Lines Matching +full:at +full:- +full:compatible

6 1 - Introduction
15 2 - CPU capacity definition
19 heterogeneity. Such heterogeneity can come from micro-architectural differences
20 (e.g., ARM big.LITTLE systems) or maximum frequency at which CPUs can run
23 capture a first-order approximation of the relative performance of CPUs.
29 * A "single-threaded" or CPU affine benchmark
36 CPU capacities are obtained by running the Dhrystone benchmark on each CPU at
38 by the frequency (in MHz) at which the benchmark has been run, so that
43 3 - capacity-dmips-mhz
46 capacity-dmips-mhz is an optional cpu node [1] property: u32 value
47 representing CPU capacity expressed in normalized DMIPS/MHz. At boot time, the
51 capacity-dmips-mhz property is all-or-nothing: if it is specified for a cpu
54 available, final capacities are calculated by directly using capacity-dmips-
58 4 - Examples
61 Example 1 (ARM 64-bit, 6-cpu system, two clusters):
62 The capacities-dmips-mhz or DMIPS/MHz values (scaled to 1024)
64 is done by the operating system based on cluster0@max-freq=1100 and
65 cluster1@max-freq=850, final capacities are 1024 for cluster0 and
69 #address-cells = <2>;
70 #size-cells = <0>;
72 cpu-map {
98 idle-states {
99 entry-method = "psci";
101 CPU_SLEEP_0: cpu-sleep-0 {
102 compatible = "arm,idle-state";
103 arm,psci-suspend-param = <0x0010000>;
104 local-timer-stop;
105 entry-latency-us = <100>;
106 exit-latency-us = <250>;
107 min-residency-us = <150>;
110 CLUSTER_SLEEP_0: cluster-sleep-0 {
111 compatible = "arm,idle-state";
112 arm,psci-suspend-param = <0x1010000>;
113 local-timer-stop;
114 entry-latency-us = <800>;
115 exit-latency-us = <700>;
116 min-residency-us = <2500>;
121 compatible = "arm,cortex-a57";
124 enable-method = "psci";
125 next-level-cache = <&A57_L2>;
127 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
128 capacity-dmips-mhz = <1024>;
132 compatible = "arm,cortex-a57";
135 enable-method = "psci";
136 next-level-cache = <&A57_L2>;
138 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
139 capacity-dmips-mhz = <1024>;
143 compatible = "arm,cortex-a53";
146 enable-method = "psci";
147 next-level-cache = <&A53_L2>;
149 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
150 capacity-dmips-mhz = <578>;
154 compatible = "arm,cortex-a53";
157 enable-method = "psci";
158 next-level-cache = <&A53_L2>;
160 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
161 capacity-dmips-mhz = <578>;
165 compatible = "arm,cortex-a53";
168 enable-method = "psci";
169 next-level-cache = <&A53_L2>;
171 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
172 capacity-dmips-mhz = <578>;
176 compatible = "arm,cortex-a53";
179 enable-method = "psci";
180 next-level-cache = <&A53_L2>;
182 cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
183 capacity-dmips-mhz = <578>;
186 A57_L2: l2-cache0 {
187 compatible = "cache";
190 A53_L2: l2-cache1 {
191 compatible = "cache";
195 Example 2 (ARM 32-bit, 4-cpu system, two clusters,
197 capacities-dmips-mhz are scaled w.r.t. 2 (cpu@0 and cpu@1), this means that first
198 cpu@0 and cpu@1 are twice fast than cpu@2 and cpu@3 (at the same frequency)
201 #address-cells = <1>;
202 #size-cells = <0>;
206 compatible = "arm,cortex-a15";
208 capacity-dmips-mhz = <2>;
213 compatible = "arm,cortex-a15";
215 capacity-dmips-mhz = <2>;
220 compatible = "arm,cortex-a15";
222 capacity-dmips-mhz = <1>;
227 compatible = "arm,cortex-a15";
229 capacity-dmips-mhz = <1>;
234 5 - References
237 [1] ARM Linux Kernel documentation - CPUs bindings