Lines Matching +full:sub +full:- +full:blocks

1 /* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
3 // This file is dual-licensed, meaning that you can use it under your
41 // The generated code of this file depends on the following RISC-V extensions:
42 // - RV64I
43 // - RISC-V Vector ('V') with VLEN >= 128
44 // - RISC-V Vector AES block cipher extension ('Zvkned')
51 #include "aes-macros.S"
88 // t0 is the remaining length in 32-bit words. It's a multiple of 4.
91 sub t0, t0, t1 // Subtract number of words processed
134 addi LEN, LEN, -16
146 vle32.v v20, (INP) // Load ciphertext blocks
147 vslideup.vi v16, v20, 4 // Setup prev ciphertext blocks
148 addi t1, t0, -4
150 aes_decrypt v20, \keylen // Decrypt the blocks
151 vxor.vv v20, v20, v16 // XOR with prev ciphertext blocks
152 vse32.v v20, (OUTP) // Store plaintext blocks
157 sub LEN, LEN, t0
190 // CBC-encrypt all blocks except the last. But don't store the
191 // second-to-last block to the output buffer yet, since it will be
193 // message is single-block, still encrypt the last (and only) block.
204 addi LEN, LEN, -16
210 // Encrypt the last two blocks using ciphertext stealing as follows:
211 // C[n-1] = Encrypt(Encrypt(P[n-1] ^ C[n-2]) ^ P[n])
212 // C[n] = Encrypt(P[n-1] ^ C[n-2])[0..LEN]
216 // is 1 <= LEN <= 16. If there are only 2 blocks, C[n-2] means the IV.
218 // v16 already contains Encrypt(P[n-1] ^ C[n-2]).
219 // INP points to P[n]. OUTP points to where C[n-1] should go.
220 // To support in-place encryption, load P[n] before storing C[n].
225 vxor.vv v16, v16, v17 // v16 = Encrypt(P[n-1] ^ C[n-2]) ^ P[n]
229 vse32.v v16, (OUTP) // Store C[n-1] (or C[n] in single-block case)
233 #define LEN32 t4 // Length of remaining full blocks in 32-bit words
241 // Save C[n-2] in v28 so that it's available later during the ciphertext
242 // stealing step. If there are fewer than three blocks, C[n-2] means
243 // the IV, otherwise it means the third-to-last ciphertext block.
245 add t0, LEN, -33
251 // CBC-decrypt all full blocks. For the last full block, or the last 2
252 // full blocks if the message is block-aligned, this doesn't write the
253 // correct output blocks (unless the message is only a single block),
259 addi t1, t0, -4
260 vle32.v v20, (INP) // Load next set of ciphertext blocks
262 vslideup.vi v24, v20, 4 // Setup prev ciphertext blocks
264 aes_decrypt v20, \keylen // Decrypt this set of blocks
265 vxor.vv v24, v24, v20 // XOR prev ciphertext blocks with decrypted blocks
266 vse32.v v24, (OUTP) // Store this set of plaintext blocks
267 sub LEN32, LEN32, t0
275 addi t0, OUTP, -16 // Get pointer to last full plaintext block
282 // Block-aligned message. Just fix up the last 2 blocks. We need:
284 // P[n-1] = Decrypt(C[n]) ^ C[n-2]
285 // P[n] = Decrypt(C[n-1]) ^ C[n]
287 // We have C[n] in v16, Decrypt(C[n]) in v20, and C[n-2] in v28.
288 // Together with Decrypt(C[n-1]) ^ C[n-2] from the output buffer, this
289 // is everything needed to fix the output without re-decrypting blocks.
290 addi t1, OUTP, -32 // Get pointer to where P[n-1] should go
291 vxor.vv v20, v20, v28 // Decrypt(C[n]) ^ C[n-2] == P[n-1]
292 vle32.v v24, (t1) // Decrypt(C[n-1]) ^ C[n-2]
293 vse32.v v20, (t1) // Store P[n-1]
294 vxor.vv v20, v24, v16 // Decrypt(C[n-1]) ^ C[n-2] ^ C[n] == P[n] ^ C[n-2]
298 // Decrypt the last two blocks using ciphertext stealing as follows:
300 // P[n-1] = Decrypt(C[n] || Decrypt(C[n-1])[LEN_MOD16..16]) ^ C[n-2]
301 // P[n] = (Decrypt(C[n-1]) ^ C[n])[0..LEN_MOD16]
303 // We already have Decrypt(C[n-1]) in v20 and C[n-2] in v28.
304 vmv.v.v v16, v20 // v16 = Decrypt(C[n-1])
306 vle8.v v20, (INP) // v20 = C[n] || Decrypt(C[n-1])[LEN_MOD16..16]
307 vxor.vv v16, v16, v20 // v16 = Decrypt(C[n-1]) ^ C[n]
310 aes_decrypt v20, \keylen // v20 = Decrypt(C[n] || Decrypt(C[n-1])[LEN_MOD16..16])
312 vxor.vv v20, v20, v28 // XOR with C[n-2]
330 // Encrypts or decrypts a message with the CS3 variant of AES-CBC-CTS.
331 // This is the variant that unconditionally swaps the last two blocks.