Lines Matching +full:interrupt +full:- +full:driven
26 between 0 and n-1, n being the number of GPIOs managed by the chip.
29 example if a system uses a memory-mapped set of I/O-registers where 32 GPIO
30 lines are handled by one bit per line in a 32-bit register, it makes sense to
44 So for example one platform could use global numbers 32-159 for GPIOs, with a
46 global numbers 0..63 with one set of GPIO controllers, 64-79 with another type
47 of GPIO controller, and on one particular board 80-95 with an FPGA. The legacy
49 2000-2063 to identify GPIO lines in a bank of I2C GPIO expanders.
60 - methods to establish GPIO line direction
61 - methods used to access GPIO line values
62 - method to set electrical configuration for a given GPIO line
63 - method to return the IRQ number associated to a given GPIO line
64 - flag saying whether calls to its methods may sleep
65 - optional line names array to identify lines
66 - optional debugfs dump method (showing extra state information)
67 - optional base number (will be automatically assigned if omitted)
68 - optional label for diagnostics and GPIO chip mapping using platform data
75 Often a gpio_chip is part of an instance-specific structure with states not
77 Chips such as audio codecs will have complex non-GPIO states.
91 -----------------------------
96 - Debouncing
97 - Single-ended modes (open drain/open source)
98 - Pull up and pull down resistor enablement
106 ending up in the pin control back-end "behind" the GPIO controller, usually
110 If a pin controller back-end is used, the GPIO controller or hardware
112 numbers on the pin controller so they can properly cross-reference each other.
116 --------------------------------
133 -----------------------------------------
135 Open drain (CMOS) or open collector (TTL) means the line is not actively driven
137 is not open, it will present a high-impedance (tristate) to the external rail::
142 ||--- out +--- out
143 in ----|| |/
144 ||--+ in ----|
150 - Level-shifting: to reach a logical level higher than that of the silicon
153 - Inverse wire-OR on an I/O line, for example a GPIO line, making it possible
157 wire-OR bus.
159 Both use cases require that the line be equipped with a pull-up resistor. This
163 The level on the line will go as high as the VDD on the pull-up resistor, which
165 level-shift to the higher VDD.
168 "totem-pole" with one N-MOS and one P-MOS transistor where one of them drives
169 the line high and one of them drives the line low. This is called a push-pull
170 output. The "totem-pole" looks like so::
174 OD ||--+
175 +--/ ---o|| P-MOS-FET
176 | ||--+
177 IN --+ +----- out
178 | ||--+
179 +--/ ----|| N-MOS-FET
180 OS ||--+
186 a push-pull circuit.
189 P-MOS or N-MOS transistor right after the split of the input. As you can see,
190 either transistor will go totally numb if this switch is open. The totem-pole
192 high or low respectively. That is usually how software-controlled open
196 hard-wired lines that will only support open drain or open source no matter
197 what: there is only one transistor there. Some are software-configurable:
202 By disabling the P-MOS transistor, the output can be driven between GND and
203 high impedance (open drain), and by disabling the N-MOS transistor, the output
204 can be driven between VDD and high impedance (open source). In the first case,
205 a pull-up resistor is needed on the outgoing rail to complete the circuit, and
206 in the second case, a pull-down resistor is needed on the rail.
211 open source or push-pull. This will happen in response to the
218 drain, and the IN output value is low, it will be driven low as usual. But
219 if the IN output value is set to high, it will instead *NOT* be driven high,
230 ---------------------------------------------
232 A GPIO line can support pull-up/down using the .set_config() callback. This
233 means that a pull up or pull-down resistor is available on the output of the
236 In discrete designs, a pull-up or pull-down resistor is simply soldered on
243 switch a bit in a register enabling or disabling pull-up or pull-down.
246 pull-up or pull-down resistor, the GPIO chip callback .set_config() will not
250 different pull-up or pull-down resistance values.
257 most often cascaded off a parent interrupt controller, and in some special
258 cases the GPIO logic is melded with a SoC's primary interrupt controller.
261 the header <linux/irq.h>. So this combined driver is utilizing two sub-
279 - CASCADED INTERRUPT CHIPS: this means that the GPIO chip has one common
280 interrupt output line, which is triggered by any enabled GPIO line on that
281 chip. The interrupt output line will then be routed to an parent interrupt
283 interrupt controller. This is modeled by an irqchip that will inspect bits
286 will likely also need to acknowledge that it is handling the interrupt
289 edge sensitivity (rising or falling edge, or high/low level interrupt for
292 - HIERARCHICAL INTERRUPT CHIPS: this means that each GPIO line has a dedicated
293 irq line to a parent interrupt controller one level up. There is no need
295 may still be necessary to acknowledge the interrupt and set up configuration
302 - spinlock_t should be replaced with raw_spinlock_t.[1]
303 - If sleepable APIs have to be used, these can be done from the .irq_bus_lock()
309 ----------------------
313 - CHAINED CASCADED GPIO IRQCHIPS: these are usually the type that is embedded on
316 system interrupt controller. This means that the GPIO irqchip handler will
319 sequence in its interrupt handler::
331 threaded on -RT. As a result, spinlock_t or any sleepable APIs (like PM
336 this way it will become a threaded IRQ handler on -RT and a hard IRQ handler
337 on non-RT (for example, see [3]).
347 raw_spin_lock_irqsave(&bank->wa_lock, wa_lock_flags);
348 generic_handle_irq(irq_find_mapping(bank->chip.irq.domain, bit));
349 raw_spin_unlock_irqrestore(&bank->wa_lock, wa_lock_flags);
351 - GENERIC CHAINED GPIO IRQCHIPS: these are the same as "CHAINED GPIO irqchips",
355 its interrupt handler::
361 Realtime considerations: this kind of handlers will be forced threaded on -RT,
363 with IRQ enabled and the same work-around as for "CHAINED GPIO irqchips" can
366 - NESTED THREADED GPIO IRQCHIPS: these are off-chip GPIO expanders and any
373 a thread and then mask the parent IRQ line until the interrupt is handled
375 this in its interrupt handler::
390 ----------------------------------------
392 To help out in handling the set-up and management of GPIO irqchips and the
397 under the assumption that your interrupts are 1-to-1-mapped to the
400 .. csv-table::
407 ngpio-1, ngpio-1
418 is a typical example of a chained cascaded interrupt handler using
422 .. code-block:: c
435 * Perform any necessary action to mask the interrupt,
451 * Perform any necessary action to unmask the interrupt,
479 girq = &g->gc.irq;
481 girq->parent_handler = ftgpio_gpio_irq_handler;
482 girq->num_parents = 1;
483 girq->parents = devm_kcalloc(dev, 1, sizeof(*girq->parents),
485 if (!girq->parents)
486 return -ENOMEM;
487 girq->default_type = IRQ_TYPE_NONE;
488 girq->handler = handle_bad_irq;
489 girq->parents[0] = irq;
491 return devm_gpiochip_add_data(dev, &g->gc, g);
494 the interrupt separately and go with it:
496 .. code-block:: c
509 * Perform any necessary action to mask the interrupt,
525 * Perform any necessary action to unmask the interrupt,
553 IRQF_ONESHOT, "my-chip", g);
558 girq = &g->gc.irq;
561 girq->parent_handler = NULL;
562 girq->num_parents = 0;
563 girq->parents = NULL;
564 girq->default_type = IRQ_TYPE_NONE;
565 girq->handler = handle_bad_irq;
567 return devm_gpiochip_add_data(dev, &g->gc, g);
569 The helper supports using hierarchical interrupt controllers as well.
570 In this case the typical set-up will look like this:
572 .. code-block:: c
586 * Perform any necessary action to mask the interrupt,
603 * Perform any necessary action to unmask the interrupt,
632 girq = &g->gc.irq;
634 girq->default_type = IRQ_TYPE_NONE;
635 girq->handler = handle_bad_irq;
636 girq->fwnode = g->fwnode;
637 girq->parent_domain = parent;
638 girq->child_to_parent_hwirq = my_gpio_child_to_parent_hwirq;
640 return devm_gpiochip_add_data(dev, &g->gc, g);
653 bit representing line 0..n-1. Drivers can exclude GPIO lines by clearing bits
659 - Make sure to assign all relevant members of the struct gpio_chip so that
663 - Nominally set gpio_irq_chip.handler to handle_bad_irq. Then, if your irqchip
670 -----------------
685 This will prevent the use of non-irq related GPIO APIs until the GPIO IRQ lock
699 ---------------------------
726 Real-Time compliance for GPIO IRQ chips
727 ---------------------------------------
729 Any provider of irqchips needs to be carefully tailored to support Real-Time
731 in mind and do the proper testing to assure they are real time-enabled.
735 The following is a checklist to follow when preparing a driver for real-time
738 - ensure spinlock_t is not used as part irq_chip implementation
739 - ensure that sleepable APIs are not used as part irq_chip implementation
742 - Chained GPIO irqchips: ensure spinlock_t or any sleepable APIs are not used
744 - Generic chained GPIO irqchips: take care about generic_handle_irq() calls and
745 apply corresponding work-around
746 - Chained GPIO irqchips: get rid of the chained IRQ handler and use generic irq
748 - regmap_mmio: it is possible to disable internal locking in regmap by setting
750 - Test your driver with the appropriate in-kernel real-time test cases for both
753 * [1] http://www.spinics.net/lists/linux-omap/msg120425.html
754 * [2] https://lore.kernel.org/r/1443209283-20781-2-git-send-email-grygorii.strashko@ti.com
755 * [3] https://lore.kernel.org/r/1443209283-20781-3-git-send-email-grygorii.strashko@ti.com
758 Requesting self-owned GPIO pins