mustq(struct qspinlock *lock) { u32 prev; asm volatile( "1: lwarx %0,0,%1 # set_mustq \n" " or %0,%0,%2 \n" " stwcx. %0,0,%1 \n" " bne- 1b \n" : "=&r" (prev) : "r" (&lock->val), "r" (_Q_MUST_Q_VAL) : "cr0", "memory"); return prev; } static __always_inline u32 clear_mustq(struct qspinlock *lock) { u32 prev; asm volatile( "1: lwarx %0,0,%1 # clear_mustq \n" " andc %0,%0,%2 \n" " stwcx. %0,0,%1 \n" " bne- 1b \n" : "=&r" (prev) : "r" (&lock->val), "r" (_Q_MUST_Q_VAL) : "cr0", "memory"); return prev; } static __always_inline bool try_set_sleepy(struct qspinlock *lock, u32 old) { u32 prev; u32 new = old | _Q_SLEEPY_VAL; BUG_ON(!(old & _Q_LOCKED_VAL)); BUG_ON(old & _Q_SLEEPY_VAL); asm volatile( "1: lwarx %0,0,%1 # try_set_sleepy \n" " cmpw 0,%0,%2 \n" " bne- 2f \n" " stwcx. %3,0,%1 \n" " bne- 1b \n" "2: \n" : "=&r" (prev) : "r" (&lock->val), "r"(old), "r" (new) : "cr0", "memory"); return likely(prev == old); } static __always_inline void seen_sleepy_owner(struct qspinlock *lock, u32 val) { if (pv_sleepy_lock) { if (pv_sleepy_lock_interval_ns) this_cpu_write(sleepy_lock_seen_clock, sched_clock()); if (!(val & _Q_SLEEPY_VAL)) try_set_sleepy(lock, val); } } static __always_inline void seen_sleepy_lock(void) { if (pv_sleepy_lock && pv_sleepy_lock_interval_ns) this_cpu_write(sleepy_lock_seen_clock, sched_clock()); } static __always_inline void seen_sleepy_node(void) { if (pv_sleepy_lock) { if (pv_sleepy_lock_interval_ns) this_cpu_write(sleepy_lock_seen_clock, sched_clock()); /* Don't set sleepy because we likely have a stale val */ } } static struct qnode *get_tail_qnode(struct qspinlock *lock, int prev_cpu) { struct qnodes *qnodesp = per_cpu_ptr(&qnodes, prev_cpu); int idx; /* * After publishing the new tail and finding a previous tail in the * previous val (which is the control dependency), this barrier * orders the release barrier in publish_tail_cpu performed by the * last CPU, with subsequently looking at its qnode structures * after the barrier. */ smp_acquire__after_ctrl_dep(); for (idx = 0; idx < MAX_NODES; idx++) { struct qnode *qnode = &qnodesp->nodes[idx]; if (qnode->lock == lock) return qnode; } BUG(); } /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */ static __always_inline bool __yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt, bool mustq) { int owner; u32 yield_count; bool preempted = false; BUG_ON(!(val & _Q_LOCKED_VAL)); if (!paravirt) goto relax; if (!pv_yield_owner) goto relax; owner = get_owner_cpu(val); yield_count = yield_count_of(owner); if ((yield_count & 1) == 0) goto relax; /* owner vcpu is running */ spin_end(); seen_sleepy_owner(lock, val); preempted = true; /* * Read the lock word after sampling the yield count. On the other side * there may a wmb because the yield count update is done by the * hypervisor preemption and the value update by the OS, however this * ordering might reduce the chance of out of order accesses and * improve the heuristic. */ smp_rmb(); if (READ_ONCE(lock->val) == val) { if (mustq) clear_mustq(lock); yield_to_preempted(owner, yield_count); if (mustq) set_mustq(lock); spin_begin(); /* Don't relax if we yielded. Maybe we should? */ return preempted; } spin_begin(); relax: spin_cpu_relax(); return preempted; } /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */ static __always_inline bool yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt) { return __yield_to_locked_owner(lock, val, paravirt, false); } /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */ static __always_inline bool yield_head_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt) { bool mustq = false; if ((val & _Q_MUST_Q_VAL) && pv_yield_allow_steal) mustq = true; return __yield_to_locked_owner(lock, val, paravirt, mustq); } static __always_inline void propagate_sleepy(struct qnode *node, u32 val, bool paravirt) { struct qnode *next; int owner; if (!paravirt) return; if (!pv_yield_sleepy_owner) return; next = READ_ONCE(node->next); if (!next) return; if (next->sleepy) return; owner = get_owner_cpu(val); if (vcpu_is_preempted(owner)) next->sleepy = 1; } /* Called inside spin_begin() */ static __always_inline bool yield_to_prev(struct qspinlock *lock, struct qnode *node, int prev_cpu, bool paravirt) { u32 yield_count; bool preempted = false; if (!paravirt) goto relax; if (!pv_yield_sleepy_owner) goto yield_prev; /* * If the previous waiter was preempted it might not be able to * propagate sleepy to us, so check the lock in that case too. */ if (node->sleepy || vcpu_is_preempted(prev_cpu)) { u32 val = READ_ONCE(lock->val); if (val & _Q_LOCKED_VAL) { if (node->next && !node->next->sleepy) { /* * Propagate sleepy to next waiter. Only if * owner is preempted, which allows the queue * to become "non-sleepy" if vCPU preemption * ceases to occur, even if the lock remains * highly contended. */ if (vcpu_is_preempted(get_owner_cpu(val))) node->next->sleepy = 1; } preempted = yield_to_locked_owner(lock, val, paravirt); if (preempted) return preempted; } node->sleepy = false; } yield_prev: if (!pv_yield_prev) goto relax; yield_count = yield_count_of(prev_cpu); if ((yield_count & 1) == 0) goto relax; /* owner vcpu is running */ spin_end(); preempted = true; seen_sleepy_node(); smp_rmb(); /* See __yield_to_locked_owner comment */ if (!READ_ONCE(node->locked)) { yield_to_preempted(prev_cpu, yield_count); spin_begin(); return preempted; } spin_begin(); relax: spin_cpu_relax(); return preempted; } static __always_inline bool steal_break(u32 val, int iters, bool paravirt, bool sleepy) { if (iters >= get_steal_spins(paravirt, sleepy)) return true; if (IS_ENABLED(CONFIG_NUMA) && (iters >= get_remote_steal_spins(paravirt, sleepy))) { int cpu = get_owner_cpu(val); if (numa_node_id() != cpu_to_node(cpu)) return true; } return false; } static __always_inline bool try_to_steal_lock(struct qspinlock *lock, bool paravirt) { bool seen_preempted = false; bool sleepy = false; int iters = 0; u32 val; if (!steal_spins) { /* XXX: should spin_on_preempted_owner do anything here? */ return false; } /* Attempt to steal the lock */ spin_begin(); do { bool preempted = false; val = READ_ONCE(lock->val); if (val & _Q_MUST_Q_VAL) break; spec_barrier(); if (unlikely(!(val & _Q_LOCKED_VAL))) { spin_end(); if (__queued_spin_trylock_steal(lock)) return true; spin_begin(); } else { preempted = yield_to_locked_owner(lock, val, paravirt); } if (paravirt && pv_sleepy_lock) { if (!sleepy) { if (val & _Q_SLEEPY_VAL) { seen_sleepy_lock(); sleepy = true; } else if (recently_sleepy()) { sleepy = true; } } if (pv_sleepy_lock_sticky && seen_preempted && !(val & _Q_SLEEPY_VAL)) { if (try_set_sleepy(lock, val)) val |= _Q_SLEEPY_VAL; } } if (preempted) { seen_preempted = true; sleepy = true; if (!pv_spin_on_preempted_owner) iters++; /* * pv_spin_on_preempted_owner don't increase iters * while the owner is preempted -- we won't interfere * with it by definition. This could introduce some * latency issue if we continually observe preempted * owners, but hopefully that's a rare corner case of * a badly oversubscribed system. */ } else { iters++; } } while (!steal_break(val, iters, paravirt, sleepy)); spin_end(); return false; } static __always_inline void queued_spin_lock_mcs_queue(struct qspinlock *lock, bool paravirt) { struct qnodes *qnodesp; struct qnode *next, *node; u32 val, old, tail; bool seen_preempted = false; bool sleepy = false; bool mustq = false; int idx; int iters = 0; BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); qnodesp = this_cpu_ptr(&qnodes); if (unlikely(qnodesp->count >= MAX_NODES)) { spec_barrier(); while (!queued_spin_trylock(lock)) cpu_relax(); return; } idx = qnodesp->count++; /* * Ensure that we increment the head node->count before initialising * the actual node. If the compiler is kind enough to reorder these * stores, then an IRQ could overwrite our assignments. */ barrier(); node = &qnodesp->nodes[idx]; node->next = NULL; node->lock = lock; node->cpu = smp_processor_id(); node->sleepy = 0; node->locked = 0; tail = encode_tail_cpu(node->cpu); /* * Assign all attributes of a node before it can be published. * Issues an lwsync, serving as a release barrier, as well as a * compiler barrier. */ old = publish_tail_cpu(lock, tail); /* * If there was a previous node; link it and wait until reaching the * head of the waitqueue. */ if (old & _Q_TAIL_CPU_MASK) { int prev_cpu = decode_tail_cpu(old); struct qnode *prev = get_tail_qnode(lock, prev_cpu); /* Link @node into the waitqueue. */ WRITE_ONCE(prev->next, node); /* Wait for mcs node lock to be released */ spin_begin(); while (!READ_ONCE(node->locked)) { spec_barrier(); if (yield_to_prev(lock, node, prev_cpu, paravirt)) seen_preempted = true; } spec_barrier(); spin_end(); smp_rmb(); /* acquire barrier for the mcs lock */ /* * Generic qspinlocks have this prefetch here, but it seems * like it could cause additional line transitions because * the waiter will keep loading from it. */ if (_Q_SPIN_PREFETCH_NEXT) { next = READ_ONCE(node->next); if (next) prefetchw(next); } } /* We're at the head of the waitqueue, wait for the lock. */ again: spin_begin(); for (;;) { bool preempted; val = READ_ONCE(lock->val); if (!(val & _Q_LOCKED_VAL)) break; spec_barrier(); if (paravirt && pv_sleepy_lock && maybe_stealers) { if (!sleepy) { if (val & _Q_SLEEPY_VAL) { seen_sleepy_lock(); sleepy = true; } else if (recently_sleepy()) { sleepy = true; } } if (pv_sleepy_lock_sticky && seen_preempted && !(val & _Q_SLEEPY_VAL)) { if (try_set_sleepy(lock, val)) val |= _Q_SLEEPY_VAL; } } propagate_sleepy(node, val, paravirt); preempted = yield_head_to_locked_owner(lock, val, paravirt); if (!maybe_stealers) continue; if (preempted) seen_preempted = true; if (paravirt && preempted) { sleepy = true; if (!pv_spin_on_preempted_owner) iters++; } else { iters++; } if (!mustq && iters >= get_head_spins(paravirt, sleepy)) { mustq = true; set_mustq(lock); val |= _Q_MUST_Q_VAL; } } spec_barrier(); spin_end(); /* If we're the last queued, must clean up the tail. */ old = trylock_clean_tail(lock, tail); if (unlikely(old & _Q_LOCKED_VAL)) { BUG_ON(!maybe_stealers); goto again; /* Can only be true if maybe_stealers. */ } if ((old & _Q_TAIL_CPU_MASK) == tail) goto release; /* We were the tail, no next. */ /* There is a next, must wait for node->next != NULL (MCS protocol) */ next = READ_ONCE(node->next); if (!next) { spin_begin(); while (!(next = READ_ONCE(node->next))) cpu_relax(); spin_end(); } spec_barrier(); /* * Unlock the next mcs waiter node. Release barrier is not required * here because the acquirer is only accessing the lock word, and * the acquire barrier we took the lock with orders that update vs * this store to locked. The corresponding barrier is the smp_rmb() * acquire barrier for mcs lock, above. */ if (paravirt && pv_prod_head) { int next_cpu = next->cpu; WRITE_ONCE(next->locked, 1); if (_Q_SPIN_MISO) asm volatile("miso" ::: "memory"); if (vcpu_is_preempted(next_cpu)) prod_cpu(next_cpu); } else { WRITE_ONCE(next->locked, 1); if (_Q_SPIN_MISO) asm volatile("miso" ::: "memory"); } release: /* * Clear the lock before releasing the node, as another CPU might see stale * values if an interrupt occurs after we increment qnodesp->count * but before node->lock is initialized. The barrier ensures that * there are no further stores to the node after it has been released. */ node->lock = NULL; barrier(); qnodesp->count--; } void queued_spin_lock_slowpath(struct qspinlock *lock) { /* * This looks funny, but it induces the compiler to inline both * sides of the branch rather than share code as when the condition * is passed as the paravirt argument to the functions. */ if (IS_ENABLED(CONFIG_PARAVIRT_SPINLOCKS) && is_shared_processor()) { if (try_to_steal_lock(lock, true)) { spec_barrier(); return; } queued_spin_lock_mcs_queue(lock, true); } else { if (try_to_steal_lock(lock, false)) { spec_barrier(); return; } queued_spin_lock_mcs_queue(lock, false); } } EXPORT_SYMBOL(queued_spin_lock_slowpath); #ifdef CONFIG_PARAVIRT_SPINLOCKS void pv_spinlocks_init(void) { } #endif #include static int steal_spins_set(void *data, u64 val) { #if _Q_SPIN_TRY_LOCK_STEAL == 1 /* MAYBE_STEAL remains true */ steal_spins = val; #else static DEFINE_MUTEX(lock); /* * The lock slow path has a !maybe_stealers case that can assume * the head of queue will not see concurrent waiters. That waiter * is unsafe in the presence of stealers, so must keep them away * from one another. */ mutex_lock(&lock); if (val && !steal_spins) { maybe_stealers = true; /* wait for queue head waiter to go away */ synchronize_rcu(); steal_spins = val; } else if (!val && steal_spins) { steal_spins = val; /* wait for all possible stealers to go away */ synchronize_rcu(); maybe_stealers = false; } else { steal_spins = val; } mutex_unlock(&lock); #endif return 0; } static int steal_spins_get(void *data, u64 *val) { *val = steal_spins; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_steal_spins, steal_spins_get, steal_spins_set, "%llu\n"); static int remote_steal_spins_set(void *data, u64 val) { remote_steal_spins = val; return 0; } static int remote_steal_spins_get(void *data, u64 *val) { *val = remote_steal_spins; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_remote_steal_spins, remote_steal_spins_get, remote_steal_spins_set, "%llu\n"); static int head_spins_set(void *data, u64 val) { head_spins = val; return 0; } static int head_spins_get(void *data, u64 *val) { *val = head_spins; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_head_spins, head_spins_get, head_spins_set, "%llu\n"); static int pv_yield_owner_set(void *data, u64 val) { pv_yield_owner = !!val; return 0; } static int pv_yield_owner_get(void *data, u64 *val) { *val = pv_yield_owner; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_owner, pv_yield_owner_get, pv_yield_owner_set, "%llu\n"); static int pv_yield_allow_steal_set(void *data, u64 val) { pv_yield_allow_steal = !!val; return 0; } static int pv_yield_allow_steal_get(void *data, u64 *val) { *val = pv_yield_allow_steal; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_allow_steal, pv_yield_allow_steal_get, pv_yield_allow_steal_set, "%llu\n"); static int pv_spin_on_preempted_owner_set(void *data, u64 val) { pv_spin_on_preempted_owner = !!val; return 0; } static int pv_spin_on_preempted_owner_get(void *data, u64 *val) { *val = pv_spin_on_preempted_owner; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_spin_on_preempted_owner, pv_spin_on_preempted_owner_get, pv_spin_on_preempted_owner_set, "%llu\n"); static int pv_sleepy_lock_set(void *data, u64 val) { pv_sleepy_lock = !!val; return 0; } static int pv_sleepy_lock_get(void *data, u64 *val) { *val = pv_sleepy_lock; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock, pv_sleepy_lock_get, pv_sleepy_lock_set, "%llu\n"); static int pv_sleepy_lock_sticky_set(void *data, u64 val) { pv_sleepy_lock_sticky = !!val; return 0; } static int pv_sleepy_lock_sticky_get(void *data, u64 *val) { *val = pv_sleepy_lock_sticky; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_sticky, pv_sleepy_lock_sticky_get, pv_sleepy_lock_sticky_set, "%llu\n"); static int pv_sleepy_lock_interval_ns_set(void *data, u64 val) { pv_sleepy_lock_interval_ns = val; return 0; } static int pv_sleepy_lock_interval_ns_get(void *data, u64 *val) { *val = pv_sleepy_lock_interval_ns; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_interval_ns, pv_sleepy_lock_interval_ns_get, pv_sleepy_lock_interval_ns_set, "%llu\n"); static int pv_sleepy_lock_factor_set(void *data, u64 val) { pv_sleepy_lock_factor = val; return 0; } static int pv_sleepy_lock_factor_get(void *data, u64 *val) { *val = pv_sleepy_lock_factor; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_factor, pv_sleepy_lock_factor_get, pv_sleepy_lock_factor_set, "%llu\n"); static int pv_yield_prev_set(void *data, u64 val) { pv_yield_prev = !!val; return 0; } static int pv_yield_prev_get(void *data, u64 *val) { *val = pv_yield_prev; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_prev, pv_yield_prev_get, pv_yield_prev_set, "%llu\n"); static int pv_yield_sleepy_owner_set(void *data, u64 val) { pv_yield_sleepy_owner = !!val; return 0; } static int pv_yield_sleepy_owner_get(void *data, u64 *val) { *val = pv_yield_sleepy_owner; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_sleepy_owner, pv_yield_sleepy_owner_get, pv_yield_sleepy_owner_set, "%llu\n"); static int pv_prod_head_set(void *data, u64 val) { pv_prod_head = !!val; return 0; } static int pv_prod_head_get(void *data, u64 *val) { *val = pv_prod_head; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pv_prod_head, pv_prod_head_get, pv_prod_head_set, "%llu\n"); static __init int spinlock_debugfs_init(void) { debugfs_create_file("qspl_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_steal_spins); debugfs_create_file("qspl_remote_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_remote_steal_spins); debugfs_create_file("qspl_head_spins", 0600, arch_debugfs_dir, NULL, &fops_head_spins); if (is_shared_processor()) { debugfs_create_file("qspl_pv_yield_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_owner); debugfs_create_file("qspl_pv_yield_allow_steal", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_allow_steal); debugfs_create_file("qspl_pv_spin_on_preempted_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_spin_on_preempted_owner); debugfs_create_file("qspl_pv_sleepy_lock", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock); debugfs_create_file("qspl_pv_sleepy_lock_sticky", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_sticky); debugfs_create_file("qspl_pv_sleepy_lock_interval_ns", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_interval_ns); debugfs_create_file("qspl_pv_sleepy_lock_factor", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_factor); debugfs_create_file("qspl_pv_yield_prev", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_prev); debugfs_create_file("qspl_pv_yield_sleepy_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_sleepy_owner); debugfs_create_file("qspl_pv_prod_head", 0600, arch_debugfs_dir, NULL, &fops_pv_prod_head); } return 0; } device_initcall(spinlock_debugfs_init);