Lines Matching +full:idle +full:- +full:states
1 // SPDX-License-Identifier: GPL-2.0
3 * Timer events oriented CPU idle governor
5 * Copyright (C) 2018 - 2021 Intel Corporation
10 * DOC: teo-description
15 * wakeups from idle states. Moreover, information about what happened in the
17 * idle state with target residency within the (known) time till the closest
19 * the upcoming CPU idle period and, if not, then which of the shallower idle
20 * states to choose instead of it.
22 * Of course, non-timer wakeup sources are more important in some use cases
23 * which can be covered by taking a few most recent idle time intervals of the
25 * consider idle duration values greater than the sleep length, because the
29 * Thus this governor estimates whether or not the prospective idle duration of
31 * an idle state for it accordingly.
35 * idle states provided by the %CPUIdle driver in the ascending order. That is,
37 * the second idle state (idle state 1), the second bin spans from the target
38 * residency of idle state 1 up to, but not including, the target residency of
39 * idle state 2, the third bin spans from the target residency of idle state 2
40 * up to, but not including, the target residency of idle state 3 and so on.
41 * The last bin spans from the target residency of the deepest idle state
45 * They are updated every time before selecting an idle state for the given CPU
49 * sleep length and the idle duration measured after CPU wakeup fall into the
52 * situations in which the measured idle duration is so much shorter than the
53 * sleep length that the bin it falls into corresponds to an idle state
57 * In order to select an idle state for a CPU, the governor takes the following
61 * 1. Find the deepest CPU idle state whose target residency does not exceed
62 * the current sleep length (the candidate idle state) and compute 2 sums as
65 * - The sum of the "hits" and "intercepts" metrics for the candidate state
66 * and all of the deeper idle states (it represents the cases in which the
67 * CPU was idle long enough to avoid being intercepted if the sleep length
70 * - The sum of the "intercepts" metrics for all of the idle states shallower
72 * idle long enough to avoid being intercepted if the sleep length had been
76 * up early, so look for an alternative idle state to select.
78 * - Traverse the idle states shallower than the candidate one in the
81 * - For each of them compute the sum of the "intercepts" metrics over all
82 * of the idle states between it and the candidate one (including the
85 * - If each of these sums that needs to be taken into account (because the
89 * not exceeded the idle duration in over a half of the relevant cases),
90 * select the given idle state instead of the candidate one.
111 * struct teo_bin - Metrics used by the TEO cpuidle governor.
121 * struct teo_cpu - CPU data used by the TEO cpuidle governor.
122 * @time_span_ns: Time between idle state selection and post-wakeup update.
124 * @state_bins: Idle state data bins for this CPU.
139 * teo_update - Update CPU metrics after wakeup.
145 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); in teo_update()
150 if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns) { in teo_update()
153 * enough to the closest timer event expected at the idle state in teo_update()
158 u64 lat_ns = drv->states[dev->last_state_idx].exit_latency_ns; in teo_update()
162 * (saved) time till the next timer event and the measured idle in teo_update()
167 measured_ns = dev->last_residency_ns; in teo_update()
170 * executed by the CPU is not likely to be worst-case every in teo_update()
175 measured_ns -= lat_ns / 2; in teo_update()
180 cpu_data->total = 0; in teo_update()
184 * find the bins that the sleep length and the measured idle duration in teo_update()
187 for (i = 0; i < drv->state_count; i++) { in teo_update()
188 struct teo_bin *bin = &cpu_data->state_bins[i]; in teo_update()
190 bin->hits -= bin->hits >> DECAY_SHIFT; in teo_update()
191 bin->intercepts -= bin->intercepts >> DECAY_SHIFT; in teo_update()
193 cpu_data->total += bin->hits + bin->intercepts; in teo_update()
195 target_residency_ns = drv->states[i].target_residency_ns; in teo_update()
197 if (target_residency_ns <= cpu_data->sleep_length_ns) { in teo_update()
207 * to stop the tick. This effectively adds an extra hits-only bin in teo_update()
208 * beyond the last state-related one. in teo_update()
211 cpu_data->tick_hits -= cpu_data->tick_hits >> DECAY_SHIFT; in teo_update()
213 cpu_data->total += cpu_data->tick_hits; in teo_update()
215 if (TICK_NSEC <= cpu_data->sleep_length_ns) { in teo_update()
216 idx_timer = drv->state_count; in teo_update()
218 cpu_data->tick_hits += PULSE; in teo_update()
225 * If the measured idle duration falls into the same bin as the sleep in teo_update()
228 * the measured idle duration. in teo_update()
231 cpu_data->state_bins[idx_timer].hits += PULSE; in teo_update()
233 cpu_data->state_bins[idx_duration].intercepts += PULSE; in teo_update()
236 cpu_data->total += PULSE; in teo_update()
242 drv->states[i].target_residency_ns >= TICK_NSEC; in teo_state_ok()
246 * teo_find_shallower_state - Find shallower idle state matching given duration.
249 * @state_idx: Index of the capping idle state.
250 * @duration_ns: Idle duration value to match.
251 * @no_poll: Don't consider polling states.
259 for (i = state_idx - 1; i >= 0; i--) { in teo_find_shallower_state()
260 if (dev->states_usage[i].disable || in teo_find_shallower_state()
261 (no_poll && drv->states[i].flags & CPUIDLE_FLAG_POLLING)) in teo_find_shallower_state()
265 if (drv->states[i].target_residency_ns <= duration_ns) in teo_find_shallower_state()
272 * teo_select - Selects the next idle state to enter.
280 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); in teo_select()
281 s64 latency_req = cpuidle_governor_latency_req(dev->cpu); in teo_select()
289 int idx0 = 0, idx = -1; in teo_select()
294 if (dev->last_state_idx >= 0) { in teo_select()
296 dev->last_state_idx = -1; in teo_select()
299 cpu_data->time_span_ns = local_clock(); in teo_select()
304 cpu_data->sleep_length_ns = KTIME_MAX; in teo_select()
307 if (drv->state_count < 2) { in teo_select()
312 if (!dev->states_usage[0].disable) in teo_select()
316 for (i = 1; i < drv->state_count; i++) { in teo_select()
317 struct teo_bin *prev_bin = &cpu_data->state_bins[i-1]; in teo_select()
318 struct cpuidle_state *s = &drv->states[i]; in teo_select()
321 * Update the sums of idle state mertics for all of the states in teo_select()
324 intercept_sum += prev_bin->intercepts; in teo_select()
325 hit_sum += prev_bin->hits; in teo_select()
327 if (dev->states_usage[i].disable) in teo_select()
335 if (s->exit_latency_ns <= latency_req) in teo_select()
345 idx = 0; /* No states enabled, must use 0. */ in teo_select()
351 * Only one idle state is enabled, so use it, but do not in teo_select()
354 duration_ns = drv->states[idx].target_residency_ns; in teo_select()
359 cpu_data->state_bins[drv->state_count-1].intercepts; in teo_select()
362 * If the sum of the intercepts metric for all of the idle states in teo_select()
365 * all of the deeper states a shallower idle state is likely to be a in teo_select()
369 if (2 * idx_intercept_sum > cpu_data->total - idx_hit_sum) { in teo_select()
373 * Look for the deepest idle state whose target residency had in teo_select()
374 * not exceeded the idle duration in over a half of the relevant in teo_select()
382 for (i = idx - 1; i >= 0; i--) { in teo_select()
383 struct teo_bin *bin = &cpu_data->state_bins[i]; in teo_select()
385 intercept_sum += bin->intercepts; in teo_select()
394 !dev->states_usage[i].disable) in teo_select()
402 if (dev->states_usage[i].disable) in teo_select()
426 cpu_data->sleep_length_ns = duration_ns; in teo_select()
432 * idle state shallower than the current candidate one. in teo_select()
439 * because an immediate non-timer wakeup is expected in that case. in teo_select()
449 if ((drv->states[0].flags & CPUIDLE_FLAG_POLLING) && in teo_select()
450 drv->states[idx].target_residency_ns < RESIDENCY_THRESHOLD_NS) in teo_select()
454 cpu_data->sleep_length_ns = duration_ns; in teo_select()
460 if (drv->states[idx].target_residency_ns > duration_ns) { in teo_select()
471 if (drv->states[idx].target_residency_ns < TICK_NSEC && in teo_select()
472 tick_intercept_sum > cpu_data->total / 2 + cpu_data->total / 8) in teo_select()
478 * one or the expected idle duration is shorter than the tick period in teo_select()
481 if ((!(drv->states[idx].flags & CPUIDLE_FLAG_POLLING) && in teo_select()
491 drv->states[idx].target_residency_ns > delta_tick) in teo_select()
500 * teo_reflect - Note that governor data for the CPU need to be updated.
506 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); in teo_reflect()
508 dev->last_state_idx = state; in teo_reflect()
511 * nets, assume that the CPU might have been idle for the entire sleep in teo_reflect()
514 if (dev->poll_time_limit || in teo_reflect()
515 (tick_nohz_idle_got_tick() && cpu_data->sleep_length_ns > TICK_NSEC)) { in teo_reflect()
516 dev->poll_time_limit = false; in teo_reflect()
517 cpu_data->time_span_ns = cpu_data->sleep_length_ns; in teo_reflect()
519 cpu_data->time_span_ns = local_clock() - cpu_data->time_span_ns; in teo_reflect()
524 * teo_enable_device - Initialize the governor's data for the target CPU.
531 struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); in teo_enable_device()