Lines Matching refs:A
66 static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Ad…
68 static fInt fDivide (fInt A, fInt B); /* Returns A/B */
77 static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
97 static int GetReal (fInt A); /* Internal function */
322 static bool Equal(fInt A, fInt B) in Equal() argument
324 if (A.full == B.full) in Equal()
330 static bool GreaterThan(fInt A, fInt B) in GreaterThan() argument
332 if (A.full > B.full) in GreaterThan()
383 static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the… in ConvertBackToInteger() argument
387 scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */ in ConvertBackToInteger()
389 scaledDecimal.full = uGetScaledDecimal(A); in ConvertBackToInteger()
396 static fInt fGetSquare(fInt A) in fGetSquare() argument
398 return fMultiply(A, A); in fGetSquare()
459 static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) in SolveQuadracticEqn() argument
468 …while (GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT… in SolveQuadracticEqn()
469 A = fDivide(A, f_CONSTANT10); in SolveQuadracticEqn()
474 temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ in SolveQuadracticEqn()
483 root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ in SolveQuadracticEqn()
486 root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ in SolveQuadracticEqn()
498 static int GetReal (fInt A) in GetReal() argument
500 return (A.full >> SHIFT_AMOUNT); in GetReal()
505 fInt A, B, Quotient; in Divide() local
507 A.full = X << SHIFT_AMOUNT; in Divide()
510 Quotient = fDivide(A, B); in Divide()
515 static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly … in uGetScaledDecimal() argument
518 int i, scaledDecimal = 0, tmp = A.partial.decimal; in uGetScaledDecimal()
546 static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) in fRoundUpByStepSize() argument
550 solution = fDivide(A, fStepSize); in fRoundUpByStepSize()