Lines Matching refs:WE
5075 #--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
5876 #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
5966 #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
6258 #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
6261 #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
6272 #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
6273 #--WE CHOSE F TO BE +-2^K * 1.BBBB1
7151 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7153 #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
7314 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7316 #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
8240 #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
8256 #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
8485 #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
8486 #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
8491 #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF