Lines Matching +full:1 +full:- +full:of +full:- +full:4
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
8 * and/or sell copies of the Software, and to permit persons to whom the
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
39 * further describe the buffer's format - for example tiling or compression.
42 * ----------------
46 * format and data layout of the buffer, and should be the only way to describe
50 * be avoided, as such aliases run the risk of different drivers exposing
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
58 * may preserve meaning - such as number of planes - from the fourcc code,
62 * match only a single modifier. A modifier must not be a subset of layouts of
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
68 * For modifiers where the combination of fourcc code and modifier can alias,
74 * There are two kinds of modifier users:
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
83 * (i.e. they are not expected to extract information out of the modifier).
89 * The authoritative list of format modifier codes is found in
93 * -----------------------
98 * upstream in-kernel or open source userspace user does not apply.
108 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
114 #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1…
116 #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
119 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120 #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1…
125 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126 #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
131 /* 1 bpp Red (direct relationship between channel value and brightness) */
132 #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1…
137 /* 4 bpp Red (direct relationship between channel value and brightness) */
138 #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
144 #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
147 #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
150 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
165 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian…
166 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian…
167 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian…
168 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian…
170 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian…
171 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian…
172 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian…
173 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian…
175 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian…
176 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian…
177 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian…
178 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian…
180 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian…
181 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian…
182 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian…
183 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian…
185 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
189 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
193 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian…
194 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian…
195 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian…
196 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian…
198 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian…
199 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian…
200 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian…
201 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian…
214 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 littl…
215 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 littl…
217 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 littl…
218 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 littl…
222 * IEEE 754-2008 binary16 half-precision float
223 * [15:0] sign:exponent:mantissa 1:5:10
225 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 litt…
226 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 litt…
228 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 litt…
229 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 litt…
232 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
233 * of unused padding per component:
235 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 1…
247 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
248 …010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only …
252 * 16-xx padding occupy lsb
254 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:…
255 …RM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:1…
256 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16…
260 * 16-xx padding occupy lsb except Y410
262 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 litt…
263 …ine DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:…
264 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 lit…
267 …1616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian…
268 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 lit…
274 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little end…
276 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little end…
279 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
281 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
285 * 1-plane YUV 4:2:0
288 * These formats can only be used with a non-Linear modifier.
291 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
296 * index 1 = A plane, [7:0] A
310 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
312 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
314 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
315 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
316 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
317 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
318 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
319 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
323 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
325 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
327 #define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
332 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
334 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per …
339 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
341 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per …
345 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
346 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
348 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per …
353 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
355 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per …
358 * 3 10 bit components and 2 padding bits packed into 4 bytes.
360 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
364 /* 3 plane non-subsampled (444) YCbCr
367 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
370 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
372 /* 3 plane non-subsampled (444) YCrCb
375 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
378 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
383 * index 1: Cb plane, [7:0] Cb
386 * index 1: Cr plane, [7:0] Cr
389 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) plane…
390 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) plane…
391 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) plane…
392 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) plane…
393 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) plane…
394 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) plane…
395 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) plane…
396 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) plane…
397 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) plane…
398 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) plane…
404 * Format modifiers describe, typically, a re-ordering or modification
405 * of the data in a plane of an FB. This can be used to express tiled/
406 * swizzled formats, or compression, or a combination of the two.
408 * The upper 8 bits of the format modifier are a vendor-id as assigned
427 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
443 * authoritative source for all of these.
447 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
449 * compatibility, in cases where a vendor-specific definition already exists and
454 * generic layouts (such as pixel re-ordering), which may have
455 * independently-developed support across multiple vendors.
458 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
464 * have implementations of the same standardised compression scheme (such as
466 * modifier(s), reflecting the vendor of the standard.
485 * which tells the driver to also take driver-internal information into account
495 * used is out-of-band information carried in an API-specific way (e.g. in a
503 * Intel X-tiling layout
505 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
506 * in row-major layout. Within the tile bytes are laid out row-major, with
507 * a platform-dependent stride. On top of that the memory can apply
508 * platform-depending swizzling of some higher address bits into bit6.
512 * cross-driver sharing. It exists since on a given platform it does uniquely
513 * identify the layout in a simple way for i915-specific userspace, which
514 * facilitated conversion of userspace to modifiers. Additionally the exact
517 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
520 * Intel Y-tiling layout
522 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
523 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
524 * chunks column-major, with a platform-dependent height. On top of that the
525 * memory can apply platform-depending swizzling of some higher address bits
530 * cross-driver sharing. It exists since on a given platform it does uniquely
531 * identify the layout in a simple way for i915-specific userspace, which
532 * facilitated conversion of userspace to modifiers. Additionally the exact
538 * Intel Yf-tiling layout
540 * This is a tiled layout using 4Kb tiles in row-major layout.
541 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
542 * are arranged in four groups (two wide, two high) with column-major layout.
543 * Each group therefore consists out of four 256 byte units, which are also laid
544 * out as 2x2 column-major.
545 * 256 byte units are made out of four 64 byte blocks of pixels, producing
546 * either a square block or a 2:1 unit.
547 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
555 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
556 * The main surface will be plane index 0 and must be Y/Yf-tiled,
557 * the CCS will be plane index 1.
559 * Each CCS tile matches a 1024x512 pixel area of the main surface.
560 * To match certain aspects of the 3D hardware the CCS is
561 * considered to be made up of normal 128Bx32 Y tiles, Thus
562 * the CCS pitch must be specified in multiples of 128 bytes.
565 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
569 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
573 * Intel color control surfaces (CCS) for Gen-12 render compression.
575 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
576 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
577 * main surface. In other words, 4 bits in CCS map to a main surface cache
578 * line pair. The main surface pitch is required to be a multiple of four
579 * Y-tile widths.
584 * Intel color control surfaces (CCS) for Gen-12 media compression
586 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
587 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
588 * main surface. In other words, 4 bits in CCS map to a main surface cache
589 * line pair. The main surface pitch is required to be a multiple of four
590 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
591 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
597 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
600 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
601 * and at index 1. The clear color is stored at index 2, and the pitch should
605 * the converted clear color of size 64 bits. The first 32 bits store the Lower
610 * corresponds to an area of 4x1 tiles in the main surface. The main surface
611 * pitch is required to be a multiple of 4 tile widths.
616 * Intel Tile 4 layout
618 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
619 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
621 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
622 * of 64B x 8 rows.
629 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
630 * outside of the GEM object in a reserved memory area dedicated for the
631 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
632 * main surface pitch is required to be a multiple of four Tile 4 widths.
639 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
640 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
641 * 0 and 1, respectively. The CCS for all planes are stored outside of the
642 * GEM object in a reserved memory area dedicated for the storage of the
644 * pitch is required to be a multiple of four Tile 4 widths.
651 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
652 * outside of the GEM object in a reserved memory area dedicated for the
653 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
654 * main surface pitch is required to be a multiple of four Tile 4 widths. The
655 * clear color is stored at plane index 1 and the pitch should be 64 bytes
656 * aligned. The format of the 256 bits of clear color data matches the one used
666 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
667 * main surface. In other words, 4 bits in CCS map to a main surface cache
668 * line pair. The main surface pitch is required to be a multiple of four
677 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
678 * main surface. In other words, 4 bits in CCS map to a main surface cache
679 * line pair. The main surface pitch is required to be a multiple of four
680 * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
681 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
691 * and at index 1. The clear color is stored at index 2, and the pitch should
695 * the converted clear color of size 64 bits. The first 32 bits store the Lower
700 * corresponds to an area of 4x1 tiles in the main surface. The main surface
701 * pitch is required to be a multiple of 4 tile widths.
709 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
710 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
711 * 0 and 1, respectively. The CCS for all planes are stored outside of the
712 * GEM object in a reserved memory area dedicated for the storage of the
721 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
722 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
723 * 0 and 1, respectively. The CCS for all planes are stored outside of the
724 * GEM object in a reserved memory area dedicated for the storage of the
731 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
733 * Macroblocks are laid in a Z-shape, and each pixel data is following the
735 * As for NV12, an image is the result of two frame buffers: one for Y,
736 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
738 * - multiple of 128 pixels for the width
739 * - multiple of 32 pixels for the height
741 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
743 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
746 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
748 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
757 * Refers to a compressed variant of the base format that is compressed.
758 * Implementation may be platform and base-format specific.
760 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
763 * Entire pixel data buffer is aligned with 4k(bytes).
765 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
771 * Implementation may be platform and base-format specific.
773 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
776 * Entire pixel data buffer is aligned with 4k(bytes).
784 * Implementation may be platform and base-format specific.
792 * Vivante 4x4 tiling layout
794 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
797 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
800 * Vivante 64x64 super-tiling layout
802 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
803 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
807 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
812 * Vivante 4x4 tiling layout for dual-pipe
814 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
816 * compared to the non-split tiled layout.
821 * Vivante 64x64 super-tiling layout for dual-pipe
823 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
825 * therefore halved compared to the non-split super-tiled layout.
827 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
830 * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
832 * separate buffer containing the clear/compression status of each tile. The
835 * number of status bits per entry.
836 * We reserve the top 8 bits of the Vivante modifier space for tile status
840 #define VIVANTE_MOD_TS_64_4 (1ULL << 48)
843 #define VIVANTE_MOD_TS_256_4 (4ULL << 48)
848 * as the TS bits get reinterpreted as compression tags instead of simple
851 #define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)
861 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
863 * Pixels are arranged in simple tiles of 16 x 16 bytes.
865 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
871 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
873 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
874 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
875 * a block depth or height of "4").
877 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
882 * ---- ----- -----------------------------------------------------------------
884 * 3:0 h log2(height) of each block, in GOBs. Placed here for
886 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
888 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
890 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
892 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
895 * Note there is no log2(width) parameter. Some portions of the
896 * hardware support a block width of two gobs, but it is impractical
897 * to use due to lack of support elsewhere, and has no known
900 * 11:9 - Reserved (To support 2D-array textures with variable array stride
905 * tables of all GPUs >= NV50. It affects the exact layout of bits
913 * since the modifier should define the layout of the associated
917 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
921 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
922 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
928 * page kind and block linear swizzles. This causes the layout of
932 * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
933 * 1 = Desktop GPU and Tegra Xavier+ Layout
938 * 1 = ROP/3D, layout 1, exact compression format implied by Page
943 * 4 = CDE vertical
948 * 55:25 - Reserved for future use. Must be zero.
960 * with block-linear layouts, is remapped within drivers to the value 0xfe,
961 * which corresponds to the "generic" kind used for simple single-sample
962 * uncompressed color formats on Fermi - Volta GPUs.
976 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
977 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
979 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
981 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
985 * 1 == TWO_GOBS
988 * 4 == SIXTEEN_GOBS
991 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
1000 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
1006 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
1011 * Some Broadcom modifiers take parameters, for example the number of
1022 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
1024 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
1033 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
1036 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1039 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
1040 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1041 * they're (TR, BR, BL, TL), where bottom left is start of memory.
1043 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1044 * tiles) or right-to-left (odd rows of 4k tiles).
1046 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1055 * columns are placed consecutively into memory. The width of those
1059 * The pitch between the start of each column is set to optimally
1060 * switch between SDRAM banks. This is passed as the number of lines
1061 * of column width in the modifier (we can't use the stride value due
1066 * for all of the planes, assuming that each column contains both Y
1067 * and UV. Some SAND-using hardware stores UV in a separate tiled
1081 fourcc_mod_broadcom_code(4, v)
1100 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1101 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
1108 * number of banks, and XOR address, and that it's identical between
1111 * the assumption is that a no-XOR tiling modifier will be created.
1119 * It provides fine-grained random access and minimizes the amount of data
1124 * and different devices or use-cases may support different combinations.
1126 * Further information on the use of AFBC modifiers can be found in
1131 * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1133 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1149 * size (in pixels) must be aligned to a multiple of the superblock size.
1152 * Where one superblock size is specified, it applies to all planes of the
1156 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1159 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
1162 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1167 * Indicates that the buffer makes use of the AFBC lossless colorspace
1170 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
1173 * AFBC block-split
1175 * Indicates that the payload of each superblock is split. The second
1176 * half of the payload is positioned at a predefined offset from the start
1177 * of the superblock payload.
1179 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
1184 * This flag indicates that the payload of each superblock must be stored at a
1187 * each superblock is given the same amount of space as an uncompressed
1188 * superblock of the particular format would require, rounding up to the next
1189 * multiple of 128 bytes in size.
1191 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
1194 * AFBC copy-block restrict
1196 * Buffers with this flag must obey the copy-block restriction. The restriction
1197 * is such that there are no copy-blocks referring across the border of 8x8
1200 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
1205 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1207 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1212 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
1217 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1220 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
1223 * AFBC double-buffer
1225 * Indicates that the buffer is allocated in a layout safe for front-buffer
1228 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
1233 * Indicates that the buffer includes per-superblock content hints.
1235 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1243 * affects the storage mode of the individual superblocks. Note that even a
1247 #define AFBC_FORMAT_MOD_USM (1ULL << 12)
1250 * Arm Fixed-Rate Compression (AFRC) modifiers
1254 * reductions in graphics and media use-cases.
1256 * AFRC buffers consist of one or more planes, with the same components
1261 * fixed size (in bytes). All coding units within a given plane of a buffer
1262 * store the same number of values, and have the same compressed size.
1264 * The coding unit size is configurable, allowing different rates of compression.
1266 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1270 * ---------------- ---------------
1276 * to a multiple of the paging tile dimensions.
1277 * The dimensions of each paging tile depend on whether the buffer is optimised for
1281 * ------ ----------------- ------------------
1282 * SCAN 16 coding units 4 coding units
1285 * The dimensions of each coding unit depend on the number of components
1289 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height
1290 * ----------------------------- --------- ----------------- ------------------
1291 * 1 SCAN 16 samples 4 samples
1293 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1294 * ----------------------------- --------- ----------------- ------------------
1295 * 1 ROT 8 samples 8 samples
1297 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1298 * ----------------------------- --------- ----------------- ------------------
1299 * 2 DONT CARE 8 samples 4 samples
1300 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1301 * ----------------------------- --------- ----------------- ------------------
1302 * 3 DONT CARE 4 samples 4 samples
1303 * Example: 4x4 pixels in an RGB buffer without alpha
1304 * ----------------------------- --------- ----------------- ------------------
1305 * 4 DONT CARE 4 samples 4 samples
1306 * Example: 4x4 pixels in an RGB buffer with alpha
1317 * Indicates the number of bytes used to store each compressed coding unit for
1321 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1322 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1323 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1326 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1328 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1330 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1332 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1336 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1341 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1346 * Indicates if the buffer uses the scanline-optimised layout
1347 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1350 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1353 * Arm 16x16 Block U-Interleaved modifier
1360 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1372 * both in row-major order.
1374 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1386 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1388 * - DRM_FORMAT_YUV420_8BIT
1389 * - DRM_FORMAT_YUV420_10BIT
1391 * The first 8 bits of the mode defines the layout, then the following 8 bits
1395 * combinations of layout and options.
1412 * The basic layout is composed of:
1413 * - a body content organized in 64x32 superblocks with 4096 bytes per
1415 * - a 32 bytes per 128x64 header block
1419 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1432 * Due to the nature of the layout, these buffers are not expected to
1433 * be accessible by the user-space clients, but only accessible by the
1436 * The user-space clients should expect a failure while trying to mmap
1437 * the DMA-BUF handle returned by the producer.
1446 * Indicates the storage is packed when pixel size is multiple of word
1454 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1462 * - main surface
1465 * - main surface in plane 0
1466 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1469 * - main surface in plane 0
1470 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1471 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1473 * For multi-plane formats the above surfaces get merged into one plane for
1477 * ----- ------------------------ ---------------------------------------------
1493 * 55:36 - Reserved for future use, must be zero
1500 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1503 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1513 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1525 * 0 - LINEAR
1526 * 1 - 256B_2D - 2D block dimensions
1527 * 2 - 4KB_2D
1528 * 3 - 64KB_2D
1529 * 4 - 256KB_2D
1530 * 5 - 4KB_3D - 3D block dimensions
1531 * 6 - 64KB_3D
1532 * 7 - 256KB_3D
1534 #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1537 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1540 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1554 * one which is not-aligned.