Lines Matching +full:very +full:- +full:high
1 .. SPDX-License-Identifier: GPL-2.0
4 Timekeeping Virtualization for X86-Based Architectures
32 information relevant to KVM and hardware-based virtualization.
41 2.1. i8254 - PIT
42 ----------------
46 channels which can be programmed to deliver periodic or one-shot interrupts.
53 The PIT uses I/O ports 0x40 - 0x43. Access to the 16-bit counters is done
59 -------------- ----------------
61 | 1.1932 MHz|---------->| CLOCK OUT | ---------> IRQ 0
63 -------------- | +->| GATE TIMER 0 |
64 | ----------------
66 | ----------------
68 |------>| CLOCK OUT | ---------> 66.3 KHZ DRAM
70 | +->| GATE TIMER 1 |
71 | ----------------
73 | ----------------
75 |------>| CLOCK OUT | ---------> Port 61h, bit 5
77 Port 61h, bit 0 -------->| GATE TIMER 2 | \_.---- ____
78 ---------------- _| )--|LPF|---Speaker
79 / *---- \___/
80 Port 61h, bit 1 ---------------------------------/
85 This is a one-shot software timeout that counts down
86 when the gate is high (always true for timers 0 and 1). When the count
87 reaches zero, the output goes high.
89 Mode 1: Triggered One-shot.
90 The output is initially set high. When the gate
91 line is set high, a countdown is initiated (which does not stop if the gate is
93 the output goes high.
96 The output is initially set high. When the countdown
97 reaches 1, the output goes low for one count and then returns high. The value
100 output automatically goes high (this only affects timer 2).
103 This generates a high / low square wave. The count
104 determines the length of the pulse, which alternates between high and low
105 when zero is reached. The count only proceeds when gate is high and is
107 each clock to generate a full high / low cycle at the full periodic rate.
108 If the count is even, the clock remains high for N/2 counts and low for N/2
109 counts; if the clock is odd, the clock is high for (N+1)/2 counts and low
110 for (N-1)/2 counts. Only even values are latched by the counter, so odd
112 which generates sine-like tones by low-pass filtering the square wave output.
116 the output remains high until the counter reaches zero. Then the output
117 goes low for 1 clock cycle and returns high. The counter is not reloaded.
118 Counting only occurs when gate is high.
122 output remains high. When the gate is raised, a countdown is initiated
124 the output goes low for 1 clock cycle and then returns high. The counter is
133 Bit 7-4: Command (See table below)
134 Bit 3-1: Mode (000 = Mode 0, 101 = Mode 5, 11X = undefined)
139 0000 - Latch Timer 0 count for port 0x40
144 0001 - Set Timer 0 LSB mode for port 0x40
148 0010 - Set Timer 0 MSB mode for port 0x40
152 0011 - Set Timer 0 16-bit mode for port 0x40
156 0100 - Latch Timer 1 count for port 0x41 - as described above
157 0101 - Set Timer 1 LSB mode for port 0x41 - as described above
158 0110 - Set Timer 1 MSB mode for port 0x41 - as described above
159 0111 - Set Timer 1 16-bit mode for port 0x41 - as described above
161 1000 - Latch Timer 2 count for port 0x42 - as described above
162 1001 - Set Timer 2 LSB mode for port 0x42 - as described above
163 1010 - Set Timer 2 MSB mode for port 0x42 - as described above
164 1011 - Set Timer 2 16-bit mode for port 0x42 as described above
166 1101 - General counter latch
173 1110 - Latch timer status
179 The output of ports 0x40-0x42 following this command will be:
183 Bit 5-4 = Read / Write mode
186 11 = LSB / MSB (16-bit)
187 Bit 3-1 = Mode
191 --------
212 The clock uses a 32.768kHz crystal, so bits 6-4 of register A should be
218 ------------------------------------------
231 bit 6-4 = Divider for clock
238 bit 3-0 = Rate selection for periodic interrupt
252 bit 4 = Update-ended interrupt enable
255 bit 1 = 12-hour mode (0) / 24-hour mode (1)
262 bit 3-0 = reserved
265 bit 6-0 = reserved
270 ---------
272 On Pentium and later processors, an on-board timer is available to each CPU
274 accessed through memory-mapped registers and provides interrupt service to each
279 the APIC CPU-local memory-mapped hardware. Beware that CPU errata may affect
281 these workarounds pose unique constraints for virtualization - requiring either
282 extra overhead incurred from extra reads of memory-mapped I/O or additional
288 of one-shot or periodic operation, and is based on the bus clock divided down
292 ---------
305 In general, the HPET is recommended as a high precision (compared to PIT /RTC)
307 in any given system). The HPET is also memory-mapped, and its presence is
311 document, as it is also very well documented elsewhere.
314 --------------------
332 The TSC is represented internally as a 64-bit MSR which can be read with the
335 was only possible to write the low 32-bits of the 64-bit counter, and the upper
336 32-bits of the counter were cleared. Now, however, on Intel processors family
338 has been lifted and all 64-bits are writable. On AMD systems, the ability to
341 The TSC is accessible from CPL-0 and conditionally, for CPL > 0 software by
357 ------------------------
359 The TSC is a CPU-local clock in most implementations. This means, on SMP
366 Several hardware limitations make the problem worse - if it is not possible to
367 write the full 64-bits of the TSC, it may be impossible to match the TSC in
375 ------------------------
385 3.3. TSC and multi-socket / NUMA
386 --------------------------------
388 Multi-socket systems, especially large multi-socket systems are likely to have
396 In addition, very large systems may deliberately slew the clocks of individual
397 cores. This technique, known as spread-spectrum clocking, reduces EMI at the
404 3.4. TSC and C-states
405 ---------------------
407 C-states, or idling states of the processor, especially C1E and deeper sleep
416 3.5. TSC frequency change / P-states
417 ------------------------------------
426 Whether the TSC runs at a constant rate or scales with the P-state is model
430 In addition, some vendors have known bugs where the P-state is actually
432 inactive, the P-state may be raised temporarily to service cache misses from
434 than that of non-halted processors. AMD Turion processors are known to have
437 3.6. TSC and STPCLK / T-states
438 ------------------------------
445 3.7. TSC virtualization - VMX
446 -----------------------------
454 3.8. TSC virtualization - SVM
455 -----------------------------
463 ------------------------------
467 if so, the TSCs in multi-sockets or NUMA systems may still run independently
476 X86_FEATURE_CONSTANT_TSC The TSC rate is unchanged with P-states
477 X86_FEATURE_NONSTOP_TSC The TSC does not stop in C-states
488 it may very well make that assumption. It may expect it to remain true to very
502 -----------------------
509 time may fall behind. This is especially problematic if a high interrupt rate
532 -----------------------------------
538 but is highlighted because of its very precise nature is sampling delay. By
543 non-serialized. Forcing serialized execution is necessary for precise
555 ----------------------
563 Due to non-serialized reads, you may actually end up with a range which
564 fluctuates - from (T-1.. T+10). Thus, any time calculated from a TSC, but
566 Re-calibrating this computation may actually cause time, as computed after the
571 the kernel time, which is expressed in the theoretically high resolution
572 timespec - but which advances in much larger granularity intervals, sometimes
580 --------------
586 typically small enough to fall in the NTP-correctable window.
599 ---------------
613 --------------
622 --------------------------------
628 adequately virtualized without a full real-time operating system, which would
636 ------------------------------
641 red-pill type detection), and it may allow information to leak between guests
645 but in general isn't recommended for real-world deployment scenarios.