Lines Matching +full:set +full:- +full:gpios
4 1) gpios property
5 -----------------
7 GPIO properties should be named "[<name>-]gpios", with <name> being the purpose
8 of this GPIO for the device. While a non-existent <name> is considered valid
9 for compatibility reasons (resolving to the "gpios" property), it is not allowed
10 for new bindings. Also, GPIO properties named "[<name>-]gpio" are valid and old
15 cases should they contain more than one. If your device uses several GPIOs with
17 meaningful name. The only case where an array of GPIOs is accepted is when
18 several GPIOs serve the same function (e.g. a parallel data line).
20 The exact purpose of each gpios property must be documented in the device tree
24 and bit-banged data signals:
27 gpio-controller;
28 #gpio-cells = <2>;
32 data-gpios = <&gpio1 12 0>,
44 recommended to use the two-cell approach.
48 include/dt-bindings/gpio/gpio.h whenever possible:
50 Example of a node using GPIOs:
53 enable-gpios = <&qe_pio_e 18 GPIO_ACTIVE_HIGH>;
56 GPIO_ACTIVE_HIGH is 0, so in this example gpio-specifier is "18 0" and encodes
57 GPIO pin number, and GPIO flags as accepted by the "qe_pio_e" gpio-controller.
61 - Bit 0: 0 means active high, 1 means active low
62 - Bit 1: 0 mean push-pull wiring, see:
63 https://en.wikipedia.org/wiki/Push-pull_output
64 1 means single-ended wiring, see:
65 https://en.wikipedia.org/wiki/Single-ended_triode
66 - Bit 2: 0 means open-source, 1 means open drain, see:
68 - Bit 3: 0 means the output should be maintained during sleep/low-power mode
69 1 means the output state can be lost during sleep/low-power mode
70 - Bit 4: 0 means no pull-up resistor should be enabled
71 1 means a pull-up resistor should be enabled
73 control for pull-up configuration. If the hardware has more
74 elaborate pull-up configuration, it should be represented
76 - Bit 5: 0 means no pull-down resistor should be enabled
77 1 means a pull-down resistor should be enabled
79 control for pull-down configuration. If the hardware has more
80 elaborate pull-down configuration, it should be represented
84 ----------------------------------
86 A gpio-specifier should contain a flag indicating the GPIO polarity; active-
87 high or active-low. If it does, the following best practices should be
90 The gpio-specifier's polarity flag should represent the physical level at the
94 the GPIO controller and the device, then the gpio-specifier will represent the
106 a1) (Preferred) Dictated by a binding-specific DT property.
112 In particular, the polarity cannot be derived from the gpio-specifier, since
114 concepts of configurable signal polarity in the device, and possible board-
120 in the binding. The gpio-specifier should represent the polarity of the signal
127 2) gpio-controller nodes
128 ------------------------
130 Every GPIO controller node must contain both an empty "gpio-controller"
131 property, and a #gpio-cells integer property, which indicates the number of
132 cells in a gpio-specifier.
134 Some system-on-chips (SoCs) use the concept of GPIO banks. A GPIO bank is an
137 exposed in the device tree as an individual gpio-controller node, reflecting
142 indicates the number of in-use slots of available slots for GPIOs. The
148 first 18 GPIOs, at local offset 0 .. 17, are in use.
150 If these GPIOs do not happen to be the first N GPIOs at offset 0...N-1, an
151 additional set of tuples is needed to specify which GPIOs are unusable, with
152 the gpio-reserved-ranges binding. This property indicates the start and size
153 of the GPIOs that can't be used.
155 Optionally, a GPIO controller may have a "gpio-line-names" property. This is
159 For lines which are routed to on-board devices, this name should be
162 such lines have opaque names (since they are by definition general-purpose)
163 and such names are usually not very helpful. For example "MMC-CD", "Red LED
166 that is hard-wired to a specific device.
169 (e.g. the Raspberry Pi 40-pin header), and therefore are not hard-wired to
172 or package name, or names made up from kernel-internal software constructs,
189 gpio-controller@00000000 {
192 gpio-controller;
193 #gpio-cells = <2>;
195 gpio-reserved-ranges = <0 4>, <12 2>;
196 gpio-line-names = "MMC-CD", "MMC-WP", "VDD eth", "RST eth", "LED R",
204 gpio-controller's driver probe function.
208 - gpio-hog: A property specifying that this child node represents a GPIO hog.
209 - gpios: Store the GPIO information (id, flags, ...) for each GPIO to
216 - input: A property specifying to set the GPIO direction as input.
217 - output-low A property specifying to set the GPIO direction as output with
219 - output-high A property specifying to set the GPIO direction as output with
223 - line-name: The GPIO label name. If not present the node name is used.
225 Example of two SOC GPIO banks defined as gpio-controller nodes:
227 qe_pio_a: gpio-controller@1400 {
228 compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank";
230 gpio-controller;
231 #gpio-cells = <2>;
233 line_b-hog {
234 gpio-hog;
235 gpios = <6 0>;
236 output-low;
237 line-name = "foo-bar-gpio";
241 qe_pio_e: gpio-controller@1460 {
242 compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
244 gpio-controller;
245 #gpio-cells = <2>;
248 2.1) gpio- and pin-controller interaction
249 -----------------------------------------
251 Some or all of the GPIOs provided by a GPIO controller may be routed to pins
257 -------------------------------------
259 It is useful to represent which GPIOs correspond to which pins on which pin
260 controllers. The gpio-ranges property described below represents this with
261 a discrete set of ranges mapping pins from the pin controller local number space
271 described in pinctrl/pinctrl-bindings.txt.
274 ranges with just one pin-to-GPIO line mapping if the ranges are concocted, but
279 gpio-ranges = <&foo 0 20 10>, <&bar 10 50 20>;
282 - pins 20..29 on pin controller "foo" is mapped to GPIO line 0..9 and
283 - pins 50..69 on pin controller "bar" is mapped to GPIO line 10..29
288 qe_pio_e: gpio-controller@1460 {
289 #gpio-cells = <2>;
290 compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
292 gpio-controller;
293 gpio-ranges = <&pinctrl1 0 20 10>, <&pinctrl2 10 50 20>;
296 Here, a single GPIO controller has GPIOs 0..9 routed to pin controller
297 pinctrl1's pins 20..29, and GPIOs 10..29 routed to pin controller pinctrl2's
302 --------------------------------------
307 Both both <pinctrl-base> and <count> must set to 0 when using named pin groups
310 The property gpio-ranges-group-names must contain exactly one string for each
313 Elements of gpio-ranges-group-names must contain the name of a pin group
319 numerical pin range in gpio-ranges-group-names must be empty.
323 gpio_pio_i: gpio-controller@14b0 {
324 #gpio-cells = <2>;
325 compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
327 gpio-controller;
328 gpio-ranges = <&pinctrl1 0 20 10>,
332 gpio-ranges-group-names = "",
344 were referenced by any gpio-ranges property to contain a property named
345 #gpio-range-cells with value <3>. This requirement is now deprecated.